STUDIES ON THE PRODUCTION OF GLUCOSE OXIDASE BY *Aspergillus terreus* UniMAP AA-1

by

AHMAD ANAS BIN NAGOOR GUNNY

(0930110360)

A thesis submitted in fulfilment of the requirements for the degree of Master of Science (Bioprocess Engineering)

School of Bioprocess Engineering
UNIVERSITI MALAYSIA PERLIS
2011
UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS

Author's full name : ...
Date of birth : ..
Title : ..

Academic Session : ..

I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as :

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)
☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)
☐ OPEN ACCESS (Agree that my thesis is to be made immediately available as hard copy or on-line open access (full text))

I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of ____ years, if so requested above).

Certified by:

__________________________________ ____________________________________
SIGNATURE SIGNATURE OF SUPERVISOR

__________________________________ _______________________________
(NEW IC NO. / PASSPORT NO.) NAME OF SUPERVISOR

Date : ___________________ Date : ___________________

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach the letter from the organization with period and reason for confidentiality or restriction.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Merciful and the Most Compassionate. All praise is due to Allah alone and with His blessings and guidance enabled me to complete the study and peace be upon our beloved prophet Muhammad (PBUH).

I would like to take this opportunity to express my deepest gratitude to my respected supervisor, Assoc. Prof. Dr. Dachyar Arbain, for his thoughtful ideas, valuable guidance, constant encouragement and motivation, patience, never ending support and his endurance to bear with me through all the difficult times from the start till the end that enables me to complete the Msc. program successfully. I am proud and honoured to work with him and it was a delightful and enriching experience. Besides, I would like to express my sincere appreciation to my respected co-supervisor, Dr. Muhammad Syarhahil Ahmad and the Former Dean of School of Bioprocess Engineering, Universiti Malaysia Perlis, Assoc Prof. Dr Mohamed Zulkali for their continuous support and assistance throughout this work.

I would like to express a special and warmest gratitude to my wife, Noor Mazuin Abu Bakar for her patience, everlasting support, constant assistance and encouragement throughout this work. I would also like to express a special and warmest gratitude to my mother for her support, blessing and encouragement from the beginning of the study till the end.

My sincere thanks also goes to Prof. Dr. Md. Zahangir Alam, Head of Department of Biotechnology Engineering, International Islamic University Malaysia (IIUM) and Mr. Fahrurrazi Tompang, for their sincere advice with regards on Statistical Experimental Design of this study.
Last but not least, I would also like to express my sincere appreciation to Mr. Zulkarnain, Mrs. Noor Hasyierah, Mr. Radi, Dr. Zarina, Mrs. Syazni, Mr. Emi, Miss Rohazita, Miss Nurul Ain, Mr. Adib, Mr. Mahfuz, Mr. Qalani, Mr. Hafizal, Mr. Humaidi, Mrs. Sriyana, Mrs. Salfarina, Mrs. Hafiza and Miss Hafizah and other colleagues for their co-operation, a hand of help and kind friendship during the study. May Allah bless all of you.
TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF PLATES

LIST OF ABBREVIATIONS

ABSTRAK

ABSTRACT

CHAPTER 1

INTRODUCTION

1.1 Background

1.2 Problem Statement

1.3 Research Objectives

1.4 Scope of Research

CHAPTER 2

LITERATURE REVIEW

2.1 Glucose oxidase
2.1.1 Glucose oxidase Reaction Mechanism

2.1.2 Application of Glucose oxidase

2.1.2.1 Food and beverage industries

2.1.2.2 Gluconic acid production

2.1.2.3 Textile industry

2.1.2.4 Biofuel cell

2.1.2.5 Biosensor for glucose detection

2.1.2.6 Other uses

2.1.3 Properties of Glucose oxidase

2.2 Microbial sources of Glucose oxidase

2.2.1 Aspergillus niger

2.2.2 Penicillium sp.

2.2.3 Isolation and Identification of Glucose oxidase-producing strain

2.3 Production of Glucose oxidase

2.3.1 Production of Glucose oxidase via submerged fermentation

2.3.2 Production of Glucose oxidase via solid state fermentation

2.4 Improvement of Glucose oxidase production
2.4.1 Glucose oxidase Inducer 21

2.4.2 Strain improvement 22

2.5 Optimization of fermentation medium for GOx production 23

2.5.1 One-Factor-at-a-Time (OFAT) method 24

2.5.2 Plackett-Burman design 25

2.5.3 Response Surface Methodology: Central Composite Design 27

CHAPTER 3

MATERIALS AND METHODS

3.1 Materials and Methods 29

3.2 Screening and Isolation of GOx-producing strain 30

3.3 Growth characteristic of the culture of the isolated strain 31

3.4 Isolation of crude glucose oxidase strain 31

3.5 Assay of Glucose oxidase 32

3.6 Identification of GOx-producing strain 32

3.6.1 Light microscope analysis 33

3.6.2 Scanning Electron Microscope (SEM) analysis 33

3.6.2.1 SEM sample preparation 33
3.6.2.2 SEM analysis 34

3.6.3 Molecular approach 34

3.7 Preparation of seed culture 34

3.8 Production of Glucose oxidase 35

3.9 Determination of cell dry weight 35

3.10 Production profile 35

3.11 Optimization media components for Glucose oxidase Production 36

3.11.1 Evaluation of the Media Components for Glucose oxidase Production using Plackett-Burman design 36

3.11.2 Optimum Levels of Parameters Determined by One-factor-at-a-time (OFAT) design 38

3.11.3 Optimization of Media Components by Face Centered Central Composite Design (FCCCD) 39

3.11.3.1 Regression Analysis 41

3.11.3.2 Residual Analysis 42

3.11.3.3 Validation of Model 42

3.12 Properties of Crude Glucose oxidase from *Aspergillus terreus* UniMAP AAT1 43

3.12.1 Glucose oxidase activity in response to different
concentrations of glucose

3.12.2 Oxygen uptake in response to different concentrations of glucose

3.12.3 Crude Glucose oxidase analysis by Fourier transform infrared spectroscopy (FT-IR)

CHAPTER 4

RESULT AND DISCUSSION

4.1 Isolation and screening of GOx-producing strain

4.2 Growth Characteristic of isolate UniMAP AA-1

4.3 Isolation of Crude Glucose oxidase

4.4 Identification of GOx-producing strain

 4.4.1 Morphological characteristic

 4.4.2 Molecular Identification

4.5 Production profile

4.6 Evaluation of the Media Components for Glucose oxidase Production using Plackett-Burman Design

4.7 Optimum levels of parameters determined by the one-factor-at-time method (OFAT)
APPENDICES

Appendix A The list of chemicals which were used in the experiment 92
Appendix B Cell count by using Haemocytometer 93
Appendix C Sequences producing significant alignments 94
Appendix D Real-time measurement of oxygen uptake as a function of time 97

LIST OF PUBLICATIONS AND AWARD 100
LIST OF TABLES

Table 3.1 Plackett-Burman design of 11 variables with coded value 38
Table 3.2 The experimental variables and their levels for the FCCCD 39
Table 3.3 Experimental design for optimization of media composition by using FCCCD 40
Table 4.1 Screening of isolates for GOx activity after 70 hours fermentation 46
Table 4.2 Location of GOx in isolate UniMAP AA-1 48
Table 4.3 Key distinctive morphological features of Aspergillus terreus 52
Table 4.4 Plackett-Burman design of 11 variables with coded value along with the observed result 55
Table 4.5 Statistical calculations for Plackett-Burman design 58
Table 4.6 Observed value of GOx activity obtained from FCCCD 63
Table 4.7 ANOVA for response surface quadratic model 65
Table 4.8 Validation of developed quadratic model and optimum media compositions 72
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>GOx mechanism</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Representation of GOx reaction</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Overview of the research methodology</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>GOx reaction with o-anisidine as a chromagenic dye</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Production profile of GOx by Aspergillus terreus UniMAP AA-1</td>
<td>53</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Main effects of the media components on GOx production to the Plackett–Burman experimental results</td>
<td>56</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Effect of CaCO$_3$ concentration on GOx production by Aspergillus terreus UniMAP AA-1</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Effect of NaNO$_3$ concentration on GOx production by Aspergillus terreus UniMAP AA-1</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Effect of glucose concentration on GOx production by Aspergillus terreus UniMAP AA-1.</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Normal probability plot for the residuals from the GOx activity model</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Plots of the residuals vs predicted response for GOx activity</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Parity plot showing the distribution of experimental vs. predicted values of GOx activity</td>
<td>68</td>
</tr>
</tbody>
</table>
Figure 4.9 3D response surface show the effect of glucose concentration (%, w/v) and NaNO₃ concentration (%, w/v) on the GOx activity (U/ml) where the CaCO₃ was at 4.0% (w/v)

Figure 4.10 3D response surface show the effect of glucose concentration (%, w/v) and CaCO₃ concentration (%, w/v) on the GOx activity (U/ml) where the NaNO₃ was at 1.0% (w/v)

Figure 4.11 3D response surface show the effect of NaNO₃ concentration (%, w/v) and CaCO₃ concentration (%, w/v) on the GOx activity (U/ml) where the glucose was at 10% (w/v)

Figure 4.12 Initial velocity of crude GOx in response to different glucose concentrations; (A) 0-120 mM and (B) 0-2500 mM

Figure 4.13 Oxygen consumption in response to different concentrations of glucose

Figure 4.14 D-glucono-1,5-lactone

Figure 4.15 FT-IR spectra of the product D-glucono-1,5-lactone of the enzymatic reaction where A: spectra shows the wavelength within the range between 4000-1000 and B: spectra shows the wavelength within the range between 1750-1150
Figure 4.16 FT-IR spectra of the product (D-glucono-1,5-lactone) at band 1697 cm$^{-1}$ (A) and 1239 cm$^{-1}$ (B) recorded at several time intervals

Figure 4.17 Progress curve of the reaction catalyzed by GOx
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>(A) Growth of isolate UniMAP AA-1 on differential media before the addition of indicator solution; (B) Growth of the isolate UniMAP AA-1 on the differential media after the addition of indicator solution</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>(A) Growth of isolate UniMAP AA-2 on differential media before the addition of indicator solution; (B) Growth of the isolate UniMAP AA-2 on the differential media after the addition of indicator solution</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Formation of pellet after 48 hours of fermentation</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Micrographs of isolate UniMAP AA-1 pellet analyzed using Olympus BX51 microscope (5x)</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>Growth of Aspergillus terreus UniMAP AA-1 on Malt Extract (MEA) plate after 4 days at 30°C</td>
<td>50</td>
</tr>
<tr>
<td>4.6</td>
<td>Microscopic observation and characteristics of UniMAP AA-1 strain which are common to Aspergillus sp.</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>Morphology structure of A. terreus UniMAP AA-1 by light microscopy (40X)</td>
<td>51</td>
</tr>
<tr>
<td>4.8</td>
<td>SEM revealing striate morphology of the conidia (15,000X)</td>
<td>51</td>
</tr>
<tr>
<td>4.9</td>
<td>Result of ITS sequence analysis of isolate UniMAP AA-1</td>
<td>52</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. niger</td>
<td>Aspergillus niger</td>
</tr>
<tr>
<td>A. terreus</td>
<td>Aspergillus terreus</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>CuSO$_4$.5H$_2$O</td>
<td>Copper(II)sulfate pentahydrate</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>FCCCD</td>
<td>Face Centered Central Composite Design</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>FeSO$_4$.7H$_2$O</td>
<td>Ferrous Sulphate Heptahydrate</td>
</tr>
<tr>
<td>GOx</td>
<td>Glucose oxidase</td>
</tr>
<tr>
<td>g/l</td>
<td>gram per volume</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>ITS</td>
<td>Internal transcribed spacer</td>
</tr>
<tr>
<td>KH$_2$PO$_4$</td>
<td>Potassium dihydrogen phosphate</td>
</tr>
<tr>
<td>K$_m$</td>
<td>Kinetic constant</td>
</tr>
<tr>
<td>MgSO$_4$.7H$_2$O</td>
<td>Magnesium Sulphate Heptahydrate</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>MEA</td>
<td>Malt extract agar</td>
</tr>
<tr>
<td>NaNO$_3$</td>
<td>Sodium nitrate</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>OFAT</td>
<td>one-factor-at-a-time</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SSF</td>
<td>Solid state fermentation</td>
</tr>
<tr>
<td>U/ml</td>
<td>One unit is the amount of enzyme activity which will catalyse 1 micromole of the substrate per minute under standard conditions</td>
</tr>
<tr>
<td>UniMAP</td>
<td>Universiti Malaysia Perlis</td>
</tr>
<tr>
<td>UV/VIS</td>
<td>Ultra violet/visible</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>
KAJIAN MENGENAI PENGHASILAN ENZIM GLUKOSA OXIDASE DARIPADA Aspergillus terreus UniMAP AA-1

ABSTRAK

Enzim glukosa oksidase telah diaplikasi dengan meluas dalam industri kimia, makanan, minuman, bioteknologi dan lain-lain. Umumnya enzim ini terhasil dari Aspergillus niger dan Penicillium sp. Kini wujud keperluan untuk mencari sumber-sumber alternatif enzim ini kerana beberapa kelemahan yang berkaitan dengan sumber yang sedia ada. Dalam kajian ini, pencilan mikroorganisma yang menghasilkan glukosa oksidase yang dicamkan sebagai Aspergillus UniMAP AA-1 telah dipencilkan dari sample tanah di Unit Penyelidikan Agrotek, Sg. Chucuh, Perlis. Ujian penyaringan mikroorganisma yang menghasilkan glukosa oksidase telah dilakukan berdasarkan perubahan warna pada plat agar yang mengandungi o-anisidin dan lobak peroksidase. Mikroorganisma yang telah disaring telah dikenalpasti morfologinya dengan menggunakan mikroskop cahaya dan mikroskop pengimejan elektron (SEM) dan selanjutnya disahkan oleh pengecaman ke tahap molekul. Mikroorganisma ini telah dikenalpasti sebagai pengeluar utama glukosa oksidase yang bersifat ekstraselular dan morfologi yang bersifat pelet dalam kultur fermentasi. Penemuan ini menawarkan alternatif yang baru bagi masalah dan kelemahan yang sedia ada pada sumber-sumber glukosa oksidase terkini. Selanjutnya, pengoptimuman yang berturut-turut berdasarkan pendekatan statistik satu-faktor-pada-satu-masa (OFAT) telah dijalankan bagi mengoptimumkan penghasilan glukosa oksidase ekstraselular dari mikroorganisma yang telah dikenalpasti. Kenafah reka bentuk Plackett-Burman menunjukkan glukosa adalah pembolehubah yang paling berpengaruh diikuti oleh NaNO₃, CaCO₃, dan pepton kepada penghasilan enzim tersebut, sedangkan KH₂PO₄, MgSO₄.7H₂O, FeSO₄.7H₂O, menunjukkan kesan negatif terhadap penghasilan enzim tersebut. Berdasarkan hasil dari reka bentuk tersebut, glukosa, NaNO₃ dan CaCO₃ dipilih untuk kajian pengoptimuman dan seterusnya pengaruh dari tiga komponen medium ini diselidiki dengan OFAT dan pembolehubah ini selanjutnya dioptimasi menggunakan pendekatan reka bentuk komposit berpusat (FCCCD). Penghasilan medium optimum ditunjukkan pada glucosa 10.64% (w/v), NaNO₃ 1.21% (w/v) dan CaCO₃ 5.22% (w/v) dan enzim yang terhasil adalah sebanyak 6.72 U/ml, iaitu sekitar tujuh kali ganda lebih tinggi daripada yang diperolehi daripada media sebelum pengoptimuman. Ciri-ciri seperti penggunaan oksigen dan glukosa serta penghasilan hidrogen peroksida dan asid glukonat daripada enzim kasar ini adalah selari dengan ciri-ciri khusus enzim glukosa oksidase. Nilai kinetik malar,Km, enzim kasar ini, ditentukan oleh persepadanan langsung persamaan Michaelis-Menten melalui regresi bukan linear (dengan nilai korelasi atau R² = 0.98) menggunakan fungsi solver dalam perisian Microsoft Excel, memberikan nilai dalam julat 7.5-15 mM. Keputusan kajian menunjukkan spesifikasi substrat dari enzim kasar ini terhadap glukosa β-D (substrat) dan menunjukkan kekuatan pengikatan enzim kasar ini dengan substratnya.
STUDIES ON THE PRODUCTION OF GLUCOSE OXIDASE BY *Aspergillus terreus* UniMAP AA-1

ABSTRACT

Glucose oxidase (GOx) has found a wide range of applications in chemical, food, beverage, biotechnology and other industries. It is commonly extracted from *Aspergillus niger* and selected strains of *Penicillium* sp. Currently there is a growing need to find alternative sources of this enzyme due to some drawbacks associated with *A. niger* and *Penicillium* sp. In this work, a novel GOx-producing strain, *Aspergillus terreus* UniMAP AA-1, was isolated from soil of Agrotech Research Centre, Sg Chucuh, Perlis. The screening tests for the GOx-producing strain were carried out on the basis of color development test by using agar plate containing o-anisidine and horseradish peroxidase. The screened strain was identified morphologically using light microscope and Scanning Electron Microscope (SEM) and further verified by molecular level identification. The strain was identified as a predominant extracellular GOx producer and exhibits a pelleted morphology in fermentation culture. These findings offer a new alternative to the existing GOx-producing strains which are known to be associated with few drawbacks. Subsequently, a sequential optimization based on statistical design and one-factor-at-a-time (OFAT) method was employed to optimize the production of extracellular GOx from the potential strain. Plackett-Burman design indicated glucose as the most influential variable followed by NaNO₃, CaCO₃, and peptone on the GOx activity; while KH₂PO₄, MgSO₄·7H₂O and FeSO₄·7H₂O showed negative main effect on the enzyme activity. Based on the result, glucose, NaNO₃ and CaCO₃ were selected for further optimization studies. The influences of the three medium components were investigated with one-factor-at-a-time (OFAT) and these variables were subsequently optimized using a face centered central composite design (FCCCD). The optimum conditions were found to be 10.64% (w/v), 1.21% (w/v) and 5.22% (w/v) for glucose, NaNO₃ and CaCO₃ respectively and the enzyme activity was found to be 6.72 U/ml, which was about seven fold higher than that obtained in media before optimization. The oxygen and glucose consumption as well as hydrogen peroxide and gluconic acid production profiles of the crude enzyme are all in-line with typical GOx properties. The kinetic constant, Kₘ, of the crude enzyme for its substrate, determined by direct fits of Michaelis–Menten equation through nonlinear regression (with correlation value or R² =0.98) using solver function in Microsoft Excel software, gave the value of within the range of 7.5-15 mM. The result indicates substrate specificity of the crude enzyme towards β-D glucose (substrate) and demonstrated the tight binding of the crude enzyme with its substrate.
CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Enzyme is a protein that catalyzes a large number of biochemical reactions. To date, enzyme is utilized for diverse applications ranging from the manufacture of various industrial products to diagnostics and therapeutic agents. Although the world demand of enzyme is increasing, production of enzyme is yet to flourish in developing countries like Malaysia due to the high production cost and high capital investment (Ibrahim, 2008). Most of the industrial enzymes used in the country are imported from Denmark, Netherlands, Belgium and other countries mounting to about USD 3.5 millions annually with the quantum of more than 1 million kg of crude enzyme preparations (Ibrahim, 2008).

Glucose oxidase (GOx) is one of the enzyme which has gained an importance and popularity in industry. GOx catalyzes the oxidation of β-D-glucose to gluconic acid, utilizing oxygen as an electron acceptor and simultaneously producing hydrogen peroxide. This enzyme has found several commercial applications in food and beverage industry including glucose removal from dried egg; improvement of color, flavor, texture and shelf life of food materials; oxygen removal from fruit juices, canned beverages and mayonnaise to prevent bacterial growth (Wong, Wong & Chen, 2008 and Bankar, Bule, Rekha & Ananthanarayan, 2008). Besides, it has also been used in biofuel cells (Kim, Parkey, Rhodes & Gonzalez-Martin, 2009) and widely in glucose biosensors for clinical applications (Yoo & Lee, 2010).
The wide application of GOx has increased the demand of GOx in the world market. According to the report by Global Industry Analysts, Inc., the global market for GOx based-biosensors and strips will reach USD 11.5 billion by 2012 (Yoo & Lee, 2010).

The most common microbial sources for GOx production are selected strains of Aspergillus and Penicillium genera. Among these sources, Aspergillus niger is the most commonly utilized microorganism for commercial production of GOx (Bankar, Bule, Rekha & et al., 2009).

However, these two fungal sources for producing GOx have been known to be associated with some drawbacks. Aspergillus niger produces intracellular GOx (Hamid, Kalil-ur-Rehman, Zia & Asgher, 2003) which incurs comparatively more cost in the recovery steps as compared to extracellular enzyme. Extracellular enzyme is preferable in industry because the downstream process is simpler and cheaper as compared to intracellular enzyme (Ibrahim, 2008). Intracellular enzyme is located in the cell, thus, the cell need to be disrupted in order to release the enzyme. This characteristic requires extra downstream processes to recover the enzyme, hence it will incur more processing cost (Headon & Walsh, 1994). Furthermore, some extracellular enzymes are more stable than their intracellular counterparts because they are glycosylated and have a broad pH range for activity. In addition, the enzymes have some resistance to degradation due to proteases activity (Burns & Wallenstein, 2010).

On the other hand, although Penicillium sp is known as extracellular GOx producer (Sabir, Bhatti, Zia, & Sheikh, 2007), however it produces non-Newtonian fluids behaviour during fermentation which results in high viscous cultivation broth (Clarke, Johnstone-Robertson, Price & Harrison, 2006). The high viscosity and pseudo-plasticity of the suspension caused many problems during cultivation which include
decreasing the mass transfer, heat transfer, and requiring more power input for mixing (El-Enshasy, 2007). Conversely, pelleted morphology offers an alternative growth form for the culture of fungi. It exhibits Newtonian fluids which produce less viscous culture broth and good mass and heat transfer properties which offers easier separation of the biomass from the broth (Suijdam, Kossen & Paul, 1980).

Considering the above two drawbacks, it is necessary to find alternative microbial sources for GOx production which are free from the above drawbacks. In line with that, in order to increase the production efficiency, it is necessary to optimize the production of GOx. As common to enzyme production, the most crucial factors is medium composition, since it affects the production in terms of cost and its productivity (Schmidt, 2005). Hence, it is important to consider the optimization of fermentation medium in order to maximize the production efficiency and profits eventually.

Although optimization of GOx production was reported widely, however, most of it was achieved by using conventional method like one-factor-at-one-time (OFAT) rather than statistical tools like Plackett-Burman design and Response Surface Methodology (RSM). Conventional method like OFAT modifies one factor while maintaining other factors at a specified constant level. This practice is time consuming as it requires a large number of experiments. It is also less effective since it does not consider the interaction between factors involved. By contrast, statistical experimental design offers considerable advantages as compared to OFAT for fermentation improvement. Plackett-Burman design allows a reliable short listing of medium components in fermentation prior to optimization study while Response Surface Methodology (RSM) allows studying the optimum conditions of the selected factors and studying interaction between the factors in limited number of experiment (Vaidya, Shah, Vyas & Chhatpar, 2001).
In this study, we report the isolation and identification of a novel GOx-producing strain from soil samples taken from different places of Perlis area, Malaysia. The isolated strain was identified as *Aspergillus terreus* based on the morphological characterization and molecular identification. To our knowledge, there has been no report regarding the production of GOx from *Aspergillus terreus*. Furthermore, this novel GOx-producing strain showed a predominant extracellular GOx and exhibits pelleted morphology which offers a better alternative to the existing sources of GOx which are known to be associated with some drawbacks.

Since there has been no reported work on the production of GOx from this strain, it is necessary to optimize the growth conditions of the strain for optimal production and study the properties of the crude GOx. The optimization studies on composition of media components were carried out in three stages as follows:

1. Plackett–Burman design was applied to address the most significant media components which affect GOx production.
2. The one-factor-at-a-time (OFAT) approach was used to obtain the most possible optimum level of selected factors.
3. The central composite design (CCD) was employed to determine the optimal condition and to study the interaction among the significant media components for the production of GOx.

Finally, studies on the enzymatic properties of the crude GOx produced from the optimized media conditions have been attempted. The properties of crude GOx were studied based on the change of components involved in the enzymatic reaction of the crude enzyme. These are oxygen consumption, glucose oxidation, hydrogen peroxide formation and gluconic acid production.