OPTIMIZATION OF BIOGAS AS RENEWABLE ENERGY FROM CLOSED ANAEROBIC DIGESTION BIOMASS FOR PALM OIL MILL EFFLUENT AT MESOPHILIC TEMPERATURE

SCHOOL OF ENVIRONMENTAL ENGINEERING UNIVERSITI MALAYSIA PERLIS 2010

OPTIMIZATION OF BIOGAS AS RENEWABLE ENERGY FROM CLOSED ANAEROBIC AL CTEN Contribution of the state of the sta **DIGESTION BIOMASS FOR PALM OIL MILL EFFLUENT AT MESOPHILIC TEMPERATURE**

Report submitted in partial fulfillment

MARCH 2007

ACKNOWLEDGEMENT

This work was carried out at School of Environmental Engineering of University Malaysia Perlis (UniMAP). It has been a great pleasure to have a supervisor to guide me throughout my research project. I would like to express my deepest appreciation and gratitude to my supervisor, Mr. Wong Yee Shian for his invaluable encouragement, support, guidance, patience, advice and assistance in the conduct of this research project.

I would also like to express my sincere gratitude to the Dean of school of environmental engineering for the support and research facilities available in the school.

I am grateful to staff and technicians of the school for being helpful and thoughtful. Heartiest gratitude is also addressed to security guards in the school for their help and encouragement during the conduct of this research. Apart from that, I would like to express special thanks to MALPOM Industries SDN BHD for allowing me to collect the POME wastewater.

Besides, I would like to thank my team mate, Mr. Lim Kok Keat for his willingness to share their knowledge and wisdom. My deepest appreciation to my coursemates and friends for their invaluable encouragement and support throughout this research.

Last but not least, my heartiness gratitude to my beloved family for their continuous support, blessing and encouragement to make this research project a successful one. Without you all, who am I today? Thank you very much.

APPROVAL AND DECLARATION SHEET

This project report titled Optimization Of Biogas As Renewable Energy From Closed Anaerobic Digestion Biomass For Palm Oil Mill Effluent At Mesophilic Temperature was prepared and submitted by Lee Hong Chen (Matrix Number: 061130244) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the Bachelor of Engineering (Environmental Engineering) in University Malaysia Perlis (UniMAP).

Cuthis tomis protect (WONG YEE SHIAN) **Project Supervisor**

Checked and Approved by

School of Environmental Engineering University Malaysia Perlis

April 2010

PENGOPTIMUMAN BIOGAS SEBAGAI TENAGA BOLEH DIPERBAHARUI DARIPADA PROSES ANAEROBIK TERTUTUP UNTUK AIR SISA KILANG MINYAK SAWIT PADA SUHU MESOFILI

ABSTRAK

copyright

Air sisa kilang kelapa sawit ialah satu air buangan yang mencemarkan persekitaran jika dilepaskan secara langsung kerana mengandungi keperluan oksigen kimia (COD) dan keperluan oksigen biologi (BOD) yang tinggi. Selain itu, pembebasan gas rumah hijau secara antropologi, terutama karbon dioksida (CO₂) dan metana (CH₄) dari proses anaerobic untuk air sisa kilang minyak sawit telah dianggap sebagai salah satu faktor yang penting kepada pemanasan global. Oleh itu, kajian ini bertujuan bagi membincangkan tahap kecekapan penyingkiran COD, prestasi asid lemak meruap (VFA) dan kecekapan pengeluaran biogas dalam reaktor anaerobik tertutup untuk rawatan air sisa kilang kelapa sawit. Operasi kajian ini telah dilakukan dalam satu siri eksperimen dengan menggunakan pelbagai jenis aliran air sisa kilang kelapa sawit yang terdiri daripada 375 ml/d [ujikaji 1], 450 ml/d [ujikaji 2], 560 ml/d [ujikaji 3], 750 ml/d [ujikaji 4], 1125 ml/d [ujikaji 5] dan 2250 ml/d [ujikaji 6] bersesuaian dengan masa tahanan hidraul (HRT) dengan 12, 10, 8, 6, 4 dan 2 hari. Tempoh percubaan menjalankan ujikaji 1, 2, 3, 4, 5 dan 6 adalah 27, 15, 11, \Im 8, 14 dan 14 hari. Keputusan dari eksperimen ini menunjukkan bahawa kecekapan penyingkiran COD and kadar pengeluaran biogas berkurangan dari 87.08 % ke 38.20 % and dari 3000 ml biogas/hari ke 604 ml biogas/hari apabila HRT berkurangan. Dalam pada masa itu, kepekatan VFA bertambah dari 11569.71 mg CH₃COOH/L ke 16956.00 mg CH₃COOH/L apabila HRT berkurangan. Selain itu, kandungan CH₄ dan pecahan CH₄:CO₂ telah berkurangan dari 24.05 % ke 10.64 % dan dari 0.76 ke 0.27 apabila HRT berkurangan manakala kandungan CO₂ dan H₂ telah bertambah dari 31.45 % ke 39.63 % dan dari 4.35%

ke 8.15 %, apabila HRT berkurangan. Situasi ini berpunca daripada variasi HRT yang menjejaskan kestabilan sistem.

onthis item is protected by original convited the

OPTIMIZATION OF BIOGAS AS RENEWABLE ENERGY FROM CLOSED ANAEROBIC DIGESTION BIOMASS FOR PALM OIL MILL EFFLUENT AT MESOPHILIC TEMPERATURE

ABSTRACT

copyright

Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. In addition, anthropogenic release of greenhouse gases, especially carbon dioxide (CO₂) and methane (CH₄) from POME anaerobic degradation process has been recognized as one of the main causes of global warming. Thus, this study aims to discuss the COD removal efficiency, behavior of volatile fatty acid (VFA) and efficiency of biogas production in the suspended closed anaerobic reactor (SCAR) for the treatment of POME wastewater. The operation of this research study was performed by a series of continuous experiments using feed flow-rates of 375 ml/d [run 1], 450 ml/d [run 2], 560 ml/d [run 3], 750 ml/d [run 4], 1125 ml/d [run 5] and 2250 ml/d [run 6] of the wastewater, which correspond to hydraulic retention time (HRTs) of 12, 10, 8, 6, 4 and 2 days, respectively. The duration of the experimental runs 1, 2, 3, 4, 5 and 6 was 27, 15, 11, 18, 14 and 14 days, respectively. The results indicated that the COD removal efficiency and the biogas production rates decreased from 87.08 % to 38.20 % and from 3000 ml biogas/day to 604 ml biogas/day, respectively as HRT decreased. Meantime, the VFA concentration increased from 11569.71 mg CH₃COOH/L to 16956.00 mg CH₃COOH/L with a decrease in HRT. Moreover, the methane content and the CH₄: CO₂ fraction decreased from 24.05 % to 10.64 % and from 0.76 to 0.27, respectively with a decrease in HRT whereas the carbon dioxide and hydrogen contents were increased from 31.45 % to 39.63 % and from 4.35 % to 8.15 %, respectively, with a decrease in HRT. These were attributed to variation of HRT that affects the system stability.

TABLE OF CONTENTS

ALL O	Page
ACKNOWLEDGMENT	i
APPROVAL AND DECLARATION SHEET	ii
ABSTRAK	iii
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS	xiii
15 01-	

CHAPTER 1 INTRODUCTION

Introduction	1
Statement of Problems	4
Objectives of the Study	6
Scope of the Study	6
Organization of the Thesis	7
	Statement of Problems Objectives of the Study Scope of the Study

CHAPTER 2 LITERATURE REVIEW

2.1	Palm (Dil Industry in Malaysia	9
	2.1.1	History and Development of Palm Oil Industry	9
	2.1.2	Palm Oil Production Processes	9

	2.1.3	Palm (Oil Mill Effluent (POME)	10
2.2	Palm	n Oil Mill Effluent Treatment		
2.3	Anaer	obic Dig	gestion Processes	12
	2.3.1	Hydro	lysis and Fermentation (or Acidogenesis)	12
	2.3.2	Syntro	phic Acetogenesis	14
	2.3.3	Metha	nogenesis	15
2.4	Acclir	natizatio	nogenesis on Phase of Anaerobic Digester encing Anaerobic Digester Performance	16
2.5	Factor	s Influe	ncing Anaerobic Digester Performance	16
		2.5.1	Effect of pH	16
		2.5.2	Effect of Operating Temperature	17
		2.5.3	Effect of Nutrient for Bacteria	18
		2.5.4	Effect of Food to Microorganism Ratio	18
		2.5.5	Effect of Toxic Materia	19
		2.5.6	Effect of Solids and Hydraulic Retention Times	20
		2.5.7	Effect of Organic Loading Rates	20
2.6	Bioga	S		21
	2.6.1	Carbo	n Dioxide (CO_2)	22
	2.6.2	Hydro	gen (H ₂)	22
	2.6.3	Metha	ne (CH ₄)	23
	. (2.4.3.1	Methane Yield (Y _{CH4})	23
2.7	Volati	le Fatty	Acid of POME	25

CHAPTER 3 METHODOLOGY

3.1	Waste	water Source	27
	3.1.1	Collection and Characterization of Wastewater	27
3.2	Experimental Set-up		28
	3.2.1	Suspended Closed Anaerobic Reactor (SCAR) Configuration	28
	3.2.2	Gas Collection System	28
	3.2.3	SCAR Sampling Procedure	30
		3.2.3.1 POME Wastewaters Sampling	30

	3.2.3.2 Biogas Sampling and Biogas Volume Measurement	30
3.3	SCAR Operation	31
	3.3.1 Acclimatization of SCAR	31
	3.3.2 Operation Procedures	31
3.4	Analysis of Sample	32

CHAPTER 4 RESULTS AND DISCUSSION

		4 RESULTS AND DISCUSSION Oil Mill Effluent (POME) Characteristics	
СНА	PTER 4	4 RESULTS AND DISCUSSION	
4.1	Palm	Oil Mill Effluent (POME) Characteristics	33
4.2	Acclin	matization Phase of SCAR	34
	4.2.1	pH Variation during the Acclimation Process of SCAR	34
	4.2.2	Microbial Growth Variations during Acclimation Process of SCAR	35
	4.2.3	COD Variations during Acclimation Process of SCAR	37
	4.2.4	Volatile Fatty Acid (VFA) and Alkalinity (Alk) Variations during	39
		Acclimation Process	
	4.2.5	Biogas Production Rate Variations during Acclimation Process	40
	4.2.6	Biogas Contents Variations during Acclimation Process	41
4.3	Opera	tion Characteristics of SCAR at Different Hydraulic Retention	43
	Times	s (HRTs).	
	4.3.1	Variation in COD Removal Efficiency of SCAR at Different	46
	· ~	Hydraulic Retention Times	
	4.3.2	Variation in Volatile Fatty Acid (VFA) of SCAR at	49
		Different Hydraulic Retention Times	
\bigcirc	4.3.3	Variation in Biogas Production Rate of SCAR at Different	51
		Hydraulic Retention Times	
	4.3.3	Variation in Biogas Composition of SCAR at Different	54
		Hydraulic Retention Times	

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusions	58

viii

REFERENCES

61

59

	X
APPENDICES	69
Appendix A	69
Appendix B	70
Appendix C	71
Appendix D	72
Appendix E	73
Appendix F	74
APPENDICES Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix I Appendix I Appendix J Appendix L Appendix K Appendix N	75
Appendix H	76
Appendix I	77
Appendix J	79
Appendix K	80
Appendix L	81
Appendix M	83
Appendix	84
Appendix O	85
Appendix P	86
CAppendix Q	88
Appendix R	90

LIST OF TABLES

VILE	Page
Thermodynamics of some of the reactions involved in syntrophic conversions during methanogenic decomposition.	14
Characteristics of palm oil mill effluent (POME).	33
Steady state operating characteristics of SCAR at the different HRTs.	44
Performance of various anaerobic treatment methods on POME treatment.	45
	 conversions during methanogenic decomposition. Characteristics of palm oil mill effluent (POME). Steady state operating characteristics of SCAR at the different HRTs. Performance of various anaerobic treatment methods on POME treatment.

LIST OF FIGURES

	opyright	Page
3.1	The experimental set-up.	29
4.1	pH variation of suspended closed anaerobic reactor (SCAR) during the acclimation phase	34
4.2	Microbial growth of the SCAR during acclimation process.	35
4.3	COD concentration of effluent and removal efficiency of SCAR during acclimation process.	37
4.4	Volatile fatty acid (VFA) and Alkalinity (Alk) of SCAR during acclimation process.	39
4.5	Biogas production rate of SCAR during acclimation process.	40
4.6	Biogas composition of SCAR during acclimation process.	41
4.7	Variation in COD removal efficiency of SCAR on various hydraulic retention times.	46
4.8	Variation in volatile fatty acid (VFA) of SCAR on various hydraulic retention times.	49
4.9	Variation in biogas production rate of SCAR on various hydraulic retention times.	51
4.10	Variation in biogas composition of SCAR on various hydraulic retention times.	54

LIST OF SYMBOLS

Food to Microorganism Ratio
Gibbs Free Energy Values
Feed Flowrate
Substrate Concentration at the Digester Effluent
Substrate Concentration at the Digester Inlet
Volume of Methane Produced Per Day
Methane Yield
Carbon
Methane
Carbon Dioxide
Hydrogen
Hydrogen Sulphide
Water
Nitrogen
Ammonia Nitrogen
Sodium Oxide
Nitrogen Gas
Ammonia
Oxygen
Phosphate
Sulfur dioxide

LIST OF ABBREVIATIONS

	Alkalinity
Alk	Alkalinity
APHA	American Public Health and Association
BOD	Biochemical Oxygen Demand
COD	Chemical Oxygen Demand
СРО	American Public Health and Association Biochemical Oxygen Demand Chemical Oxygen Demand Crude Palm Oil
CSTR	Continuous Stirred Tank Reactor
EQA	Environmental Quality Act
FFB	Fresh Fruit Bunches
GHG	Green House Gases
HDPE	High Density Propylene
HRT	Hydraulic Retention Time
LCFA	Long Chain Fatty Acid
MLSS	Mixed Liquid Suspended Solid
MLVSS	Mixed Liquid Volatile Suspended Solid
0&G	Oil and Grease
OLR	Organic Loading Rate
POME	Palm Oil Mill Effluent
SCAR	Suspended Closed Anaerobic Reactor
SCOD	Soluble Chemical Oxygen Demand
SRT	Solid Retention Time
SS	Suspended Solid
TS	Total Solid
TVS	Total Volatile Solid
UASB	Up-flow Anaerobic Sludge Blanket

- UASFF Up-flow Anaerobic Sludge Fixed-film
- VFA Volatile Fatty acid
- VSS Volatile Suspended Solid

o this term is protected by original convitability