IMPLEMENTATION OF PASSIVE AND ACTIVE POWER FILTERS FOR HARMONIC MITIGATION

by

MOHD ARIF BIN MAT OMAR

Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Engineering

MAY 2011
IMPLEMENTATION OF PASSIVE AND ACTIVE POWER FILTERS FOR HARMONIC MITIGATION

MOHD ARIF BIN MAT OMAR

SCHOOL OF ELECTRICAL SYSTEMS ENGINEERING
UNIVERSITI MALAYSIA PERLIS
2011
ACKNOWLEDGEMENT

Alhamdulillah and praise be to Allah S.W.T, as He is the main contributor towards the success of this project completion.

I also wish to express my appreciation to all those who had been willing to support me throughout the progress of this project. I would like to express my gratitude to my supervisor, En. Muzaidi bin Othman @ Marzuki for all the advices and guides given towards the successful completion of this project.

I am also grateful to all the lecturers and panels involved towards encouraging me on conducting this project within the two semester periods.

Also not to forget, my utmost thanks to my parents, brothers, friends and each of those, whom without them, this project would not probably be at its best form.

May God bless you all until the end of time. Wassalam and thank you.
I, Mohd Arif bin Mat Omar, hereby declare that my Final Year Project Thesis is the result of my research work under supervision of Mr. Muzaidi bin Othman @ Marzuki. All literature sources used for the writing of this thesis have been adequately referenced.

Name : MOHD ARIF BIN MAT OM AR
Candidate number : 081070532
Supervisor : MR. MUZAIDI BIN OTHMAN @ MARZUKI
Title of thesis : IMPLEMENTATION OF PASSIVE AND ACTIVE POWER FILTERS FOR HARMONIC MITIGATION

Candidate’s signature: Supervisor’s signature:
Date: 30/05/2011 Date: 30/05/2011
This project report titled Implementation of Passive and Active Filter for Harmonic Mitigation was prepared and submitted by Mohd Arif bin Mat-Omar (Matrix Number: 081070532) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Industrial Electronic Engineering) in Universiti Malaysia Perlis (UniMAP).

Checked and Approved by

(MUZAIMID BIN OTHMAN @ MARZUKI)
Project Supervisor

School of Electrical System Engineering
Universiti Malaysia Perlis

May 2011
ABSTRAK

Pemanfaatan beban bukan linear telah menjadi perhatian utama terutama dalam industri sistem kuasa. Operasi beban mampu menghasilkan arus dan voltan harmonik yang muncul pada rangkaian am titik utiliti-pelanggan (PCC). Tambahan pula, jika harmonik terjadi pada frekuensi yang sama ketika sistem elektrik dalam keadaan resonans, ia mampu mengakibatkan amplifikasi terhadap herotan harmonik, atau dikenali sebagai resonans harmonik. Peranti pembolehubah kelajuan (ASD) merupakan sumber utama harmonik. Variasi modulasi indeks yang dihasilkan oleh pengawal fasa modulasi lebar (PWM) akan menyebarkan frekuensi harmonik dalam kabel elektrik utama. Keseluruhan komponen harmonik bertambah buruk disebabkan oleh kemasukan komponen penyambung arus terus (DC link) bagi proses penyatu-arah kan arus. Pengenalan penapis pasif (PPF) dan aktif (APF) mampu mengurangkan herotan harmonik secara keseluruhan yang berlaku pada kabel elektrik utama. Penapis pasif penalaan tunggal mampu mengasingkan herotan harmonik relatif terhadap frekuensi penalaan bagi resonans harmonik, walaupun mereka memperkenalkan pembatasan terhadap pemampasan kuasa reaktif. Penapis aktif pirau melitupi ruang lingkup pemampasan harmonik yang luas pada frekuensi harmonik yang tinggi. Penapis aktif pirau mempunyai prestasi yang lebih baik dalam hal peningkatan faktor kuasa berbanding penapis pasif penalaan tunggal.
IMPLEMENTATION OF PASSIVE AND ACTIVE POWER FILTERS FOR HARMONIC MITIGATION

ABSTRACT

The utilization of non-linear loads has become a major concern especially in the industrial power system. The operation of the loads could draw harmonic currents and voltages which appear at the utility-consumer point of common coupling (PCC). In addition, if the harmonic occurs at the same frequency when the power system is at resonance, it could result in amplification of the harmonic distortion, or known as harmonic resonance. Three-phase Adjustable Speed Drives (ASDs) are a common source of harmonics. The variation of modulation index of a specific phase-width modulation (PWM) controller thus distributes harmonic frequencies within the main power lines. The overall harmonic components are further aggravated by the inclusion of DC link components for rectification process. The introduction of passive and active power filters (PPFs and APFs) thus reduces the overall harmonic current distortion occurring within the main power lines. Single-tuned passive filters provide fair harmonic isolation relative to its tuning frequency for harmonic resonance, although they introduce limitations on reactive power compensation. Shunt active filters cover greater range over harmonic compensation at wide harmonic frequencies. Shunt active filters provide greater performance in terms of power factor improvement compared to single-tuned passive filters.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION SHEET</td>
<td>ii</td>
</tr>
<tr>
<td>APPROVAL AND DECLARATION SHEET</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURES</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Overview 1

1.2 Problem Statement 2

1.3 Project Background 2

1.4 Scopes 3

1.5 Objectives 4

1.6 Report Outline 4

CHAPTER 2 LITERATURE REVIEW

2.1 Three-phase Induction Motor 6

2.1.1 Principal Components 6

2.1.2 The Speed of an Induction Motor 8

2.1.3 The Electrical Frequency on the Rotor 8
2.1.4 The Equivalent Circuit of an Induction Motor 9
2.1.5 Power and Torque in an Induction Motor 10
2.1.6 Speed Control of Induction Motors 10
2.1.7 Speed Regulation by Variable-Voltage, Variable-Frequency (V-f) Control 11
2.1.8 Harmonic Generation in an AC Machine 11
2.1.9 Effects of Harmonics on Motors and Generators 12
2.2 PWM-VSI of Three-Phase Induction Motor Drive (ASD) 13
2.3 Harmonics 15
2.3.1 Introduction 15
2.3.2 Definitions of Harmonic Indices 17
2.3.3 Harmonic Current Sources and Harmonic Voltage Sources 18
2.4 Passive Power Filters (PPFs) 20
2.4.1 Single-tuned PPFs 20
2.5 Active Power Filters (APFs) 22
2.5.1 Shunt APF 23

CHAPTER 3 METHODOLOGY
3.1 Introduction 26
3.2 Validation of the Motor Model 27
3.3 Simulation of PWM-VSI Drive 29
3.3.1 Simulation of PWM-VSI Drive (in nominal state) 29
3.3.2 Simulation of Sinusoidal PWM-VSI Drive (in modulation index variation) 32
3.4 Validation of Parameters at Main Power Line 34
3.5 Implementation of PPF for Harmonic Current Mitigation 36
3.5.1 Validation of Single-tuned PPFs 37
3.5.1.1 Methodology for Design of Single-tuned PPFs 37
3.5.2 Performance of Designed Single-tuned PPFs 39
3.6 Implementation of APF for Harmonic Current Mitigation 39
CHAPTER 4 RESULTS AND DISCUSSION
4.1 Validation of the Motor Model 42
4.2 Simulation of PWM-VSI Drive 43
 4.2.1 Simulation of PWM-VSI Drive (in nominal state) 43
 4.2.2 Simulation of Sinusoidal PWM-VSI Drive (in modulation index variation) 44
4.3 Validation of Parameters at Main Power Line 46
4.4 Implementation of PPF for Harmonic Current Mitigation 48
 4.4.1 Validation of Single-tuned PPFs 48
 4.4.2 Performance of Designed Single-tuned PPFs 51
4.5 Implementation of APF for Harmonic Current Mitigation 56
 4.5.1 Performance of Designed Shunt APF 56
4.6 Comparison between Performance of Single-tuned PPF and Shunt APF 61

CHAPTER 5 CONCLUSION
5.1 Summary 63
5.2 Recommendation for Future Project 64

REFERENCES 65

APPENDICES 66
Appendix A 66
Appendix B 76
Appendix C 87
Appendix D 88
Appendix E 96
Appendix F 105
Appendix G 113
Appendix H 123
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The components implemented in the schematic design of Figure 3.1.</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>The components implemented in Figure 3.2 – Figure 3.4.</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>The components implemented for the SPWM control method.</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>The components implemented at the DC link of the circuit.</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>The components implemented for the three-phase line reactors.</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>The components implemented for the shunt APF circuit.</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>The nominal values obtained from the circuit simulation of Figure 3.1.</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>The values obtained from the circuit simulation of Figure 3.2 – Figure 3.4.</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>The relative amplitude of the modulation index variation, m.</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>The values obtained from the circuit simulation of Figure 3.8 and Figure 3.9.</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>The reactive power per phase, Q at each phase.</td>
<td>48</td>
</tr>
<tr>
<td>4.6</td>
<td>The capacitive reactance at fundamental frequency, X_{C1} at each phase.</td>
<td>48</td>
</tr>
<tr>
<td>4.7</td>
<td>The capacitor values, C for each phase.</td>
<td>48</td>
</tr>
<tr>
<td>4.8</td>
<td>Capacitive/inductive reactance at harmonic frequency, X_{Ch}/X_{Lh} at each phase.</td>
<td>48</td>
</tr>
<tr>
<td>Tables No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>4.9</td>
<td>The inductive reactance at fundamental frequency, X_{L1} for each phase.</td>
<td>49</td>
</tr>
<tr>
<td>4.10</td>
<td>The inductor values, L for each phase.</td>
<td>50</td>
</tr>
<tr>
<td>4.11</td>
<td>The reactor resistor values, R for each phase.</td>
<td>50</td>
</tr>
<tr>
<td>4.12</td>
<td>The IHC sub 1 values of the PPF for each phase.</td>
<td>52</td>
</tr>
<tr>
<td>4.13</td>
<td>The THD sub 1 values at each phase after being filtered by the PPF.</td>
<td>52</td>
</tr>
<tr>
<td>4.14</td>
<td>The PF values at each phase and its average value after being filtered by the PPF.</td>
<td>54</td>
</tr>
<tr>
<td>4.15</td>
<td>The IHC sub 1 values of the APF for each phase.</td>
<td>56</td>
</tr>
<tr>
<td>4.16</td>
<td>The THD sub 1 values at each phase after being filtered by the APF.</td>
<td>57</td>
</tr>
<tr>
<td>4.17</td>
<td>The PF values at each phase and its average value after being filtered by the APF.</td>
<td>59</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cutaway diagram of a typical small (above) and large (below) cage rotor induction motor [2].</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>The transformer model of an induction motor, with rotor and stator connected by an ideal transformer of turns ratio a_{eff} [2].</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>The per-phase equivalent circuit of an induction motor [2].</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Diode rectifier PWM inverter control of an induction motor [4].</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Sinusoidal pulse width modulation (SPWM) principle [4].</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Voltage-frequency (V-f) relation of an induction motor [4].</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>An example of harmonically distorted waveform phenomena [5].</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Diode rectifier with inductive load [6]. (a) Power Circuit.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(b) Equivalent circuit for harmonic on a per-phase base.</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Diode rectifier with capacitive load [6]. (a) Power Circuit.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(b) Equivalent circuit for harmonic on a per-phase base.</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>A typical single-tuned passive power filter circuit.</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>A typical impedance waveform at a particular tuning/harmonic frequency [7].</td>
<td>21</td>
</tr>
<tr>
<td>2.12</td>
<td>Generalized block diagram for APF [8].</td>
<td>23</td>
</tr>
<tr>
<td>2.13</td>
<td>Principle configuration of a VSI based shunt APF [8].</td>
<td>24</td>
</tr>
<tr>
<td>2.14</td>
<td>Shunt APF harmonic filtering operation principle [8].</td>
<td>25</td>
</tr>
<tr>
<td>Figures No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>The schematic design of the motor model for validation.</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>The schematic design of the motor model with simulation of PWM-VSI drive in nominal state.</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>The Single PWM implemented with the VSI drive of the motor model.</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>The THD block implemented to obtain both the fundamental and THD values of the phase voltage/current.</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>The two stages function implemented.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Left: Simulation time = 1s; Effective torque = 150 N.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right: Simulation time = 2s; Effective torque = 300 N.m.</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>The Sinusoidal PWM implemented with the VSI drive of the motor model.</td>
<td>32</td>
</tr>
<tr>
<td>3.7</td>
<td>The two stages function implemented.</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Left: Simulation time = 1s; Effective torque = 0 N.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right: Simulation time = 2s; Effective torque = 300 N.m.</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>The schematic design of the complete motor model for validation (AC-DC rectification part).</td>
<td>35</td>
</tr>
<tr>
<td>3.9</td>
<td>The schematic design of the complete motor model for validation (DC-AC inversion part).</td>
<td>35</td>
</tr>
<tr>
<td>3.10</td>
<td>The installation of three-phase line reactors at the main power line.</td>
<td>36</td>
</tr>
<tr>
<td>3.11</td>
<td>The pre-designed single-tuned PPFs connected in parallel with the three-phase main power lines.</td>
<td>39</td>
</tr>
<tr>
<td>3.12</td>
<td>The three-phase VSI of the shunt APF.</td>
<td>40</td>
</tr>
<tr>
<td>3.13</td>
<td>The LC filters connected between the VSI output and AC mains junction.</td>
<td>40</td>
</tr>
<tr>
<td>3.14</td>
<td>The closed-loop PWM-VSI controller for the shunt APF.</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>The graph of harmonic order (h) vs IHD${V_a}$ and IHD${I_a}$.</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>The graph of modulation index (m) vs THD${V_a}$ (%) and THD${I_a}$ (%).</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>The PF values at each phase before being filtered.</td>
<td>46</td>
</tr>
<tr>
<td>Figures No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.4</td>
<td>The THD$_1$ (%) values at each phase before being filtered.</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>The IHD$_1$ values at each phase before being filtered.</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>The IHC$_1$ spectrum produced at each phase from the PPF.</td>
<td>51</td>
</tr>
<tr>
<td>4.7</td>
<td>The THD$_1$ values at each phase after being filtered by the PPF.</td>
<td>52</td>
</tr>
<tr>
<td>4.8</td>
<td>The THD$_1$ values at each phase before & after being filtered by the PPF.</td>
<td>53</td>
</tr>
<tr>
<td>4.9</td>
<td>The PF values at each phase after being filtered by the PPF.</td>
<td>54</td>
</tr>
<tr>
<td>4.10</td>
<td>The PF values at each phase before & after being filtered by the PPF.</td>
<td>55</td>
</tr>
<tr>
<td>4.11</td>
<td>The IHC$_1$ spectrum produced at each phase from the APF.</td>
<td>56</td>
</tr>
<tr>
<td>4.12</td>
<td>The THD$_1$ values at each phase after being filtered by the APF.</td>
<td>57</td>
</tr>
<tr>
<td>4.13</td>
<td>The THD$_1$ values at each phase before & after being filtered by the APF.</td>
<td>58</td>
</tr>
<tr>
<td>4.14</td>
<td>The PF values at each phase after being filtered by the APF.</td>
<td>59</td>
</tr>
<tr>
<td>4.15</td>
<td>The PF values at each phase before & after being filtered by the APF.</td>
<td>60</td>
</tr>
<tr>
<td>4.16</td>
<td>The THD$_1$ values before & after being filtered by the PPF & APF.</td>
<td>61</td>
</tr>
<tr>
<td>4.17</td>
<td>The PF values at each phase before & after being filtered by the PPF & APF.</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURES

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>Adjustable-speed Drive</td>
</tr>
<tr>
<td>VFD</td>
<td>Variable-frequency drive</td>
</tr>
<tr>
<td>PWM</td>
<td>Phase-width modulation</td>
</tr>
<tr>
<td>VSI</td>
<td>Voltage-source inverter</td>
</tr>
<tr>
<td>SPWM</td>
<td>Sinusoidal PWM</td>
</tr>
<tr>
<td>PPF</td>
<td>Passive Power Filter</td>
</tr>
<tr>
<td>APF</td>
<td>Active Power Filter</td>
</tr>
<tr>
<td>PCC</td>
<td>Point of Common Coupling</td>
</tr>
<tr>
<td>PSIM</td>
<td>Powersim</td>
</tr>
<tr>
<td>EDA</td>
<td>Electronic-Design Automation</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>THDV</td>
<td>Total Harmonic Voltage Distortion</td>
</tr>
<tr>
<td>THDI</td>
<td>Total Harmonic Current Distortion</td>
</tr>
<tr>
<td>PF</td>
<td>Power Factor</td>
</tr>
<tr>
<td>DF</td>
<td>Distortion Factor</td>
</tr>
<tr>
<td>IHD</td>
<td>Individual Harmonic Distortion</td>
</tr>
<tr>
<td>IHDV</td>
<td>Individual Harmonic Voltage Distortion</td>
</tr>
<tr>
<td>IHDI</td>
<td>Individual Harmonic Current Distortion</td>
</tr>
</tbody>
</table>
\(IHC_i \) \hspace{1cm} \text{Individual Harmonic Current Isolation}

\(V-f \) \hspace{1cm} \text{Voltage-to-frequency ratio}

IEEE \hspace{1cm} \text{Institute of Electrical and Electronics Engineers, Inc.}

\(Q \) \hspace{1cm} \text{Quality Factor}

\(\beta \) \hspace{1cm} \text{Bandwidth}

\(h \) \hspace{1cm} \text{Harmonic order}

\(r \) \hspace{1cm} \text{Tuning coefficient}

\(m \) \hspace{1cm} \text{Modulation index}

EMI \hspace{1cm} \text{Electromagnetic Interference}

\(n_{\text{sync}} \) \hspace{1cm} \text{Synchronous speed (in rpm)}

\(\omega_{\text{sync}} \) \hspace{1cm} \text{Synchronous speed (in rad/s)}

\(n_m \) \hspace{1cm} \text{Motor speed (in rpm)}

\(\omega_m \) \hspace{1cm} \text{Motor speed (in rad/s)}

\(\tau_{\text{ind}} \) \hspace{1cm} \text{Induced torque (in N.m)}

\(\tau_{\text{load}} \) \hspace{1cm} \text{Load torque (in N.m)}

\(P_{\text{out}} \) \hspace{1cm} \text{Output power (in W)}

\(P_{\text{mech}} \) \hspace{1cm} \text{Mechanical power (in W)}

\(P_{\text{conv}} \) \hspace{1cm} \text{Converted power (in W)}

\(P_{\text{AG}} \) \hspace{1cm} \text{Air-gap power (in W)}

\(f_e \) \hspace{1cm} \text{System frequency (in Hertz)}

\(f_r \) \hspace{1cm} \text{Rotor frequency (in Hz)}

\(P \) \hspace{1cm} \text{Number of poles}

\(V_h \) \hspace{1cm} \text{Harmonic voltage component (in V)}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_h</td>
<td>Harmonic current component (in A)</td>
</tr>
<tr>
<td>V_1</td>
<td>Fundamental frequency voltage component (in V)</td>
</tr>
<tr>
<td>I_1</td>
<td>Fundamental frequency current component (in A)</td>
</tr>
<tr>
<td>B_S</td>
<td>Magnetic field</td>
</tr>
<tr>
<td>ϵ_{ind}</td>
<td>Induced voltage (in V)</td>
</tr>
<tr>
<td>s</td>
<td>Slip</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

The term ‘power quality’ refers to the purity of the voltage and current waveform, and a power quality disturbance is a deviation from the pure sinusoidal form. Harmonics superimposed on the fundamental are one cause of such deviations. The widespread and increasing use of solid state devices in power systems is leading to escalating ambient harmonic levels in public electricity supply systems [9]. These devices tend to draw currents and voltages with frequencies that are integer multiples of the fundamental frequency.

The effect of harmonic distortion is slightly different between single-phase and three-phase loads in terms of troublesome harmonic components. The single phase non-linear loads are most likely to generate triplen harmonics. The triplen harmonics are the 3^{rd} and odd multiples of the 3^{rd} (9^{th}, 15^{th}, etc.) of the harmonic components. These harmonics could also cause overload on the neutral conductor of a 3-phase 4-wire system and circulating current on the delta winding of a delta-wye transformer configuration [10]. On the other hand, 3-phase non-linear loads such as three-phase Adjustable Speed Drives (ASDs) are most likely to generate primarily 5^{th} and 7^{th} current harmonics and some of the higher order harmonics.