

CHAPTER 3

METHODOLOGY

3.1 Methodology Review

In the Development of Smart Parking System, I have chosen the simplest rendition

of this system. It is called the “waterfall model”. The waterfall model is a sequential

software development model (a process for the creation of software) in which development

is seen as flowing steadily downwards (like a waterfall) through the phases of requirements

analysis, design, implementation, testing (validation), integration, and maintenance. Below

is the unmodified "waterfall model". Progress flows from the top to the bottom, like a

waterfall.

Figure 3.1: Waterfall Model

 19

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Software_development_model
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Enterprise_application_integration
http://en.wikipedia.org/wiki/Software_maintenance

3.2 PHASE 1: System Requirements Analysis

 All possible requirements of the Development of Smart Parking System to be

developed are captured in this phase. Requirements are set of functionalities and constraints

that the end-user (who will be using the system) expects from the system. The requirements

are gathered from the end-user by consultation, these requirements are analyzed for their

validity and the possibility of incorporating the requirements in the system to be

development is also studied. Finally, a Requirement Specification document is created

which serves the purpose of guideline for the next phase of the model.

 This is also known as feasibility study. In this phase, I must visit the customer and

studies their system. I had investigating the need for possible software automation in the

given system. By the end of the feasibility study, I had furnishes a document that holds the

different specific recommendations for the system. It also includes the project schedule, and

target dates. The requirements gathering process is intensified and focused specially on

software. To understand the nature of the program(s) to be built, I must understand the

information domain for the software, as well as required function, behavior, performance

and interfacing. The essential purpose of this phase is to find the need and to define the

problem that needs to be solved.

Planning is to establishing the plans for creating an information system by defining

the system to be developed; a system must be identified and chosen. The project scope is a

high level of system requirements must be defined and put into a project scope document.

Developing the project plan needs all details from tasks to be completed, which completed

them and when I were completed must be formalized. Managing and monitoring the project

plan can allows the organization to stay on track, creating project milestones and feature

creeps which allow me to add to the initial plan

Analysis for the users and IT specialists collaborate to collect, comprehends, and

logistically formalize business requirements by gathering the business requirements.

 20

http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Milestones

3.3 PHASE 2: System & Software Design

In this phase, the software development process, the software's overall structure and

its nuances are defined. In terms of the client/server technology, the number of tiers needed

for the package architecture, the database design, the data structure design is all defined in

this phase. A software development model is created. Analysis and Design are very crucial

in the whole development cycle. Any glitch in the design phase could be very expensive to

solve in the later stage of the software development. Much care is taken during this phase.

The logical system of the product is developed in this phase.

Before a starting for actual coding, it is highly important to understand what I am

going to create and what it should look like? The requirement specifications from first

phase are studied in this phase and system design is prepared. System Design helps in

specifying hardware and system requirements and also helps in defining overall system

architecture. The system design specifications serve as input for the next phase of the

model.

Design is where the technical of the system is created by. Designing the technical

architecture by choosing amongst the architectural designs of hardware and software that

will best suit the organization’s system and future needs. Designing the systems model is

graphically creating a model from graphical user interface (GUI), GUI screen design, and

databases, to placement of objects on screen.

Development is executing the design into a physical system by. Building the

technical architecture for purchasing the material needed to build the system. Building the

database and programs is the IT specialists write programs which will be used on the

system.

 21

http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Database

3.3.1 Block Diagram: Parking Garage Schematic

The block diagram, shown in Figure 3.2, displays the basic organization and flow of

data between the various components of my project. A more detailed explanation of each

block will be presented in the following report. All the system in this block diagram using

VB.NET interface.

Figure 3.2: Parking Garage Schematic

3.3.2 Parking Garage Schematic Descriptions

3.3.2.1 Entrance-Interface

The entrance-interface, programmed in VB.NET, consists of a monitor and mouse

that allows the driver to choose their preferred parking spot. Parking spot information will

be sent to the next interface. The interface is the display that the parking driver will see.

 22

3.3.2.2 Interfaces

 The timer displays the time remaining or indicates if time has run out in the

interface. This is already built into the parking system. The database detects the presence of

a vehicle. The output is sent to the interface.

3.3.2.3 Return-Interface

The Return-Interface is the display parking attendance will see. The display will

indicate the car number, total amount and the length of time of the parked vehicle. It also

programmed in VB.NET, consists of a monitor and mouse that allows the parking

attendance to enter their parking spot number upon returning to the garage. The display will

indicate the car number, the length of time and the totals amount of the parked vehicle.

 23

3.3.3 Flowchart Parking Garage

Figure 3.3: Flowchart Development of Smart Parking System

 24

3.4 Performance Requirement

Since my project was a computer program, testing included debugging the code and

running through the program to make sure it did what was intended. The proper

performance of the system can be easily monitored by VB.NET interfaces and Microsoft

SQL Sever database observation to interfacing them. I had to check to make sure it not only

found the parking lot, but also found the closest parking lot to that system. Real time

acquisition is my initial idea is to transmit updates (on the presence of a car) every minute.

This was accomplished by first only having one free parking spot available on the

entire map. The program of course found that parking lot, but I manually checked to make

sure the system that came up was the shortest program. Once this was successful, I

increased the number of free parking lots and again checked by hand the result of the

program. At fourth free parking lots on the map, I felt satisfied that the program worked

properly and felt that any more testing would be too time consuming and would probably

not come up with any errors.

The main limitation on operating conditions for this program is that the source code

finding routine is a recursive function that crashes the system at times. A recursive program

makes exponential calls to it, and takes up a lot of system memory. The error that I receive

is a “out of stack space” error that is a limitation of the system and the Visual Basic.NET

programming environment.

This lack of true consistency in the program is unexpected and because of time

requirements, I am not able to fix it. However, I still feel confident that the simulation gives

a user a good “proof of concept” to demonstrate the fully working system.

 25

3.4 PHASE 3: Program

The design must be translated into a machine-readable form. The code generation

step performs this task. If the design is performed in a detailed manner, code generation can

be accomplished without much complication. Different high level programming languages

like VB.NET and Microsoft SQL Server are used for coding. With respect to the type of

application, the right programming language is chosen.

3.4.1 VB.NET Interface Programming

I decided to program the entrance interface in VB.NET mainly for its graphical

environment and ease of use. Alternatively, the interface could have been programmed in

JAVA, C++ or any other object oriented programming language.

I organized the VB.NET program by interface screen. Each button on the screen

masks a function that is executed when the button is selected. To send and receive

information I used pre-defined functions within the MSCOMM library in VB.NET.

3.4.1.1 Getting Started with VB.NET

To complete the steps, I must first install Visual Studio.NET on my laptop. Then I

am ready to start working with VB.NET. To start VB.NET in Windows XP Professional:

1. Click the Start button, point to All Programs, point to Microsoft Visual Studio.NET

2003, and then click Microsoft Visual Studio.NET 2003.

 26

Figure 3.4: Starting Visual Studio.NET

2. A splash screen identifying the Visual Studio.NET languages installed on my

laptop momentarily appears, and then I see the Microsoft Development

Environment (MDE) window. Verify that the MDE window resembles.(My

screen may vary slightly depending on the settings for my computer).

Figure 3.5: The Microsoft Development Environment

 27

3.4.1.2 Creating a Windows Application

I will now create VB.NET project for a Windows application. I use the Windows

Form Designer to create an input form for the application. Recall that when I create a

project, I must identify the project type and template I want to use, and specify the project

name and location. To create a Windows application:

1. If I have not already done so, start Visual Studio.NET.

2. If is not already selected, click the Start Page tab in the document window, and the

click the Projects tab.

3. Click the New Project button. The New Project dialog box opens.

Figure 3.6: File > New > Project

4. In the New Project dialog box, click the Visual Basic Projects folder in the Project

Types pane. Click the Windows Application icon in the Templates pane.

 28

Figure 3.7: The new Project dialog box

5. The Name text box will contain the default project name Windows Application1. I

delete the default project name and type Add an Owned Form in the Name text box.

6. In the Location text box, specify the parent folder for my project. I can accept the

default location or use the Browse button to select an alternate location.

7. Click OK. The Windows Form Designer appears as a tabbed document labeled

Form1.vb [Design]. By default, the Windows Form Designer names files that

contain forms as Form1.vb, Form2.vb, and so on.

Figure 3.8: The Windows Form Designer

 29

3.4.1.2(a) Toolbox

 Toolbox provides all the drag and drop controls for my application. Depending on

the kind of application I’m working on, the toolbox show appropriate controls and I can

drag and drop them to my form. I’m developing a Windows application; it will show

Windows controls (like Radio button, text box, buttons etc).

 I can simply drag and drop any controls from the toolbox to my form. After I drag

and drop any control, double click on the control to go the default event associated with the

control.

 The Toolbox will be enabled only when I have a WinForm opened in Design mode

and am usually located on TOP LEFT corner of the VS.NET. By default, all windows

including Toolbox will be displayed as Minimized (Marked as An in picture). I will see only

the small icon and the text 'Toolbox' written vertically on the left bar of VS.NET. I can

click on this minimized window to expand it (Expanded window is marked as C.). When I

move the mouse away from the window, it will again automatically minimize. I can keep

the toolbox always expanded by pressing the pushpin (Marked with B.). The above

behavior is common for all the windows explained below. They will be minimized by

default and I can point the mouse over it to expand it. Use the pushbutton to keep it

expanded.

Figure 3.9: Toolbox

 30

3.4.1.2(b) Solution Explorer

 Solution Explorer, located on TOP RIGHT corner of VS.NET, displays my solution,

all projects included in each solution and the list of files in each project. They are listed in

the form of a tree control.

 Typically, for a single application, I have one solution and one or more projects.

When I create a new application, I have to create single Visual Studio project. In more

complex applications, there may be more than one project. All these projects are grouped

into a single solution. Even if I do not create a solution separately, a solution will be

automatically created for me.

 To add a new file to my project, I can right click on the project name (Add An

Owned Form is the project name in the picture) and choose the menu option Add. It will

give me the option to choose a file type. I can choose an appropriate type.

 For WinForms, I can see the file in design mode and the code associated with it.

Double click on any form and it will be opened in design mode. Right click on any form

and select the menu option 'View Code' to view the code associate with the form.

Figure 3.10: Solution Explorer

 31

3.4.1.2(c) Output

 Output window, located on BOTTOM LEFT corner of VS.NET, displays the result

of my project compilation. When I compile my project, all errors, warnings and compilation

results will be displayed in this window.

 In addition to the Output window, they are few other windows located in the

BOTTOM LEFT corner of VS.NET.

 Task List -shows individual tasks. Typically, when I compile my project, all errors

and warnings will be added to my task list. I can double click on any item in the task

list to go directly to the code associated with the task.

 Command Window – I can execute code statements here. When I’m debugging, I

can evaluate the value of any variables by typing? Followed by the variable name.

 Find Results - when I search for any text in file(s) using VS.NET, the results will

be displayed in this window.

Figure 3.11: Output

 32

3.4.1.2(d) Building a project

 To try this, create a Windows Project as explained above. It will create a sample

form. Go to the main menu and select the menu item Build > Build Solution.

 This process will compile all the files included in my project and show me the result

in the Output window. If the result shows '0 failed', my build is success and my application

is ready to deliver!!

 To Run the application I just Built, go to the main menu and select Debug > Start

Without Debugging. This will launch the application that I just developed. I can drag and

drop several controls to the form and try running it.

 When I compile (build) the code, if there is any errors or warnings, the details will

be shown in the 'Task List' window. I can click on the specific item in this window to go

directly to the line of code associated with the error.[2]

3.4.2 Visual Studio.NET Database

3.4.2.1 Creating a Database Project

A special type of VS.NET project of particular interest is the database project. A

database project is not specific to any .NET programming language, such as Visual Basic or

C#, but is meant to be used to design, test, run, and manage SQL scripts and queries. When

I design my application in multiple layers, as I should, this project type helps me to develop

and manage the database layer closest to the database and the database itself.

In some applications, a database project may be part of the actual application code,

and in other applications, it may be part of a separate administration solution used to set up

and maintain the application's database.

 33

To add a new database project to a solution, do the following.

1. Launch the Add New Project dialog from either the main File menu or from the

context menu displayed by right-clicking on the solution in the Solution Explorer.

2. The left panel of this dialog box displays a list of folders containing different project

types. Expand the Other Projects folder (click on the "+").

3. Select the Database Projects folder. It displays a Database Project template in the

right panel of the dialog box.

4. Specify a project name of ParkingData and a path for saving the project files and

then click on the OK button.

Figure 3.12: New Database Project

5. If I don't currently have any database connections defined in the Server Explorer;

the Data Link Properties dialog box will be displayed, allowing me to define a new

database connection.

6. If I have at least one database connection defined in the Server Explorer, the Add

Database Reference dialog box is displayed. From this dialog choose the database

connection that want to use (I can add new ones later). Alternatively, I can click on

 34

the Add New Reference button to display the Data Link Properties dialog box,

allowing me to define a new database connection.

Figure 3.13: Database connection

7. Select the connection to the ParkingData database on the SQL Server and click on

the OK button. If for some reason the connection doesn't exist, create it from the

Data Link Properties dialog box.

8. Figure shows the project and its folders in the Solution Explorer.

Figure 3.14: The ParkingData database project shown in the Solution Explorer

 35

Note that the created database project contains the following folders:

• Change Scripts

• Create Scripts

• Queries

• Database References

3.4.3 Managing SQL in Visual Studio.NET

3.4.3.1 Connection in the Server Explorer

The Server Explorer - accessible from View>Server Explorer - is a focus point for

several tools tucked away into Visual Studio .NET. The Data Connections node contains

OLEDB database connections, and the Servers node (see Figure) contains a SQL Servers

child node. If I have a network connection or a local copy of SQL Server, such as MSDE,

those database servers will show up here.

Figure 3.15: The Data Connections and SQL Servers nodes in the Server Explorer.

 36

If I right-click on the Data Connections node, I can select Add Connection or Create

SQL Server Database to connect to an existing database or create a new database. If I right-

click on the SQL Servers node, I can register a SQL Server instance in Visual Studio .NET.

Select any of these databases, press F4, and the Properties window will provide me with

detailed information about the particular database. Of particular use is the ConnectString

property that will provide me with convenient access to what can oft be a cryptic string of

connection information. For example, if I am working with ADO.NET and need a

connection string to initialize a connection object, I can copy a correct connection string

from the Properties window. [7]

Figure 3.16: The Properties for a database instance in the Server Explorer.

3.4.3.2 Browsing Tables, Views, and Stored Procedures

If individual Data Connections or SQL Server instances in the Server Explorer are

expanded, the context menus for those items and those sub-nodes permit me to create and

explore tables, views, and stored procedures. Thus, I can still use the SQL Enterprise

Manager or MS-Access (or whatever database tool you generally use) to manage data, but I

don't have to leave Visual Studio .NET for most of tasks.

 37

Occasional exceptions to the general utility of Visual Studio .NET for managing

databases can be managed by falling back on the tools shipped by the database provider.

For instance, I can write and test stored procedures for SQL Server in Visual Studio .NET,

but I need to use the stored procedure builder that ships with UDB to implement stored

procedures for a UDB database. (Although I can run stored procedures in Visual Studio

.NET, current implementations don't permit editing stored procedures supported by non-

SQL Server providers.).[7]

3.4.3.3 Viewing the Data

I use the Northwind sample database for my examples because of its ubiquity. If I

don't have a sample database listed in the Data Connections node, use the Add Connection

feature to add a database connection.

The easiest way to view data is to expand the database and its Tables node. Double-

click on the table whose data I‘d like to view and a datagrid view corresponding to a

SELECT * FROM tablename is displayed (see Figure 3.17). In addition to showing the

data, the Query toolbar is displayed - represented by the twelve buttons on the bottom of the

toolbar (the third one from the left contains the acronym SQL).

Figure 3.17: The center shows the Results Pane controlled by the fourth Query button from
the left.

 38

The context menu for the Results Pane contains options for navigating through the

results shown. In addition to the context menu, the Query menu contains additional features

for managing the data in the Results Pane and performing other database tasks. For

example, to create a new table from the existing table in the Results Pane, select

Query|Change Type|Make Table and the Results Pane's query will be modified to include

an INTO clause that will cause results from the current view to be copied into a new table

named by me. In essence, I can create a copy of the current table. To view the default query

or the modified make table query, click the SQL button from the Query toolbar to display

the SQL Pane.[7]

3.4.3.4 Writing SQL

The combined SQL Pane and Results Pane containing the default SELECT

statement and the results of that SELECT statement are shown in Figure 3.17. The SQL

Pane is just an editor. I can write any valid SQL in this editor, and save and load this SQL

at any time to and from an external file. In addition, Visual Studio .NET is a great first-line

tool for managing data during development and unit testing.

Figure 3.18: The SQL Pane shown top and the Results Pane shown bottom, demonstrating
the coordination between SQL code and related results.

When I have written code, I can change the type of the query from the Change Type

toolbar dropdown list. I can run the SQL from the Run Query toolbar button (red

 39

exclamation mark), verify the syntax of the current query (with the SQL button with a

checkmark), and a GROUP BY clause (second button from the far right) and add additional

tables to the query. (I'll appreciate the Add Table because it will write syntactically correct

join statements. [7]

3.5 PHASE 4: Verification

 Having a fully working system, that demonstrates the objective of my

project. This will be done in phases and each phase would be able to be tested independent

of the other phases.

3.5.1 Testing Procedures

 Each component will be tested individually before integration.

• Compile and run VB.NET program

• Testing the interface for all user input possibilities

• Testing the connection database for all user input possibilities

 Test integrated system as each feature is added. First, I will test assuming the

 ideal case (one car). Next, I will simulate and test the system’s capabilities

 for guiding multiple cars and pedestrians in the garage.

 To test the Microsoft SQL Server, I will input a password. The password will be

sent to the computer.

 Compiling and running software, which displays the location of the available

parking spots.

 40

 Compiling and running software (on a PC), which would store, organize, and

process the database.

 To test the interface receiver from multiple interfaces, I will send to know password

from server, and verify that the same password will received at the interface.

 To test the overall system, I will park three fictional cars at three fictional parking

spaces, and see if the location and the amount of time illegally parked indeed show

up at the interface.

 Testing and running a fully working system that is implemented in real-life.

3.5.2 Tolerance Analysis

 The system should be capable of handling the ideal scenario, which is when there is

only one car in the garage.

 For the Microsoft SQL Server database, firstly, it must install the driver before

connect to the server and and database.

 The system is addendums to the project which may or may not be implemented due

to time constraints and level of difficulty.

 After all individual components were tested and verified, the VB.NET interfaces

were integrated with the Microsft SQL Server Database for a complete, fully

functional as Smart Parking System.

 The interfaces must be accurate enough to detect the car only within its designated

parking area.

 41

 The component that would most affect this project would be the Microsoft SQL

Server. This depends on the interfacing of the database. The database must be

precise enough to detect the car number only within its designated parking spot.

This includes the transmission of interface form the database to the central computer

3.6 PHASE 5: Deploying Application

3.6.1 Adding the Deployment Project

Now that my application is coded and running fine, I need to think how I am going

to distribute the application. Open the solution explorer, right click the solution and select

Add, then New Project. The same action could be achieved from the File menu as well.

In the Add New Project window, select Setup and Deployment Projects from the

project types. Also, select Setup Project from the Templates list. Change the name to

SmartParkingSystem, and select the location where I want to store your project file(s).

Change this location to the main application project folder. This will ensure that all project

and setup file(s) are created in folders under your main project folder. [6]

Figure 3.19: Setup and Deployment Projects

 42

Click OK. The Setup and Deployment project will be added to my existing project.

Clicking OK will also open the File System window (we will go through that in a moment).

Select the SmartParkingSystem project from the Solution Explorer and open the properties

window. I can change the following properties:

Figure 3.20: SmartParkingSystem Deployment Project Properties

Open the Solution Explorer, right click on the SmartParkingSystem project, click

View and select File System to open the File System window.

From the File System on the Target Machine, right click the Application Folder,

click Add and select Project Output. In the Add Project Output Group, select Primary

output from the list of options available and finally, click OK.

 43

http://www.devarticles.com/

Figure 3.21: Select Primary Output from Project Output Group

To run the application on the target machine, we need to create a shortcut for the

application on my desktop. To do this, right click on the Primary Output from Add An

Owned Form (Active) and select Create ShortCut to Primary Output from Add An Owned

Form (Active). Rename this newly created entry to SmartParkingSystem and drag this entry

(SmartParkingSystem) to the user's Desktop in the File System on Target Machine

Window. The screenshot below shows me what everything should look like:

Figure 3.22: Primary Output SmartParkingSystem

 44

3.6.2 Building the Deployment Project

Open the Solution Explorer and select the SmartParkingSystem project. From the Build

menu, select Build SmartParkingSystem to build my deployment project. This procedure

may take a few minutes, depending upon my machine and will create a Debug folder under

the SmartParkingSystem folder. [6]

3.6.2.1 Looking at Installer Files

After the Setup Project is built without any errors, the following files will be

created:

• InstMsiA.exe

• InstMsiW.exe

• SmartParkingSystem.msi

• Setup.exe

• Setup.Ini

SmartParkingSystem.msi is the Windows Installer file for my application. Setup.exe

is the wrapper for the SmartParkingSystem.msi, which checks if the correct version of

Windows installer is available before the application is installed.

InstMsiA.exe and InstMsiW.exe is the Windows Installer application file(s), which

are used to support different Windows platforms, such as Windows 95, Windows 98,

Windows ME, Windows NT and Windows 2000.

I had made sure to distribute all of these files when I deploy my application and

always run Setup.exe to install the application. I've finished creating my deployment

application! [6]

 45

3.6.3 Installing the Application

To test and run my installer, click Install from the Project menu. Alternatively, I

could also start the installation by running setup.exe from the installation folder.

Figure 3.23: Windows Installer

Figure 3.24: SmartParkingSystem Setup Wizard

Click on the Next button to continue.

 46

Figure 3.25: Select Installation Folder

Click next and follow the Screens to install the application. Once the installation is

complete, make sure that a shortcut is created on the desktop and that it correctly launches

my SmartParkingSystem application.

Figure 3.26: Confirm Installation

 47

Figure 3.27: Installing SmartParkingSystem

Figure 3.28: Installation Complete

3.6.4 Uninstalling the Application

Once I have successfully installed the application, I can also uninstall it by selecting

Uninstall from the Project menu. I could also uninstall the application from the

Add/Remove Programs list in control panel.

 48

I can add as many Setup and Deployment projects in one solution as I want. Each of

them can have different settings and options.

By adding a few bits and pieces to my project, I saved my selves from writing code

to install our application - not to mention uninstalling the same application. [6]

 49

	1.pdf
	acknowledgement.pdf
	reportSmartParkingSystem.pdf

