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Introduction
In tall buildings, shear walls are used as
the elements to resist lateral loads, such
as wind loads or loads due to
earthquakes. They are usually located at
the sides of the building. A coupled shear
wall is a shear wall that has one or
multiple rows of openings. Encased in
the openings are doors or windows. The
combination of coupled walls and shear
walls is termed as ‘equivalent coupled
shear walls’ in this article. Typically, an
assembly of equivalent coupled shear
walls and moment resisting frames
constitutes of a reinforced concrete tall
building.

Given the importance of equivalent
coupled shear walls in the construction
of tall buildings, it is no surprise that its
behaviour is studied exhaustively by
engineers and scientists. A variety of
experimental, theoretical and numerical
techniques were employed in the past in
order to understand the response of
coupled shear walls under realistic loads.
This article introduces an analytical
model called continuum method that can
be used in the preliminary analysis of
equivalent coupled shear walls. 

Some popular methods used in the
analysis of coupled shear walls

1. Finite Element method

This is the most versatile and powerful
method in structural analysis. A coupled
shear wall is often modeled as a number
of finite elements. Plane stress elements
are used for walls, frame elements for
the coupling beams and plate elements
for the floor slabs [1]. The benefits of this
method are that it is applicable to any
geometrical arrangement of the
openings and any shear wall shape. The
drawback is that for high-rise building,
a large number of elements have to be
generated and this requires efficient
meshing techniques. Besides that, the
processing of individual elements and
assembling them cost a significant
amount of computer time. This method
is unsuitable for hand or spreadsheet
calculations.

2. Continuum Method

This is an approximate method that
analyses the shear wall as a whole. This
method enables one to derive the
physical quantities of interest in
analytical form, and thus its solution is
readily attainable by hands. We shall see
more of this in the next section.

The modeling of coupled shear
wall using continuum method
Figure 1 shows a view of a coupled shear
wall with openings. The idea of the
continuum method is to replace the
discrete connecting beams with a
continuous lamina that has an equivalent
bending and shear properties. With this,
two differential equations can be derived
[3]:
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For other nomenclatures, please refer to
the Appendix 1.

The equivalent coupled walls and
shear walls
In reality, coupled shear wall rarely exists
alone. Building normally consists of
several coupled walls and shear walls. To
apply the above formulation to an
equivalent coupled shear walls system,
one replaces I, A, λ, α and β in the above
equations with It, At, λt, αt and βt, that are

defined by [4]:

It = I + Iw (10)

Itλ t = λ –––
I (11)

λ (1+λt)α t
2 = α 2 ––––––– (12)

λt(1+λ)

Iβ t = β –––
It (13)

Axial load, displacement in
coupled walls and moment in
beams
The solution for axial load and
displacement can be determined from the
above differential equations (1) and  (2)
subjected to the boundary conditions
(3) – (6). For uniformly distributed load
(UDL) and triangularly distributed load
(TDL), the solutions are given in
Appendix 2. Shear forces and moment in
beam are also given.

Figure 1: A side view of a coupled shear wall with
multiple openings
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Example:
Two 20-storey building models are
constructed. One with the floor view as
shown in figure 3. Another is similar to
the first one, except that it has 4 openings
(dimension 2mX0.3m) around the 2
coupled walls. Figure 2 shows a coupled
wall view with a door of the dimension
2X3.15m. A lateral load of 120kN/m is
applied along the height of the structure.
The result for continuum method is
checked against the finite element
method (FEM). Some important
parameters are calculated as below: 

E = 26kN/mm2

Coupled wall characteristics:

A1 = 0.3*3 = 0.9m2

A2 = 0.3* 2 = 0.6m2

I1 = 0.3*33/12 = 0.675m4

I2 = 0.3*23/12 = 0.2m4

I = (0.675 + 0.2)*2 = 1.75m4

Ibeam = 0.3*0.63/12 = 0.0054m4

L = (2+3)/2+2 = 4.5m

Shear wall and lift core moment inertia:

Isw = 0.3*53/12 = 3.125m4

Ilc = (3.34 – 2.74)/12 = 5.454m4

Equivalent coupled shear wall:

1.75*(0.9 + 0.6)*2
λ = –––––––––––––––– = 0.12

4.52*2*0.9*2*0.6

12*2*0.0054*4.52*1.12
α 2 = –––––––––––––––––– = 0.056

1.75*3.75*23

β = 0.056/4.5/1.12 = 0.011

It = 1.75+2*3.125+5.454 = 13.454m4

λ t = λ*13.454/1.75 = 0.923

α 2*0.12*(1.923)
α t

2 = ––––––––––––– = 0.0125
0.923*(1.12)

β t = 0.011*1.75/13.454 = 0.00145

Using the above parameters, the
deflection and the axial load of the
coupled wall are generated as shown in
Figure 4. It is clear that the agreement
between continuum method and the
finite element method is excellent. Figure
6 plots the shear force and bending
moment reaction in the beam with
respect to the storey of the building.

Maximum shear force in beam occurs
at the 5th floor, approximately 1/4 of the

height of the building. The continuum

method predicts that the moment should
be the same regardless of the
configuration of the diaphragm.
However, according to FEM method,
openings around the coupled wall could
change the bending moment in beam
considerably.  The existence of a
diaphragm between 2 walls causes the
moment in the beam to be redistributed
to the diaphragm. But openings around
the coupled wall reduce this effect. It is
clear that continuum method cannot be
used to predict the bending moment in
beam, since it does not take the
diaphragm effect into account. 

Figure 5 shows how the moment in
the wall changes with respect to the
number of storey. It can be seen that FEM
method consistently predicted higher
moment compared to the theoretical
values. The difference is about 15% and it
is postulated that this discrepancy is due
to the diaphragm effect. Further
investigation may be warranted.

Conclusion
The methods used for the analysis of
equivalent coupled shear wall are
introduced. The continuum method is
shown to be capable of calculating the
displacement of the walls. (A simple
program for this can be obtained at no

Figure 2: A view of a coupled wall in the
structure. The door is in purple

Figure 3: A view of a floor in the structure. Shear
walls are labeled as purple, coupled shear walls
are in blue, diaphragm in green and lift core in
yellow. Void is left as white

Figure 4: Displacement of the coupled wall
vs. storey

Figure 5: moment in the coupled walls 
vs. storey
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charge from the author, email
soonhui@esteemsoft.com). An example is
presented to demonstrate the accuracy of
continuum method compared to the
more exact, but time-consuming finite

element method. It is found that
continuum method does not include
diaphragm effect, and this omission may
render the calculation of the moment in

beam and in the wall less accurate. �

Figure 6:  Shear force and bending moment in beam vs. storey

T0 βWH4 βPH 4/2

r0 –1/(αH)4 – 2/(αH)4

r1 0 2/(αH)4

r2 –1/(2(αH)2) – 1/(αH)2

r3 0 1/(3(αH)2)

Weff W P(1-x/(3H))

r4 r1+2r2+3r3

(r0 sinh(αH) – ––––––––––– )
αH

cosh(αH)

T(x) T0[r0(1 – cosh(αx)) + r4 sinh(αx) + r1x/H+r2(x/H)
2
+r3(x/H)

3
]

Qbeam hT0 {(aH)[r4 cosh(αHz) – r0 sinh(αHz)] + r1+2r2z+3r3z2}/H

Mbeam Qc b/2

M1,2(x) I1,2(Weffx2/2–T(x)L)
–––––––––––––––––

I

Appendix 2:

Table 1: Equations for axial force and moments in the walls and in beams

Uniform Distributed load Triangularly distributed load
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Appendix 1:
A1,2 Cross sectional area of the walls

A A1 + A2

b Coupling beam length

E Elastic modulus

I1,2 Moment of inertia in the
coupled
wall

ncwall Total number of coupled wall

I (I1+I2)*ncwall

Iw The equivalent moment of
inertia in the shear walls and
the lift cores

M Applied moment
P The maximum intensity of the

applied triangularly distributed
load

W The intensity of the Uniformly
distributed load

Qbeam Axial force in the coupling
beam

T Axial force in the wall

Mbeam Moment of the coupling beam
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y0 WH
4

/(EI) PH
4

/(2EI)

N5 0 – λ
[60(1+λ)]

N4 λ –5Ν5

[24(1+λ)]

N3 0 (1-12Ν4)
[3(αH)

2
]

N2 –(1-24N4) –3Ν3

[2(αH)2]

N1 –2Ν2 (1+2N2 – 12Ν4)
(αH)2

B1 –2Ν 2

(αH)2

B2 Ν 1[––––––– – B1 sinh (αH)]
αH

cosh(αH)

C1 – (N1 + 2N2 + 3N3 + 4N4 + 5N5)

C0 – [(c1 + N2 + N3 + N4 + N5 + B1 cosh(αH) + B2 sinh(αH)]

y(x) y0 [B1 cosh(αx) + B2 sinh(αx) + C0 + C1 x/H + N2 (x/H)
2

+ N3 (x/H)
3 + N4 (x/H)

4 + N5 (x/H)
5
]

Table 2: Equations for displacements in the wall

Uniform Distributed load Triangularly distributed load
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