

EFFECT OF FILLER LOADING AND CHEMICAL **MODIFICATIONS ON PROPERTIES OF** CHITOSAN/ POLYPROPYLENE COMPOSITES

is tem is protected FAISAL AMRI TANJUNG

by

(0840410296)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

> **School of Materials Engineering UNIVERSITI MALAYSIA PERLIS**

> > 2012

ACKNOWLEDGEMENT

In the name of ALLAH SWT, The Almighty One, The Most Merciful, who has given me enough strength and ability to make this thesis, become a success.

First of all, I wish to express my sincere gratitude to Assoc. Professor Ir. Dr. Salmah Husseinsyah as a main supervisor and Brig. Jen. Dato' Professor Dr. Kamarudin Hussin as a co-supervisor for their supervision throughout the course of this work. Their guidance, suggestion and willingness in revising the final part of the thesis are certainly appreciated. I am also very thankful to all management staff in the School of Materials Engineering, Dr. Khairel Rafezi as Dean, and Dr. Supri A. Ghani, En. Nasir, En. Zaidi, En. Hazrul and also En. Azmi for their help in Lab works and discussion. I also would like to thank my friends, Mr. Iqmal Tahir, Mokhzani Khair Ishak, Affandi Derman and Zakaria Sembiring for their moral support and constructive opinion.

Last but not least, I would like to express my sincere thanks to my mother and sister for their support in my life and education. I am particularly grateful to the Universiti Malaysia Perlis for providing me the financial support under Graduate Assistant Scheme and opportunity for this postgraduate study.

TABLE OF CONTENT

	PAGE
ACKNOWLEDGEMENT	ii
TABLE OF CONTENT	iii
LIST OF FIGURES	ix
LIST OF TABLES	xviii
LIST OF ABBREVIATION AND SYMBOLS	xxi
ABSTRAK	xxii
ABSTRACT	xxiii
otte	
CHAPTER 1: INTRODUCTION	
1.1 Research Background	1
1.2 Problem Statement	5
1.3 Objectives of Study	6
1.4 Organization of The Thesis	6
an	
CHAPTER 2: LITERATURE REVIEW	
2.1 Composites	8
2.1.1 Matrix	10
2.1.2 Filler	12
2.1.2.1 Chemical Properties of Filler	15
2.1.2.2 Molecular Mobility	17
2.1.3 Filler – Matrix Interface	19
2.2 Polypropylene (PP)	23
2.3 Natural Filler	25

	2.4 Chitosan	26
	2.4.1 Crystalline Properties	32
	2.5 Application of Chitosan	36
	2.6 Polymer Composites Reinforced with Chitosan	39
	2.7 Chemical Modification of Chitosan	40
	2.7.1 Acrylic Acid (AA)	43
	2.7.2 Methyl Methacrylate (MMA)	45
	2.7.3 Acetic Acid (AAc)	48
	2.7.4 3-Aminopropyltriethoxysilane (3-APE)	50
	2.7.5 Sodium Dodecyl Sulfate (SDS)	52
	2.7.6 Lignin	55
	2.8 Thermal Analysis of Composite Materials	60
	2.9 Summary of Literature Review	64
	CHAPTER 3: EXPERIMENTAL	
	3.1 Materials	65
	3.2 Organosolv Lignin (OSL) Extraction	65
	3.3 Chemical Modification of Chitosan	67
	3.4 Chemical Modification of Chitosan with Binary Acrylic Acid (AA)/	
\bigcirc	• Organosolv Lignin (OSL), and Binary Sodium Dodecyl Sulfate (SDS)/	
0	Organosolv Lignin	67
	3.5 Preparation of PP/Chitosan Composites with Different Filler Loading	68
	3.6 Preparation of Treated PP/Chitosan Composites with Different Chemical	
	Modification	68

3.7 Preparation of Treated PP/Chitosan Composites with Binary Acrylic Act	d (AA)/		
Organosolv Lignin (OSL), and Binary Sodium Dodecyl Sulfate (SDS)/			
Organosolv Lignin (OSL)	69		
3.8 Mechanical Properties and Characterization of PP/Chitosan Composites			
3.8.1 Tensile Properties	70		
3.8.2 Thermogravimetry Analysis (TGA)	70		
3.8.3 Thermal Degradation Kinetic	71		
3.8.4 Differential Scanning Calorimetry (DSC)	72		
3.8.5 Fourier Transform Infrared (FTIR)	73		
3.8.6 Scanning Electron Microscopy (SEM)	73		
OTTO D			
CHAPTER 4: RESULTS AND DISCUSSION			
4.1 Effect of Filler Loading on Properties of PP/Chitosan Composites			
4.1.1 Tensile Properties			
4.1.2 Scanning Electron Microscopy (SEM)	80		
4.1.3 Thermogravimetry Analysis (TGA)	82		
4.1.4 Kinetic of Thermal Degradation	86		
4.1.5 Differential Scanning Calorimetry (DSC)	89		
4.2 Effect of Acrylic Acid (AA) on Properties of PP/Chitosan Composites	91		
4.2.1 Tensile Properties	91		
4.2.2 Scanning Electron Microscopy (SEM)	95		
4.2.3 Thermogravimetry Analysis (TGA)	96		
4.2.4 Kinetic of Thermal Degradation	100		
4.2.5 Differential Scanning Calorimetry (DSC)	103		
4.2.6 Fourier Transform Infrared (FTIR)	105		

	Composites	108
	4.3.1 Tensile Properties	108
	4.3.2 Scanning Electron Microscopy (SEM)	112
	4.3.3 Thermogravimetry Analysis (TGA)	113
	4.3.4 Kinetic of Thermal Degradation	117
	4.3.5 Differential Scanning Calorimetry (DSC)	120
	4.3.6 Fourier Transform Infrared (FTIR)	122
	4.4 Effect of Acetic Acid (AAc) on Properties of PP/Chitosan Composites	124
	4.4.1 Tensile Properties	124
	4.4.2 Scanning Electron Microscopy (SEM)	128
	4.4.3 Thermogravimetry Analysis (TGA)	129
	4.4.4 Kinetic of Thermal Degradation	133
	4.4.5 Differential Scanning Calorimetry (DSC)	136
	4.4.6 Fourier Transform Infrared (FTIR)	138
	4.5 Effect of 3-aminopropyltriethoxysilane (3-APE) on Properties of PP/Chitosan	
	Composites	140
	4.5.1 Tensile Properties	140
	4.5.2 Scanning Electron Microscopy (SEM)	144
	4.5.3 Thermogravimetry Analysis (TGA)	145
	4.5.4 Kinetic of Thermal Degradation	149
	4.5.5 Differential Scanning Calorimetry (DSC)	152
	4.5.6 Fourier Transform Infrared (FTIR)	154
	4.6 Effect of Sodium Dodecyl Sulfate (SDS) on Properties of PP/Chitosan	
	Composites	157
	4.6.1 Tensile Properties	157

4.3 Effect of Methyl Methacrylate (MMA) on Properties of PP/Chitosan

	4.6.2 Scanning Electron Microscopy (SEM)	160
	4.6.3 Thermogravimetry Analysis (TGA)	162
	4.6.4 Kinetic of Thermal Degradation	166
	4.5.5 Differential Scanning Calorimetry (DSC)	168
	4.6.6 Fourier Transform Infrared (FTIR)	170
4	7 Effect of Binary Acrylic Acid (AA)/Organosolv Lignin (OSL) on Properties	
	of PP/Chitosan Composites	172
	4.7.1 Tensile Properties	172
	4.7.2 Scanning Electron Microscopy (SEM)	176
	4.7.3 Thermogravimetry Analysis (TGA)	178
	4.7.4 Kinetic of Thermal Degradation	182
	4.7.5 Differential Scanning Calorimetry (DSC)	185
	4.7.6 Fourier Transform Infrared (FTIR)	187
4	8 Effect of Binary Sodium Dodecyl Sulfate (SDS)/Organosolv Lignin (OSL)	
	on Properties of PP/Chitosan Composites	190
	4.8.1 Tensile Properties	190
	4.8.2 Scanning Electron Microscopy (SEM)	194
	4.8.3 Thermogravimetry Analysis (TGA)	196
<u> </u>	4.8.4 Kinetic of Thermal Degradation	200
	4.8.5 Differential Scanning Calorimetry (DSC)	203
	4.8.6 Fourier Transform Infrared (FTIR)	205

CHAPTER 5: CONCLUSIONS AND SUGGESTIONS

5.1 Conclusions	209
5.2 Suggestions	211

APPENDICES

246

onthis item is protected by original convitably

LIST OF FIGURES

	Figure 2.1	Mechanism of adsorption and wetting	20
	Figure 2.2	Mechanism of inter-diffusion	21
	Figure 2.3	Mechanism of electrostatic attraction	22
	Figure 2.4	Mechanism of chemical bonding	22
	Figure 2.5	Mechanism of mechanical bonding	23
	Figure 2.6	Structure of polypropylene (PP)	24
	Figure 2.7	The chemical structure: (a) chitin, and (b) chitosan	29
	Figure 2.8	Scheme of solubility of chitosan in acetic acid	31
	Figure 2.9	The crystalline structure of hydrated chitosan,	
		(a) along the a-axis, (b) along the c-axis	34
	Figure 2.10	The crystalline structure of anhydrous chitosan,	
		(a) along the a-axis, (b) along the c-axis	35
	Figure 2.11	Structure of acrylic acid (AA)	44
	Figure 2.12	Structure of methyl methacrylate (MMA)	46
	Figure 2.13	Structure of acetic acid (AAc)	48
<	Figure 2.14	Structure of 3-aminopropyltriethoxysilane (3-APE)	51
\bigcirc	Figure 2.15	A schematic of the hydrolysis process of 3-APE	52
0	Figure 2.16	Structure of sodium dodecyl sulfate (SDS)	53
	Figure 2.17	Primary precursors of lignin: (a) trans-p-coumaryl,	
		(b) trans-coniferyl, and (c) trans-sinapyl	56
	Figure 2.18	Proposed structure of lignin	57
	Figure 4.1	Effect of filler loading on tensile strength of	
		PP/Chitosan composites	77

	Figure 4.2	SEM micrograph of chitosan	77
	Figure 4.3	Effect of filler loading on elongation at break of	
		PP/Chitosan composites	78
	Figure 4.4	Effect of filler loading on Young's modulus of	
		PP/Chitosan composites	80
	Figure 4.5	SEM micrograph of tensile surface of PP/Chitosan	
		composites (20 php)	81
	Figure 4.6	SEM micrograph of tensile surface of PP/Chitosan	
		composites (40 php)	81
	Figure 4.7	TGA curve of PP/Chitosan composites at different temperature	83
	Figure 4.8	DTG curve of PP/Chitosan composites at different temperature	85
	Figure 4.9	Friedman expression of the activation energy (E_a) of PP/Chitosan	
		composites	87
	Figure 4.10	Relationship between activation energy and conversion degree (α)	
		of PP/Chitosan composites	88
	Figure 4.11	DSC curve of PP and PP/Chitosan composites	90
	Figure 4.12	Effect of filler loading on tensile strength of untreated and treated	
		PP/Chitosan composites with AA	92
	Figure 4.13	Effect of filler loading on elongation at break of untreated and	
\bigcirc		treated PP/Chitosan composites with AA	93
	Figure 4.14	Effect of filler loading on Young's modulus of untreated and	
		treated PP/Chitosan composites with AA	94
	Figure 4.15	SEM micrograph of tensile surface of treated PP/Chitosan	
		composite with AA (20 php)	95
	Figure 4.16	SEM micrograph of tensile surface of treated PP/Chitosan	
		composites with AA (40 php)	96

	Figure 4.17	TGA curve of untreated and treated PP/Chitosan composites with	
		AA at different temperature	97
	Figure 4.18	DTG curve of untreated and treated PP/Chitosan composites	
		with AA as function of temperature	99
	Figure 4.19	Friedman expression of the activation energy (E_a) of untreated	
		and treated PP/Chitosan composites with AA	101
	Figure 4.20	Relationship between activation energy and conversion degree (α)	
		of untreated and treated PP/Chitosan composites with AA	102
	Figure 4.21	DSC curve of untreated and treated PP/Chitosan composites	
		with AA	104
	Figure 4.22	FTIR spectra of untreated and treated chitosan with AA	106
	Figure 4.23	The schematic reaction of (i) chitosan and acrylic acid (AA);	
		(ii) AA treated chitosan and polypropylene (PP)	107
	Figure 4.24	Effect of filler loading on tensile strength of untreated and treated	
		PP/Chitosan composites with MMA	109
	Figure 4.25	Effect of filler loading on elongation at break of untreated and	
		treated PP/Chitosan composites with MMA	110
	Figure 4.26	Effect of filler loading on Young's modulus of untreated and	
	chis	treated PP/Chitosan composites with MMA	111
\bigcirc	Figure 4.27	SEM micrograph of tensile surface of treated PP/Chitosan	
		composite with MMA (20 php)	112
	Figure 4.28	SEM micrograph of tensile surface of treated PP/Chitosan	
		composites with MMA (40 php)	113
	Figure 4.29	TGA curve of untreated and treated PP/Chitosan composites with	
		MMA at different temperature	114

Figure 4.30	DTG curve of untreated and treated PP/Chitosan composites	
	with MMA as function of temperature	116
Figure 4.31	Friedman expression of the activation energy (E_a) of untreated	
	and treated PP/Chitosan composites with MMA	118
Figure 4.32	Relationship between activation energy and conversion degree (α)	
	of untreated and treated PP/Chitosan composites with MMA	119
Figure 4.33	DSC curve of untreated and treated PP/Chitosan composites	
	with MMA	121
Figure 4.34	FTIR spectra of untreated and treated chitosan with MMA	122
Figure 4.35	The schematic reaction of (i) chitosan and methyl	
	methacrylate (MMA), (ii) MMA treated chitosan and PP	123
Figure 4.36	Effect of filler loading on tensile strength of untreated and treated	
	PP/Chitosan composites with AAc	125
Figure 4.37	Effect of filler loading on elongation at break of untreated and	
	treated PP/Chitosan composites with AAc	126
Figure 4.38	Effect of filler loading on Young's modulus of untreated and	
~	treated PP/Chitosan composites with AAc	127
Figure 4.39	SEM micrograph of tensile surface of treated PP/Chitosan	
-1015	composite with AAc (20 php)	128
Figure 4.40	SEM micrograph of tensile surface of treated PP/Chitosan	
	composites with AAc (40 php)	129
Figure 4.41	TGA curve of untreated and treated PP/Chitosan composites with	
	AAc at different temperature	130
Figure 4.42	DTG curve of untreated and treated PP/Chitosan composites	
	with AAc as function of temperature	132

	Figure 4.43	Friedman expression of the activation energy (E_a) of untreated	
		and treated PP/Chitosan composites with AAc	134
	Figure 4.44	Relationship between activation energy and conversion degree (α)	
		of untreated and treated PP/Chitosan composites with AAc	135
	Figure 4.45	DSC curve of untreated and treated PP/Chitosan composites	
		with AAc	137
	Figure 4.46	FTIR spectra of untreated and treated chitosan with AAc	138
	Figure 4.47	The schematic reaction of (i) chitosan and acetic acid (AAc),	
		(ii) AAc treated chitosan and polypropylene (PP)	139
	Figure 4.48	Effect of filler loading on tensile strength of untreated and treated	
		PP/Chitosan composites with 3-APE	141
	Figure 4.49	Effect of filler loading on elongation at break of untreated and	
		treated PP/Chitosan composites with 3-APE	142
	Figure 4.50	Effect of filler loading on Young's modulus of untreated and	
		treated PP/Chitosan composites with 3-APE	143
	Figure 4.51	SEM micrograph of tensile surface of treated PP/Chitosan	
	~	composite with 3-APE (20 php)	144
	Figure 4.52	SEM micrograph of tensile surface of treated PP/Chitosan	
	chis	composites with 3-APE (40 php)	145
\bigcirc	Figure 4.53	TGA curve of untreated and treated PP/Chitosan composites with	
		3-APE at different temperature	146
	Figure 4.54	DTG curve of untreated and treated PP/Chitosan composites	
		with 3-APE at different temperature	148
	Figure 4.55	Friedman expression of the activation energy (E_a) of untreated	
		and treated PP/Chitosan composites with 3-APE	150

Figure 4.56	Relationship between activation energy and conversion degree (α)	
	of untreated and treated PP/Chitosan composites with 3-APE	151
Figure 4.57	DSC curve of untreated and treated PP/Chitosan composites	
	with 3-APE	153
Figure 4.58	FTIR spectra of untreated and treated chitosan with 3-APE	154
Figure 4.59	The schematic reaction of (i) hydrolysis reaction of 3-APE,	
	(ii) chitosan and hydrolyzed 3-APE, (iii) 3-APE treated chitosan	
	and polypropylene (PP)	156
Figure 4.60	Effect of filler loading on tensile strength of untreated and treated	
	PP/Chitosan composites with SDS	158
Figure 4.61	Effect of filler loading on elongation at break of untreated and	
	treated PP/Chitosan composites with SDS	159
Figure 4.62	Effect of filler loading on Young's modulus of untreated and	
	treated PP/Chitosan composites with SDS	160
Figure 4.63	SEM micrograph of tensile surface of treated PP/Chitosan	
	composite with SDS (20 php)	161
Figure 4.64	SEM micrograph of tensile surface of treated PP/Chitosan	
	composites with SDS (40 php)	161
Figure 4.65	TGA curve of untreated and treated PP/Chitosan composites with	
	SDS at different temperature	163
Figure 4.66	DTG curve of untreated and treated PP/Chitosan composites	
	with SDS at different temperature	165
Figure 4.67	Friedman expression of the activation energy (E_a) of untreated	
	and treated PP/Chitosan composites with SDS	168
Figure 4.68	Relationship between activation energy and conversion degree (α)	
	of untreated and treated PP/Chitosan composites with SDS	168

Figure 4.69	DSC curve of untreated and treated PP/Chitosan composites	
	with SDS	169
Figure 4.70	FTIR spectra of untreated and treated chitosan with SDS	170
Figure 4.71	The schematic reaction of (i) dissociating reaction of SDS,	
	(ii) chitosan and SDS, (iii) SDS treated chitosan and PP	171
Figure 4.72	Effect of filler loading on tensile strength of treated PP/Chitosan	
	composites with AA and AA/OSL	173
Figure 4.73	Effect of filler loading on elongation at break of treated	
	PP/Chitosan composites with AA and AA/OSL	175
Figure 4.74	Effect of filler loading on Young's modulus of treated	
	PP/Chitosan composites with AA and AA/OSL	176
Figure 4.75	SEM micrograph of tensile surface of treated PP/Chitosan	
	composite with AA/OSL (20 php)	177
Figure 4.76	SEM micrograph of tensile surface of treated PP/Chitosan	
	composites with AA/OSL (40 php)	177
Figure 4.77	TGA curve of treated PP/Chitosan composites with AA and	
~	AA/OSL at different temperature	179
Figure 4.78	DTG curve of treated PP/Chitosan composites with AA and	
chis	AA/OSL at different temperature	181
Figure 4.79	Friedman expression of the activation energy (E_a) of treated	
	PP/Chitosan composites with AA and AA/OSL	183
Figure 4.80	Relationship between activation energy and conversion degree (α)	
	of treated PP/Chitosan composites with AA and AA/OSL	184
Figure 4.81	DSC curve of treated PP/Chitosan composites with AA and	
	AA/OSL	186

Figure 4.82	FTIR spectra of organosolv lignin (OSL) and chitosan treated	
	with AA and AA/OSL	188
Figure 4.83	The schematic reaction of (i) acrylic acid (AA) and organosolv	
	lignin (OSL), (ii) AA/OSL and chitosan, (iii) AA/OSL treated	
	chitosan and polypropylene (PP)	189
Figure 4.84	Effect of filler loading on tensile strength of treated PP/Chitosan	
	composites with SDS and SDS/OSL	191
Figure 4.85	Effect of filler loading on elongation at break of treated	
	PP/Chitosan composites with SDS and SDS/OSL	193
Figure 4.86	Effect of filler loading on Young's modulus of treated	
	PP/Chitosan composites with SDS and SDS/OSL	194
Figure 4.87	SEM micrograph of tensile surface of treated PP/Chitosan	
	composite with SDS/OSL (20 php)	195
Figure 4.88	SEM micrograph of tensile surface of treated PP/Chitosan	
	composites with SDS/OSL (40 php)	195
Figure 4.89	TGA curve of treated PP/Chitosan composites with SDS and	
	SDS/OSL at different temperature	197
Figure 4.90	DTG curve of treated PP/Chitosan composites with SDS and	
-1012	SDS/OSL at different temperature	199
Figure 4.91	Friedman expression of the activation energy (E_a) of treated	
	PP/Chitosan composites with SDS and SDS/OSL	201
Figure 4.92	Relationship between activation energy and conversion degree (α)	
	of treated PP/Chitosan composites with SDS and SDS/OSL	203
Figure 4.93	DSC curve of treated PP/Chitosan composites with SDS and	
	SDS/OSL	204

- Figure 4.94 FTIR spectra of organosolv lignin (OSL) and chitosan treated with SDS and SDS/OSL
- Figure 4.95 The schematic reaction of (i) dissociating reaction of SDS (ii) OSL and SDS, (iii) SDS/OSL and chitosan, (iv) SDS/OSL

206

o This term is protected by original convitation

LIST OF TABLES

	Table 2.1	Kinetic methods in evaluation of thermal degradation	62
	Table 3.1	Properties of polypropylene (PP) grade S12232 G122	66
	Table 3.2	Physical and chemical properties of chitosan	66
	Table 3.3	Formulation of PP/Chitosan composites with different filler	
		loading	68
	Table 3.4	Formulation of treated PP/Chitosan composites treated with	
		different chemical modification	69
	Table 3.5	Formulation of PP/Chitosan composites treated with acrylic acid	
		(AA)/organosolv lignin (OSL) and sodium dodecyl sulfate (SDS)/	
		organosolv lignin (OSL) at different filler loading	70
	Table 4.1	Percentage of weight loss of PP/Chitosan composites at different	
		temperatures	84
	Table 4.2	Temperature peaks DTG of PP/Chitosan composites	86
	Table 4.3	The activation energy (E_a) of PP/Chitosan composites	87
	Table 4.4	Summary of T_m , ΔH_f and X_c of PP/Chitosan composites	90
	Table 4.5	Percentage of weight loss of untreated and treated PP/Chitosan	
	*	composites with AA at different temperatures	98
	Table 4.6	Temperature peaks of untreated and treated PP/Chitosan	
		composites with AA	100
	Table 4.7	The activation energy (E_a) of untreated and treated PP/Chitosan	
		composites with AA	101
	Table 4.8	Summary of T_m , ΔH_f and X_c of untreated and treated PP/Chitosan	
		composites with AA	104

	Table 4.9	Percentage of weight loss of untreated and treated PP/Chitosan	
		composites with MMA at different temperatures	115
	Table 4.10	Temperature peaks of untreated and treated PP/Chitosan	
		composites with MMA	117
	Table 4.11	The activation energy (E_a) of untreated and treated PP/Chitosan	
		composites with MMA	118
	Table 4.12	Summary of T_m , ΔH_f and X_c of untreated and treated PP/Chitosan	
		composites with MMA	121
	Table 4.13	Percentage of weight loss of untreated and treated PP/Chitosan	
		composites with AAc at different temperatures	131
	Table 4.14	Temperature peaks of untreated and treated PP/Chitosan	
		composites with AAc	133
	Table 4.15	The activation energy (E_a) of untreated and treated PP/Chitosan	
		composites with AAc	134
	Table 4.16	Summary of T_m , ΔH_f and X_c of untreated and treated PP/Chitosan	
		composites with AAc	137
	Table 4.17	Percentage of weight loss of untreated and treated PP/Chitosan	
		composites with 3-APE at different temperatures	147
	Table 4.18	Temperature peaks of untreated and treated PP/Chitosan	
(\bigcirc)	Y	composites with 3-APE	149
	Table 4.19	The activation energy (E_a) of untreated and treated PP/Chitosan	
		composites with 3-APE	150
	Table 4.20	Summary of T_m , ΔH_f and X_c of untreated and treated PP/Chitosan	
		composites with 3-APE	153
	Table 4.21	Percentage of weight loss of untreated and treated PP/Chitosan	
		composites with SDS at different temperatures	164

	Table 4.22	Temperature peaks of untreated and treated PP/Chitosan	
		composites with SDS	165
	Table 4.23	The activation energy (E_a) of untreated and treated PP/Chitosan	
		composites with SDS	167
	Table 4.24	Summary of T_m , ΔH_f and X_c of untreated and treated PP/Chitosan	
		composites with SDS	169
	Table 4.25	Percentage of weight loss of treated PP/Chitosan composites	
		with AA and AA/OSL at different temperatures	180
	Table 4.26	Temperature peaks of treated PP/Chitosan composites with	
		AA and AA/OSL	182
	Table 4.27	The activation energy (E_a) of treated PP/Chitosan composites	
		with AA and AA/OSL	183
	Table 4.28	Summary of T_m , ΔH_f and X_c of treated PP/Chitosan composites	
		with AA and AA/OSL	186
	Table 4.29	Percentage of weight loss of treated PP/Chitosan composites	
		with SDS and SDS/OSL at different temperatures	198
	Table 4.30	Temperature peaks of treated PP/Chitosan composites with	
		SDS and SDS/OSL	200
Č	Table 4.31	The activation energy (E_a) of treated PP/Chitosan composites	
	`	with SDS and SDS/OSL	201
	Table 4.32	Summary of T_m , ΔH_f and X_c of treated PP/Chitosan composites	
		with SDS and SDS/OSL	205

LIST OF ABBREVIATONS AND SYMBOLS

- PP Polypropylene
- AA Acrylic acid
- MMA Methyl methacrylate
- AAc Acetic acid
- oriemal copyright 3-APE 3-aminopropyltriethoxysilane
- SDS Sodium dodecyl sulfate
- OSL Organosolv lignin
- Scanning electron microscopy SEM
- TGA Thermogravimetry analysis
- DSC Differential scanning calorimetry
- Fourier transform infrared FTIR
 - Melting temperature
 - Fusion enthalpy of composites
 - Fusion enthalpy of PP 100% crystalline
 - Degree of crystallinity
- E_a Activation energy

 T_{m}

Δh

 X_c

Degree of conversion α

Kesan Kandungan Pengisi dan Modifikasi – Modifikasi Kimia Ke atas Sifat – Sifat Komposit Kitosan/Polipropilena

ABSTRAK

Komposit polipropilena (PP) terisi kitosan telah disediakan menggunakan pencampur bilah – Z pada suhu 190°C dan kelajuan rotor 50 rpm. Kesan pembebanan kitosan dan jenis – jenis modifikasi kimia yang berbeza ke atas sifat – sifat mekanikal, morfologi and sifat – sifat terma komposit PP/Kitosan telah dikaji. Pelbagai jenis modifikasi kimia seperti akrilik asid (AA), metil metakrilat (MMA), asetik asid (AAc), 3aminopropiltrietoksisilana (3-APE) dan natrium dodekil sulfat (SDS) telah digunakan dikaji. Lignin terlarut organo (OSL) telah disari dari serbuk tempurung kelapa dan digunakan sebagai separa rawatan dengan AA and SDS. Keputusan menunjukkan bahawa penambahan kitosan ke dalam PP mengurangkan kekuatan tensil, pemanjangan pada takat putus, darjah penghabluran (X_c) dan tenaga pengaktifan (E_a) , di mana kestabilan terma dan modulus Young komposit meningkat. Modifikasi kimia kitosan menghasilkan kesan positif ke atas sifat - sifat mekanikal dan terma komposit PP/Kitosan. Komposit PP/Kitosan terawat dengan AA, MMA, AAc, 3-APE, SDS mempunyai kekuatan tensil, modulus Young, kestabilan terma, X_c dan E_a yang lebih tinggi berbanding komposit tanpa rawatan. Interaksi antarmuka yang lebih baik di antara kitosan yang terawat dan matrik PP telah dibuktikan melalui kajian mikroskop elektron penskanan (SEM). Spektra FTIR kitosan yang terawat menunjukkan kumpulan berfungsi yang baru dari pembentukan ikatan kimia di antara kitosan dan bahan kimia pemodifikasi. Komposit PP/Kitosan yang terawat dengan AA and lignin yang terlarut organo (OSL) mempunyai kekuatan tensil dan pemanjangan pada takat putus yang lebih rendah tetapi modulus Young, kestabilan terma, X_c dan E_a lebih tinggi daripada komposit PP/Kitosan terawat dengan AA. Mikrograf SEM komposit PP/Kitosan terawat dengan AA dan OSL menunjukkan permukaan yang kasar. Kesan OSL kepada komposit PP/Kitosan terawat dengan SDS telah meningkatkan pemanjangan pada takat putus, kestabilan terma, penghabluran, tenaga pengaktifan, manakala kekuatan tensil dan modulus Young berkurang dibandingkan komposit PP/Kitosan yang terawat dengan SDS. Morfologi komposit PP/Kitosan dengan SDS dan OSL menunjukkan kelakuan mulur.

Effect of Filler loading and Chemical Modifications on Properties of Chitosan/Polypropylene Composites

ABSTRACT

Chitosan filled polypropylene (PP) composites had been prepared using Z-Blade Mixer at temperature 190°C and rotor speed 50 rpm. The effect of chitosan loading and different types of chemical modifications on mechanical properties, morphology and thermal properties of PP/Chitosan composites were studied. The various types of chemical modifications such as acrylic acid (AA), methyl methacrylate (MMA), acetic acid (AAc), 3-aminopropyltriethoxysilane (3-APE) and sodium dodecyl sulfate (SDS) were investigated. The organosolv lignin (OSL) was extracted from coconut shell powder and used as partial treatment with AA and SDS. The results showed that the addition of chitosan into PP matrix reduced the tensile strength, elongation at break, degree of crystallinity (X_c) and activation energy (E_a) , whereas the thermal stability and Young's modulus of composites increased. The chemical modification of chitosan resulted positive effect on mechanical and thermal properties of PP/Chitosan composites. The treated PP/Chitosan composites with AA, MMA, AAc, 3-APE, SDS have higher tensile strength, Young's modulus, thermal stability, X_c and E_a compared to untreated PP/Chitosan composites. The better interfacial interaction between treated chitosan and PP matrix was proven by the scanning electron microscopy (SEM) study. The FTIR spectra of treated chitosan showed the new functional group from the formation of chemical bonding between chitosan and chemical modifying agent. The treated PP/Chitosan composites with AA and OSL had lower tensile strength and elongation at break, but higher Young's modulus, thermal stability, X_c and E_a than treated PP/Chitosan composites with AA. The SEM micrographs of treated PP/Chitosan composites with AA and OSL exhibited a rough surface. The effect of OSL to treated PP/Chitosan composites with SDS increased the elongation at break, thermal stability, crystallinity and activation energy, while the tensile strength and Young's modulus decreased compared to treated PP/Chitosan composites with SDS. The morphology of treated PP/Chitosan composites with SDS and OSL showed the ductile behavior.

CHAPTER 1

INTRODUCTION

1.1 Research Background

Polymer composites with enhanced properties and versatility have led to their application in many industries and applications, including automobile, aerospace, furniture and packaging (Demzen et al., 1998; Mathew et al., 2005; Terenzi et al., 2006). A composite is a multi – phase material consisting of two or more physically distinct components, a continuous (matrix) phase and a dispersed (filler or reinforcement) phase. The dispersed phase can be classified according to particle dimensions that include fibers, platelet, ellipsoids and spheres. These particles can be of organic and inorganic origin and possess flexible or rigid properties. Filler size has an impact on composite properties with high aspect ratio and display significant improvements in composite properties, including strength, thermal stability and gas barrier (Chang et al., 2005; Frounchi et al., 2006; Wang et al., 2006).

Fibers such as aramid, carbon and glass have been extensively used for reinforcement. While these composites exhibit favorable properties such as high strength and heat resistance, they are expensive to produce, difficult to recycle and do not biodegrade (Shank et al., 2004). A trend has been developed towards incorporating natural fibers or fillers into composites. This shift has been prompted mainly due to various environmental, economic and performance issues (Shank et al., 2006). Natural fillers offer a cost effective and renewable alternative to their synthetic counterparts