

Development of A Microcontroller-based Inverter for Photovoltaic Application

by

Sharulnizam Bin Mohd Mukhtar (0630910133)

This tem is pr A thesis submitted In fulfilment of the requirements for the degree of Master of Science (Electrical Engineering)

> **School of Electrical Systems Engineering UNIVERSITI MALAYSIA PERLIS**

> > 2011

Acknowledgements

First and foremost I would like to express my deepest gratitude to my supervisor, Assoc. Prof. Abd. Rahman Bin Mohd Saad for his patient guidance and enthusiastic help, without which this thesis would not have come into being. I also appreciate the other members of my committee, En. Noor Hasnizam bin Hanafi and En. Said Amirul Anwar B. Ab. Hamid, for their help and time.

Furthermore, I would like to thank all UniMAP Engineering Centre staff for their support and assistance during work on this project.

Finally, and most importantly, I would like to thank my wife Hasliza, for her love, understanding, support, and sacrifice during all stages of my MSc studies. Thanks also are due to my lovely kids, Afiqah and Afiq, who bring to me the pride and happiness of being a father. I also express my gratitude to my father, Mohd Mukhtar Bin Ahmad who has been inspiring me throughout my life and career, and to my late mother, Che Haton Binti Awang for all her love and encouragement.

		Table of Contents	
Ac	know	vledgements	i
Та	ble of	f Contents	ii
Li	st of I	Figures	v
Li	st of]	Tables 5	viii
At	obrevi	iations	ix
Ab Ab	ostrak ostrac	tennis prote	xii xiii
1	Intr	oduction	1
Õ	1.1 1.2 1.3 1.4 1.5	Background	1 2 3 3
2	Revi	iew of the Inverter Topologies and their Switching Techniques	6
	2.1	Introduction	6
	2.2	Overview of Inverter Topologies	6
		2.2.1 Conventional Single-stage Inverter Topologies	9 10
	22	2.2.2 Iwo-stage Inverter Topology	1U 11
	2.3	2.3.1 PWM with Bipolar Voltage Switching	12

		2.3.2 PWM with Unipolar Voltage Switching	12			
	2.4	Review of Past SPWM Generation	17			
	2.5	Conclusion	17			
3	Desi	gning the Two-Stage Inverter and its Switching Strategy	19			
	3.1 Introduction \ldots					
	3.2	Inverter Circuit Topology	19			
	3.3	The DC-DC Stage	20			
		3.3.1 The Operation Principle	21			
		3.3.2 Pulse-Width Modulation	24			
	3.4	The DC-AC Stage	26			
		3.4.1 The Operation Principle	26			
		3.4.2 Generating the SPWM Gating Signals	28			
		3.4.2.1 Approximating the Pulse Width, $\theta_{\omega i}$	32			
		3.4.2.2 Exact Expression for $\theta_{\omega i}$	32			
	3.5	Conclusion	35			
4	Har	dware Development for the Prototype Inverter	36			
-	4.1	Introduction	36			
	4.2	The DS89c420 Microcontroller Board	36			
	4.3	4.3 Design of the DC-DC Stage				
		4.3.1 Selection of the Power Device	40			
		4.3.2 The Gate Drive	41			
		4.3.3 The Snubber Circuit	42			
		4.3.4 PCB Layout Consideration	43			
	4.4	Design of the High-Frequency Planar Transformer	43			
	4.5 ^C	Design of the DC-AC Stage	48			
6		4.5.1 Output Filter	50			
	4.6	Conclusion	51			
5	Soft	ware Development for the Prototype Inverter	52			
•	5.1	Introduction	52			
	5.2	Development of the Software	52			
	5.3	PWM Signal Control for the DC-DC Stage	53			
	0.0	5.3.1 Feedback Control	53			
	5.4	SPWM Signal Control for the DC-AC Stage	56			
	5.5	The Programming	57			
	5.6	Conclusion	57			

	6.1	Introduction	58				
	6.2 Waveforms of the DC-DC-Stage PWM Output						
	6.3	.3 Waveforms of the DC-AC-Stage SPWM Output					
	6.4 Prototype Performance Test						
		6.4.1 The DC-DC Converter Stage	65				
		6.4.2 Waveforms of the Inverter's Voltage and Current Outputs	65				
		6.4.3 Total Harmonic Distortion(THD)	67				
		6.4.4 Efficiency of the Prototype	72				
	6.5	Conclusion	83				
7	Con	clusion	84				
	7.1	Summary of the Research	84				
	7.2	Research Contributions	85				
	7.3	Suggestions for Further Work	85				
Bi	bliogi	raphy	87				
Α	Calo	culated Switching Pulse	89				
В	List	of Publications	94				
		13					
6		tent					
	•						

List of Figures

List	of Figures	
2.1	Half-bridge configuration	7
2.2	Full-bridge configuration	8
2.3	The output waveform of half-bridge configuration	8
2.4	The output waveform of full-bridge configuration	9
2.5	A conventional inverter circuit configuration	10
2.6	PWM with bipolar voltage switching	13
2.7	Normalized harmonics amplitude for PWM with bipolar voltage switching	13
2.8	PWM with unipolar voltage switching	16
2.9	Normalized harmonics amplitude for PWM with unipolar voltage switching	16
3.1	Schematic of the inverter	20
3.2	Schematic of the de-dc stage	21
3.3	Dc-dc stage converter operation mode (a)-(d) with current paths for one	~~
.	switching period	22
3.4	Waveforms for a push pull converter.	23
3.5	Full bridge inverter and its control strategy	26
3.6	Steady state operation of the inverter for (a) Positive half cycle (b) Nega-	07
		27
3.1	SPWM voltage waveform across the load of the inverter	27
3.8	Example of a bipolar PWM output waveform.	28
3.9	PWM figure illustrating the constant ratio between the width and height	20
2 10		29
3.10		30
3.11	Approximated pulse width, i.e., $\Delta e = 0$	33
3.12	Intersections between V_{ref} and V_{cont}	34
4.1	Photograph of DS89c420 μ controller, dc-dc converter and dc-ac inverter	27
4.0	Clicult	20
4.2	The DS90a420 microscontrollar board	20 20
4.3	Ine DS89c420 microcontroller board. Schematic of the de de stage	39 40
4.4	Schematic of the dc-dc stage	40
4.5		41

	4.6	The RC snubber-circuit configuration.	43
	4.7	Symmetrical layout of the PCB	44
	4.8	Construction of the planar transformer	44
	4.9	PCB winding patterns	45
	4.10	Dimension outline for E/PLT58/15/50 planar core	48
	4.11	Full-bridge dc-ac inverter circuit.	49
	4.12	LC low-pass output filter.	51
	5.1	Algorithm of the program implemented on the microcontroller	54
	5.2	Algorithm of the dc-dc stage	55
	5.3	Feedback control block diagram	55
	5.4	Algorithm of the dc-ac stage	56
	6.1	PWM output waveform for PWM1 and PWM2 (a) Simulated waveform	
		for $D = 0.32$ (b) Experiment waveform for $D = 0.32$	59
	6.2	PWM output waveform for PWML and PWM2 (a) Simulated waveform	
		for $D = 0.38$ (b) Experiment waveform for $D = 0.38$	60
	6.3	PWM output waveform for PWM1 and PWM2 (a) Simulated waveform	
		for $D = 0.45$ (b) Experiment waveform for $D = 0.45$	61
	6.4	PWM waveform from the gate-driver output	62
	6.5	Simulated waveform for SPWM1 and SPWM2 for $f_{tri} = 5$ kHz and $m_a =$	
		1.0	63
	6.6	Experiment waveform for SPWM1 and SPWM2 for f_{tri} = 5kHz and m_a	
		= 1.0	64
	6.7	Photograph of the overall test-setup arrangement	64
	6.8	Experiment waveform for (a) MOSFET drain source voltage and (b) HF	
	•.¢	transformer output voltage	66
	6.9	Simulated waveform of MOSFET voltage and HF transformer output volt-	
		age	67
(\bigcirc)	6.10	Experiment waveform signal for (a) MOSFET voltage without snubber	60
		circuit and (b) MOSFET voltage with snubber circuit	68
	6.11	Experiment waveform signal for (a) Rectifier diode voltage without snub-	
		ber circuit and (b) Rectifier diode voltage with snubber circuit	69
	6.12	Simulated waveforms for output voltage and current, pre-filter, with 500W	70
	(10		/0
	6.13	Experiment waveform signal for (a) Output voltage, pre-filter, with 2000	71
	())	load and (b) Output current, pre-filter, with 20002 load	/1
	6.14	Simulated waveforms for output voltage and current, post-filter, with 500W	70
	(17		12
	6.15	Experiment waveforms for output voltage and current, post-filter, with 100W load	72
		100 W 10au	13

6.16	Experiment waveforms for output voltage and current, post-filter, with 200W load.	73
6.17	Experiment waveforms for output voltage and current, post-filter, with 300W load.	74
6.18	Experiment waveforms for output voltage and current, post-filter, with 400W load.	74
6.19	Experiment waveforms for output voltage and current, post-filter, with 500W load.	75
6.20	Simulated harmonic spectrum for output voltage, pre-filtering for $f_{tri} = 5$ kHz and $m_a = 1.0$	75
6.21	Experiment harmonic spectrum for output voltage, pre-filtering for $f_{tri} = 5$ kHz and $m_a = 1.0$	76
6.22	Experiment harmonic spectrum, post-filtering for (a) Output voltage with 100W load and (b) Output current with 100W load	77
6.23	Experiment harmonic spectrum, post-filtering for (a) Output voltage with 200W load and (b) Output current with 200W load	78
6.24	Experiment harmonic spectrum, post-filtering for (a) Output voltage with 300W load and (b) Output current with 300W load	79
6.25	Experiment harmonic spectrum, post-filtering for (a) Output voltage with 400W load and (b) Output current with 400W load	80
6.26	Experiment harmonic spectrum, post-filtering for (a) Output voltage with 500W load and (b) Output current with 500W load	81
6.27	Output power vs THD	82
6.28	Measuring the efficiency of the circuit.	82
6.29	Inverter efficiency	83
© Thi		
_		

List of Tables

List	of Tables	
2.1	Generalized harmonics of V_{A0}	14
3.1	High Frequency Transformer Design Parameters	25
4.1 4.2	Ratings and specifications of MOSFET type IRFZ40	41 50
C	teming period for <i>just</i>	

Abbreviations

Ab	brevia	tions
	AC	Alternating Current
	ADC	Analog to Digital Converter
	BJT	Bipolar Junction Transistor
	CSI	Current Source Inverter
	DAC	Digital to Analog Converter
	DC	Direct Current
	DMC	Dynamic Matrix Control
	EMI	ElectroMagnetic Interference
	EPROM	Erasable Programmable Read OnlyMemory
	FPGA	Field Programmable Gate Array
•	GTO	Gate Turn Off thyristor
<u>(</u>)	HF	High Frequency
\bigcirc	IGBT	Insulated Gate Bipolar Transistor
<u> </u>	MBC	Multilevel Boost Converter
	МСТ	MOS Controlled Thyristor
	MIPs	Million Instruction Per Second
	MOSFET	Metal Oxide Semiconductor Field Effect Transistor
	MSPWM	Modified Sinusoidal Pulse Width Modulation
	РСВ	Printed Circuit Board
	PWM	Pulse Width Modulation
	RAM	Random Access Memory

]	RC	Resistor Capacitor
]	RCD	Resistor Capacitor Diode
]	RMS	Root Mean Square
	SHEPWM	Selective Harmonic Elemination Pulse Width Modulation
	SIT	Static Induction Transistor
	SPWM	Sinusoidal Pulse Width Modulation
	SVPWM	Space Vector Pulse Width Modulation
r	THD	Total Harmonic Distortion
I	UART	Universal Asynchronous Receiver Transmitter
I	UPS	Uninterruptible Power Supply
,	VSI	Voltage Source Inverter
OTH	temis	protected

Х

Dedicated to my mom

Pembangunan Penyongsang Berasaskan Mikropengawal untuk Aplikasi Fotovoltan

Abstrak

Dibentangkan dalam tesis ini, pembangunan sebuah penyongsang berasaskan mikropengawal untuk sistem fotovoltan. Sebuah mikropengawal 8-bit tunggal telah digunakan untuk menghasilkan dedenyut pensuisan untuk kedua-dua tahap di dalam penyongsang tersebut, yang merupakan penukar dc-dc dan penyongsang dc-ac. Suatu algoritma yang sederhana, berkesan, dan sesuai dilaksanakan dalam satu mikropengawal 8051 telah dibangunkan, mengawal tahap kuasa penyongsang itu. Strategi pensuisan untuk PWM dan SPWM diperincikan, manakala lebar dedenyut pensuisan untuk PWM dan SPWM ditentuukur lalu dibentangkan. Sebuah penyongsang berkapasiti 500W telah dibina, menguji dedenyut pensuisan yang dihasilkan mikropengawal. Alatubah berfrekuensi tinggi jenis satah telah digunakan untuk menaikkan voltan masukan ke tahap yang diperlukan penyongsang, juga bertujuan mengasingkan, dan menangani kerumitan menghasilkan alatubah konvensional buatan tangan. Experimen ini dijalankan didalam persekitaran makmal dimana voltan masukan penyongsang ialah daripada bekalan kuasa DC dan beban penyongsang ialah rintangan tulin. Analisis prestasi prototaip mendapati hasil yang serupa dengan pengiraan. Prototaip penyongsang menunjukkan prestasi yang baik, dapat menghasilkan voltan keluaran yang stabil pada 240V 50Hz, dapat menangani beban sehingga 500W, dan THD yang rendah.

Development of A Microcontroller-based Inverter for Photovoltaic Application

Abstract

Presented in this thesis is the development of a microcontroller-based inverter for photovoltaic systems. A single 8-bit microcontroller generated switching pulses for both stages of the inverter's dc-dc converter and dc-ac inverter. A simple, effective algorithm suitable for implementation in a single 8051 microcontroller was developed, for control of the inverter's power stage. The thesis explained details on the PWM and the SPWM switching strategies including calculation to presents their switching pulse widths. An inverter of 500W capacity was built to test the switching pulse generated by the microcontroller. A high frequency (HF) planar transformer raised input voltage to the inverter's required level and provided isolation and solving difficulties in producing a handmade conventional HF transformer. The experiment were conducted in laboratory environment, where input voltage was taken from DC power supply and the inverter load was purely resistive. The prototype inverter performed well that able to produce a stable 240V output voltage at 50Hz, able to handle loads up to 500W, and had a low THD.

Chapter 1

Introduction

1.1 Background

ted by original convincent Growing demand for energy has led to depletion of fossil fuels and increase in their prices, creating a need to develop other energy sources. Popular options for energy sources are bio-fuel, fuel cell, hydropower, wind, and solar cell (Tromly, 2006). Among them, photovoltaic-generated solar energy offers the best return on investment and sustainability, as it is inexhaustible and environment friendly.

A main limit of photovoltaic electricity is its low voltage, which must be increased to suitable levels by a converter before being sent to a DC-AC inverter.

Inverter is power converter's most widespread use, converting to AC voltage suitable for home appliances and a DC power supply is usually generated by a renewable energy source.

Sinusoidal pulse width modulation (SPWM) switching technique has become the most popular switching technique for many years which effectively used for the inverter.

SPWM signal generation traditionally uses pure analog component. The generation is via comparison between triangular carrier-signal waveform and sinusoidal signal waveforms. Rapid development in computing technology has made digital implementation of SPWM signal generation becomes more practical. Digital control is advantages over analog control as its design is more flexible.

The method proposed for this research is the replacement of conventional analog controls with an 8-bit microcontroller through which the control algorithm can be more flexibly modified without any changes to the hardware. It reduces the number of components used, so the circuit is more compact and more cost-effective.

1.2 Thesis Objective

This research aims mainly to design and develop a two-stage inverter controlled by the switching signals produced by an 8-bit microcontroller. Its main objectives are:

1. To design and develop a single-phase bridge inverter with gate driver.

2. To design and develop a PWM based microcontroller system that used to control the operation of the inverter.

1.3 Problem Statement

An inverter's output waveforms should be sinusoidal. Practically, though, it is not, and contains harmonics. This research seeks to limit harmonic content to the 5% range.

Drawback in the line-frequency transformer's weight and size will be overcome by use of a high-frequency (HF) planar transformer.

To meet requirements, a simple effective algorithm suitable for implementation in a single 8-bit microcontroller was developed, to control the inverter's first and second zinal copyrit stages.

1.4 **Scope of Work**

Up first was the inverter's design methodology, discovering circuit characteristics and investigating strategies and control methods that, based on theory and literature reviews, have potential to improve the inverter's performance. Up next was simulation of the circuit, done on PESIM software.

Calculations and simulation based the switching pulses' design and development. Simulation and calculation data were then compared to verify the circuit's effectiveness. Laboratory experiments validated the circuit. Switching techniques were then recommended.

Thesis Outline 1.5

The thesis contains seven chapters. The first introduces it generally, including defining the problem, stating the problem, and stating objectives.

In Chapter 2, a brief introduction over-viewing power-inverter circuit topologies, and switching and modulation strategies. Inverter topologies such as half-bridge and fullbridge were described along with their advantages and disadvantages. Suitability of an inverter topology depends on its application and on its dc-source characteristics. Inverter with push-pull topology as front-end dc-dc converter, full-bridge inverter as back-end dc-ac inverter, was found the most appropriate, as among others it needed the fewest components.

Chapter 3's discussion was divided into two main sections, one for the dc-dc converter stage, and another for the dc-ac inverter stage, both including their operating principles. PWM and SPWM switching strategies were detailed, and their switching pulse widths calculated and presented.

Chapter 4 described the prototype inverter's hardware development. A microcontroller was developed, and served as the prototype's main control circuit. Hardware control circuit was thus reduced. Use of planar transformer in this project solved the problem of difficult production of handmade conventional HF transformer. Flux imbalance problem was solved via use of the planar transformer.

Chapter 5 explained the software development. Switching pulses for PWM1, PWM2, SPWM1, and SPWM2 were generated by a single DS89c420 microcontroller board. Use of the microcontroller eased modification of the amplitude modulation ratio and the duty cycle, via software firmware updates.

Chapter 6 set out the results for simulations and experiments. Performance analysis of the prototype found the results to be similar to those calculated. The inverter prototype performed well and was able to produce a stable 240V 50Hz output voltage, could handle loads up to 500W, and had low THD.

The conclusion has been made in Chapter 7 where they discussed the summary of the study with research contributions. Suggestions for Further Work will also be discussed with the proposed use of the load RL and by making both stages on the inverter work in the closed-loop system.

Chapter 2

Review of the Inverter Topologies and their Switching Techniques redby ories

Introduction 2.1

This chapter describes topologies and switching strategies, including PWM switching technique for single-phase inverters and types of PWM switching strategies in inverter circuits

Overview of Inverter Topologies

Inverters can be broadly divided into two types: single-phase, and three-phase. Inverters with constant input voltage are called voltage-source inverter (VSI), and inverters with constant input current are called current source inverter (CSI) (Rashid, 2004). All the inverters can be operated by controlled turn-on and turn-off semiconductor devices such as BJT, MOSFET, IGBT, MCT, SIT, and GTO.

There are two common inverter topologies used in single-phase or three-phase ac systems. Figure 2.1 shows one, the half-bridge topology, which consists of two semiconductor switches S1 and S2 and whose logic-circuit design should be such that S1 and S2 are not turned on simultaneously; when only S1 is ON, load voltage is half the inputvoltage amplitude *Vdc/2*, when only S2 is ON, -*Vdc/2* appears across load. This inverter needs a center-tapped DC source, or it can be simplified by use of well-matched series capacitors providing the center tap. Another topology is the full-bridge inverter, comprising four semiconductor switches. Figure 2.2 shows it with its two inverter legs.

Figure 2.1: Half-bridge configuration

For each leg and to avoid shoot-through, the top and the bottom switches cannot be turned on simultaneously. When switches S1 and S2 are turned on simultaneously, input voltage appears across load. If switches S3 and S4 are turned on simultaneously, voltage across load reverses. Figures 2.3 and 2.4 respectively show output voltage waveforms for half-bridge and full-bridge single-phase inverters.

Figure 2.3: The output waveform of half-bridge configuration

Figure 2.4: The output waveform of full-bridge configuration

2.2.1 Conventional Single-stage Inverter Topologies

Figure 2.5 shows a simple conventional inverter that has found wide use in dc-ac applications such as uninterruptible power supply (UPS) and variable-speed ac motor speed drives (Ismail et al., 2006). Its circuit topology is simple, its performance is good, and it is highly reliable. The circuit consists of power switches, line transformer, and low-pass filter. Step-up line transformer boosts the inverter's output voltage. Line transformer, however, has drawbacks of weight and size (Xue et al., 2004).

Recent years have seen research being devoted to either avoiding use of the transformer or replacing it by a high-frequency (HF) transformer. Increased operating frequency reduces transformer size. With a high-frequency operation, the desired output waveform can be obtained via use of output filter, whose size is greatly reduced. As regards cost and efficiency, various topologies have been proposed (Xue et al., 2004), for power conversions that use high-frequency switching technologies.

Figure 2.5: A conventional inverter circuit configuration

2.2.2 Two-stage Inverter Topology

The first stage is known also as a front-end converter, a dc-dc converter. It boosts to higher voltage levels, the dc voltage from a low-dc source such as photovoltaic, fuel cell, and battery, via use of HF transformer. Generally, a dc-dc converter either has, or does not have, galvanic isolation between incoming supply circuit and output circuit.

Various de-de-converter topologies have been proposed by researchers. Xue et al. (2004) introduced a de-de multilevel boost converter (MBC), which is a PWM-based dede converter that uses multilevel-converter principle: each device blocks only one voltage level, achieving high voltage via low-voltage devices. Changehien et al. (2010) proposed a converter that uses a multi-winding coupled inductor and a voltage doubler to achieve high stepped-up voltage gain.

Park et al. (2007) discussed step-up dc-dc converter with resonant voltage doubler which combines an active-clamp circuit and a resonant voltage doubler across a power transformer. Kim and Kwon (2009) discussed high step-up resonant push-pull converter.