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ABSTRACT
This paper describes the approximation of discrete data using splines. The approximation method is adapted from the

Chebyshev approximation. The procedures to find a set of extreme points for incoming discrete data are proposed. Several

algorithms using cubic spline and Lagrange polynomial are proposed to diffrentiate the results due to the number of iteration,

total number of the set of extreme points and error generated. The results show that the error generated decreases as the total

number of extreme points increase. Six extreme points can represent one hundred of points and the generated error can be

decreased. However, the algorithm presented uses more number of extreme points and will cause an increase in the total

number of iterations.

Keywords : Chebyshev Approximation, Extreme Points, Lagrange, Splines   

1  INTRODUCTION
Many engineering applications involve signal processing

when analysing the incoming discrete data such as in the

robotics motion design and speech waveform data. The

resulting motion or moving frames of the robot can be

represented by splines. The unimportant or non-critical data

movement can be reduced or approximated to reduce memory

space. The model of a frame of speech data can also be

achieved using splines. The speech model involves data that is

determined by their frequencies. The high peaks of the

frequencies become the critical data and should be considered

in the approximation.

The approximation of data is related to data compression.

In data compression, Chebyshev approximation has a close

relation with common interpolation methods such as spline [1].

The Chebyshev approximation of spline is a good solution to

approximate the incoming data.

Spline is the most significant method that is applied into the

approximation concept and numerical analysis. Splines have

good computational properties such as compact representation

and computational stability. For example, data collected by

sensor readings or non polynomial discrete functions which

require curve fitting need to be approximated or interpolated by

splines to be analysed for further studies. In general, curve

fitting problems occur in signal processing, graphics, statistical

analysis and in geometric modeling. Data compression needs

the extreme points that can control the approximation function

to perform a similar approximate data according to actual data.

The reader can refer to papers which examined the capabilities

of spline approximation in the representation of speech spectra

[2], image interpolation [3], [4], hysterisis loops [5] and

scattered data [6].

Splines have the most attractive properties [7] because splines

can be divided into several segments which can prevent the

function from oscillating too far from the reference axis. Another

important consideration is that such representations are more

numerically stable and usually computational. Nevertheless, using

splines as the method in Chebyshev approximation will affect the

non-linear approximation system [1]. The approximation will be 

more complicated and complex. Therefore, it is important to

analyse the characteristics of approximation functions in order to

have the best approximation of data.

Interpolation and approximation are two different concepts

of analysis when analysing incoming data. The interpolation

function should pass the exact values of the discrete function.

Diversely, approximation conveys a simpler function with less

number of data to express the entire set of real data. Thus, the

approximation creates error that differentiates the correct data

from the approximation data. Error has to be measured for the

determination of appropriate approximation [8].

2  REVIEW OF PREVIOUS WORKS
Curve fitting can be used on many applications to refer to

the behaviour of data [9], [6], [10]. The effectiveness of the

approximation function is determined by the minimum number

of knots which describes the behavior of data and present less

error between real data and approximation data. These knots are

the extreme points which can control the approximation

function to perform a similar approximate data according to

actual data.

Many different data fitting algorithms have been developed

to satisfy the criteria needs for an approximation function.

Haruki and Horiuchi [4] applied data fitting by the spline

function which uses the least square approximation.

Then, computing quantities and errors are examined and the

effectiveness and the potential of their approaches are

described. This includes the methods that sequentially removes

knots and is known as data reduction. The knot will be removed

eventually until the approximate function can tolerate between

the number of knots presenting the data and error generated.

Kitson [11] evaluated a new technique used in geometric

modeling with classical signal processing perspective. The

volume of data for high accuracy linear approximate is

overwhelming and needs an efficient interpolation/reduction

algorithm. His approach introduced three steps of data reduction

strategy including Rank, Remove and Approximate. Rank is

used to determine an order of knot removal where Remove
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determines the number of knots to actually remove.

Approximate then computes an approximation that is usually

calculated in least square sense.

Competing algorithms start with essentially no knots and

build up the approximating function by adding a knot. Park [1]

modified the equation used by Parks arid McClellan [12] on

designing digital filter using Chebyshev approximation. The

algorithms using polynomial approximation and Chebyshev of

free knot polynomial spline is being developed and the

comparison of using both methods is demonstrated using FIR

filter implementation.

This paper will focus on the initialisation of several number

of knots and the algorithm will iterate until the best set of knots is

acquired which represents a set of data known as extreme points.

The error generated will be analysed to determine how good the

algorithms approximated the real data. The discussion is

extended by showing the relation between the total numbers of

extreme points and total iteration that is needed for convergence.

3  BACKGROUND THEORY
3.1 Chebyshev Approximation

Assuming the incoming data is in discrete domain and

given f[n] is defined as real data, g[A,n] is the approximate data

and φ[n] are basis function defined on n = [bs, be]. f[n] can 

be approximated as

(1)

Commonly, the values of the function f[n] are not equal to the

values of the corresponding g[A,n] for every n ε [bs , be], if not

g[A,n] is the identical function f[n] [11]. According to the

aproximation function and real data, the Chebyshev error

norm, is estimated as

(2)

Adapting the Chebyshev approximation method and the

alternation theorem a set of extreme points can be determined.

The error norm is maximum at a set of extreme points.

Therefore, the error is equal at any extreme points. The

algorithms begin by introducing initial discrete extreme points

and try to get the best approximation for those points. The

algorithms iterate until all the parameters of the approximation

function converge. From the best approximation, an error

function between the original points and approximations can

be obtained. Adapting the Chebyshev approximation, the

Chebyshev criteria is satisfied; the mathematical descriptions

of the best solution in approximation are as follows;

1. There are k+1 alternation points (at points when slope is

equal to zero)

bs = n1<n2<...<nk+1 = be

2. For any n ε [bs,be], | f [n] - g[A,n]| < δ

3. | f [ni] - g[A,ni] | = for i = 1,2, ..., k + 1

4. ∆f [n] = ∆g[A,n] only for n = n2, n3, ..., nk

where ni’s are the alternation points and is the estimated optimal

error corresponding to the set of ni’s.

From equation (2) and (3) Park [1] has shown that the matrix

Equation related to the basis function, the errors and the

coefficient of Chebyshev approximation in discrete domain as

below:

The algorithm begins by initialising the set of ni’s. Then the

parameters δ and (a1, a2, · · · , ak) will be estimated using the

above equation. Using a1, a2, . . ., ak, the approximation

function g[A, n] will be generated and a new set of ni’s will be

obtained by checking new alternation of error function. The

iteration continue until the set of ni’s is converged. The

algorithm for the above equation becomes more complicated if

the non-linear method is applied. The error curve interpolates

n+2 points where |E(f)| = |δ| and it may create n+3, n+4, or n+5

extreme points [12]. If the error curve is greater that n+2

extreme points, the set of extreme points can be chosen by the

search procedure.

3.2 Lagrange Interpolation
Lagrange interpolation involves finding a polynomial of

order n that passes through the n+l points. Lagrangian

interpolating polynomial is given by;

(4)

where n in fn(x) stands for the nth order polynomial that

approximates the function y = f(x) given at (n+1) data points as

(x0, y0, x1, y1, . . . , xn-1, yn-1, xn, yn and

(5)

Li (x) is a weighting function that includes a product of (n-1)

terms with terms of j = i omitted.

3.3 Splines
A spline s(x) of order n defined over an interval [xmin, xmax]

is composed of sections of polynomial curves pk(x) of degree n- 1

joined together at k fixed points in the interval. Splines are

good for representing a smooth curve y = s(x) or data generated

from a smooth curve over a fixed interval. Splines are

extremely flexible and can be used to approximate any smooth

curve to a given accuracy by choosing sucient number of knots

or a high enough order (degree) [13]. Thus, splines can be used

to represent very large sets of data. In the splines

approximation, the order of the splines is chosen for further

computation. For a wide set of knots, the fourth order spline

known as cubic spline is the most common choice [14]. The

equation defining a cubic spline can be obtained on each

piecewise interval. Each Pi(x) is in the form of

Pi(x) = c0,i + c1,i(x-xi) + c2,i(x-xi)
2+ c3,i(x-xi)

3 (6)

where c’s are the coecients of the cubic splines on each interval

and xi is the values of x between two intervals. Since spline

present lower order, it has much greater flexibility in fixing the

number and location of the interior. More knots are needed in
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regions where the curve underlying the data is rapidly

changing, fewer knots where the curve is relatively smooth.

Spline is expected to be more flexible and able to follow the

pattern of the data more closely.

3.4 Determining The Extreme Points
The extreme points play an important role to determine the

maximum values. The extreme points are determined by

finding those points when the function changes sign. The start

and end points are always assigned as extreme points. In a

continuous domain, the function changes sign when the

derivative of the function is equal to zero. The second

derivative needs to be less or equal than zero because there is

a possibility that the points is an inflection point. However, in

discrete system there is no derivative concept to determine

extremes at the alternation points. Therefore, the modification

of finding an extreme will be changed [1]. Forward difference

and backward difference have been used in discrete domain to

achieve the same results of extreme points. In discrete domain,

there are possibilities that the points are not co-located because

the extreme points may not be selected during sampling.

However, there are possibilities that the differences are zeros.

When the first differences is zero, the extreme points are

checked whether they are the inflection points or not.

(7)

Discreteness also affects the possible choice of extreme points.

It eliminates the possibility of finding better extreme points

because it is limited to values on the sampling grid. In discrete

system, the values between the grids are ignored, thus creating

bounding errors that effect the approximation as a valid solution.

4  ALGORITHM
This paper developes new algorithms by applying the

simple Chebyshev error norm using Equation (2). Hence, the

matrix derived by Park [1] in Equation (3) is not used. For

several numbers of extreme points, the Equation (3)

approaches ill-condition and becomes an unbalance matrix [1].

Using this new method, the iteration is simpler but there is no

guidance on the total number of extreme points.

This paper proposes the algorithm that consists of two

parts. The first part is to estimate the difference between actual

data and approximate data. The method that is used in this first

part will minimise the difference of data. The second part is to

find an approximation function based on the difference

between actual data and approximate data. This part will

estimate the location of the extreme points according to the

error generated between the actual data and approximate data.

The methods that are used in this second part are very

important to get the best approximation of data. Using

Lagrange polynomial as the approximation method will cause

the set of the extreme points to be unique. This means that the

actual data can be represented by a set of the extreme points.

The error generated also has linear characteristics.

Since spline has non-linear characteristics, the set of

extreme points are not unique. This means that the actual data

can be represented by several approximation functions.

However, each of the approximation function using different

sets of the extreme points will generate different values of

errors. The restriction of the algorithm is the approximation

function of the extreme points and are only defined at given

grids sampling.

A wide area of data is defined on n ε [bs,be]. Figure 1

shows that the Algorithm-1 starts by initialising a set of

extreme points  for i = 2, 3, …, k where the first and the last

extreme points are fixed at  and. Then, the set of extreme

points are approximated by using cubic splines. From

equation (2), an estimated error δ is obtained. Since the

algorithm needs to follow Chebyshev characteristics, the

values of approximated data at the set of extreme points are

corrected by adding and subtracting δ repeatedly. Then, the

new values of the extreme points are approximated using

Lagrange interpolation. From the approximate values of the

Lagrange polynomial, the error function e[n]  between

approximate and real data is obtained. The error function will

follow the distribution of Chebyshev error norm. From the

error function e[n], a new set of extreme points can be

obtained with the rule in the section discussed before. The

algorithm is repeated until the set of extreme points

converged. If the algorithm does not converge, the algorithm

is modified by adding a stopping criteria. The stopping

criterion stops the algorithm if the approximation keep

iterating at the same set of extreme points.

Figure 1: Flow chart of Algorithm-1
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The algorithm is modified by choosing a combination of

cubic splines and Lagrange polynomial to generate the new

algorithms of the approximation data. Figure 2 shows that the

Algorithm-2 uses Lagrange polynomial to estimate the absolute

error d and interpolate the error function. Figure 3 shows that the

Algorithm-3 uses Lagrange polynomial to estimate absolute error

δ and cubic spline to interpolate the error function. Figure 4

shows that the Agorithm-4 uses cubic spline to estimate absolute

error and interpolate the error function. The best approximation

of real data can be achieved by using suitable combi-nation

methods of estimated error d and estimated the set of extreme

points. Different algorithms will result in difference sets of

extreme points and difference in behavior of error function. The

algorithms are implemented using MATLAB v 6.1.

5  RESULT AND DISCUSSION
A non polynomial function f [n] = sin (2π(n-50)/100 is

defined at n=[0, 100]. This function applies to generate a group

of specific data. However, it is also can be applied to generate

data of any type mathematical functions such as trigonometric

and hyperbolic function. Beside all this, it has certain limitation

that must be considered namely, random data. The algorithm

applies the same function and the same number of total initial

extreme points with the algorithm that was developed by Park

[11]. Thus, the results including the set of extreme points and

error generated can be compared for further discussions. The

itera-tion starts with a set of extreme points {0, 10, 20, 30, 40,

100}. The algorithms fix the number of extreme points. The

first and last of the extreme points are the starting and ending

points of the data. For Lagrange interpolation, the error norm isFigure 2: Flow chart of Algorithm-2

FAUZIAHANIM CHE SEMAN, et al.

Figure 3: Flow chart of Algorithm-3 Figure 4: Flow chart of Algorithm-4
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presented in least squared sense. In Algorithm-1 the extreme

points are successfully converged at the 6th iteration at {0, 12,

36, 64, 88, 100}. The overall results are shown in Table 1. It

means that the algorithms generate the best approximation

solution. The maximum error δ is 0.0347. Compared to

algorithms generated by Park [1] this algorithm provides less

iteration hence having smaller error norms. The iterative results

of Chebyshev approximation are shown in Figures 5, 6 and 7.

The maximum error δ is decreased during the iteration thus, the

differences between the actual data and the approximate data

are closer. The differences can be compared from the first

iteration and second iteration in Figures 5 and 6. Figure 8 shows

that the generated error satisfies the Chebyshev criteria. Table 2

shows that for the Algorithm-2, from the 5th iteration until

infinity the set of extreme points keep iterating at two different

sets of extreme points {0, 15, 38, 62, 85, 100} and {0, 14, 37,

63, 86, 100}. The values of Chebyshev error norm for these

points are 0.0177 and 0.0159. The approximate data at the 5th

No of iteration Extreme points Absolute error

1 0 10 20 30 40 100 0.3956

2 0 5 19 34 85 100 0.2970

3 0 7 23 61 93 100 0.1016

4 0 9 35 67 91 100 0.0410

4 0 11 36 64 89 100 0.0379

5 0 12 36 64 88 100 0.0347

Table 1: Results for Algorithm-1

Figure 5: First iteration of Algorithm-1

Figure 6: Second iteration of Algorithm-1 

Figure 7: After sixth iteration of Algorithm-1 

No of iteration Extreme points Absolute error

1 0 10 20 30 40 100 0.5599

2 0 5 19 34 85 100 0.0931

3 0 7 23 61 93 100 0.0224

4 0 10 36 66 89 100 0.0135

5 0 15 38 62 85 100 0.0177

6 0 14 37 63 86 100 0.0159

7 0 15 38 62 85 100 0.0177

8 0 14 37 63 86 100 0.0159

9 0 15 38 62 85 100 0.0177

Table 2: Results for Algorithm-2

Figure 8: Error function after convergence 

Figure 9: Fifth iteration of algorithm-2
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iteration is closer to the actual data because the maximum error

is smaller than at the 6th iteration. This is partly due to the

constraint of discrete intervals while choosing the new extreme

points. Thus, the iteration is being modified because both of the

extreme points are similar. Figure 9 shows the result of the 5th

iteration which is similar to that of the 6th iteration. Figure 10

shows the error function after convergence at 5th iteration which

is similar to the results after convergence at 6th iteration.

The results of Algorithm-3 that is shown in Table 3 shows

that from the 13th iteration until infinity the set of extreme

points keep iterating at two different sets of extreme points {0,

6, 27, 58, 91, 100} and {0, 9, 42, 73, 94, 100}. Figures 11 and

12 show the 13th and the 14th iteration of Chebyshev

approximation of Algorithm-3. The values of maximum error

for these points are 0.0157. The generated errors of the

algorithm are shown in Figures 13 and 14. This is partly due to

the constraint of discrete intervals while choosing the new

extreme points. The extreme points at the 13th and 14th look

unfamiliar to each other and have many differences. The

No of iteration Extreme points Absolute error

1 0 10 20 30 40 100 0.5599

2 0 7 20 32 78 100 0.0766

3 0 7 21 54 89 100 0.0237

4 0 9 36 69 94 100 0.0171

5 0 6 25 57 93 100 0.0184

6 0 9 40 72 95 100 0.0159

7 0 6 27 58 92 100 0.0155

8 0 9 42 73 95 100 0.0167

9 0 6 28 59 91 100 0.0143

10 0 8 43 73 94 100 0.0152

11 0 5 27 59 91100 .0170

12 0 9 41 73 94 100 0.0160

13 0 6 27 58 91100 0.0157

14 0 9 42 73 94 100 0.0157

15 0 6 27 58 91100 0.0157

16 0 9 42 73 94 100 0.0157

Table 3: Results for Algorithm-3

Figure 10: Error function after convergence

Figure 11: 13th iteration of algorithm-3

Figure 12: 14th iteration of Algorithm-3

Figure 13: Error function after 13th iteration

Figure 14: Error function after 14th iteration
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algorithm is being modified and is stopped if the algorithms

keep iterating at the same points. Although both sets having the

same absolute error, the Chebyshev approximation results are

totally different. The error function is interpolated by splines

function. As splines having non-linear characteristics,

algorithms generate non unique solution. However, compared

to Algorithm-1 and Algorithm-2, the maximum error norm

obtained by Algorithm-3 is smaller.

In Algorithm-4, cubic spline is used to estimate δ and

approximate error function. Table 4 shows that from the 7th

iteration until infinity the set of extreme points keep iterating at

three different sets of extreme points {0, 9, 33, 67, 91, 100}, 

{0, 8, 28, 72, 92, 100} and {0, 7, 38, 62, 93, 100} resulting in a

maximum error at 0.0647, 0.0285 and 0.0105. Figures 15, 16

and 17 show that the Chebyshev approximation results after the

8th, 9th and 10th iteration. The algorithm can be modified by

adding the stopping procedure. From Figure 18 shows that error

norm of a set of extreme points {0, 9, 33, 67, 91, 100} does

satisfy the Chebyshev criteria. However, the other error norm in

Figures 19 and 20 does not satify the Chebyshev criteria and the

algorithm creates non unique solution. Thus, the set of extreme

points {0, 9, 33, 67, 91, 100} can be implemented for practical

application.

Using the cubic spline to approximate the data causes the

estimated absolute error δ to be smaller rather than using
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No of iteration Extreme points Absolute error

1 0 10 20 30 40 100 0.3956

2 0 7 21 49 87 100 0. 1924

3 0 8 28 59 89 100 0.1899

4 0 10 35 66 90 100 0.0866

5 0 8 30 70 92 100 0.0368

6 0 7 37 63 93 100 0.0174

7 0 9 33 67 91100 0.0579

8 0 8 28 72 92 100 0.0285

9 0 7 38 62 93 100 0.0105

10 0 9 33 67 91 100 0.0647

11 0 8 28 72 92 100 0.0285

Table 4: Results for Algorithm-4

Figure 15: 8th iteration of Algorithm-3

Figure 16: 9th iteration of Algorithm-3

Figure 17: 10th iteration of Algorithm-3

Figure 18: Error function after 8th iteration

Figure 19: Error function after 9th iteration
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Lagrange polynomial. However, using cubic spline in

determining the set of extreme points causes the approximation

to be non-unique solutions. The approximate data can still be

achieved but it creates several approximation functions using

different sets of extreme points and error generated.

The initial extreme points do not affect the result of the

algorithms to get the same set of extreme points. However the

approach to get better extreme points will reduce the number of

sequence the algorithm needs to converge. Figure 21 shows the

number of iteration of the algorithms can be reduced as

maximum error norm if total extreme points are increased.

However, at certain number of extreme points, the number of

iteration will rise if total extreme points are increased. Thus,

application of Chebyshev approximation should compromise

between total extreme points and the error generated. The

relation between the absolute error and number of iteration for

each algorithm is shown in Figure 22.

In signal processing, the total number of extreme points are

related to the amount of memory space while the total

iterations are correlated to the computation time. Since the total

iteration and the computation time are increased, the algorithm

is not quite applicable for real time system. If the Chebyshev

norm error becomes the critical part of the application, the

system needs to tolerate with computation time. If the

computation time and memory space are not the constraints of

the system, total number of extreme points can be increased.

Thus, the Chebyshev error norm will be reduced.

These algorithms have no guidance on the number of total

extreme points. The example used in the algorithms needs at

least five extreme points, otherwise it will not converge. This

means that the behavior of data cannot be represented by a

smaller number of extreme points. Thus, the use of the

algorithms may be restricted on random data because it needs

a greater number of extreme points. Data reduction procedure

has better performance to approximate random data. If the

algorithms do not converge, it does not mean that the

algorithms are cannot be used. The algorithms still can be

applied. However, the Chebyshev error norm is not unique,

thus generating Chebyshev error norm as correction factor may

not be practical.

6  CONCLUSION
The algorithms of the spline approximation are presented in

this paper. The study obviously showed that the Chebyshev

approximation with spline that involves the total number of the

set of extreme points plays a major role in determining the best

approximation of discrete data. This is useful for data

compression that is required for high level signal processing.

The best approximation is determined by a set of extreme points

that presents less error. The results show that the error generated

decreases as the total number of extreme points increase.

However, the algorithm that uses more number of extreme

points will cause an increment of the total number of iteration.

From the Chebyshev approximation of spline, the most

important results are a set of extreme points that controls the

approximation function of data and the generated errors. If the

error function satisfies the Chebyshev criteria, the error function

can be used as a correction factor to correct the approximate

data, and the actual data can be achieved using much less

number of data which are extreme points and the absolute error

5. In terms of engineering application, this means that besides

having the entire data, the data compression that uses

Chebyshev approximation for application such as robotic

motion and speech model can be extracted using a set of

extreme points. The generated error can also produce similar

quality data.
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Figure 20: Error function after 10th iteration 

Figure 21: Total iteration versus total of extreme points for Algorithm-1

Figure 22: Maximum error generated by each algorithm

001-009•two dimensional  6/22/06  11:28 AM  Page 8



Journal - The Institution of Engineers, Malaysia  (Vol. 67, No. 1, March 2006)

TWO DIMENSIONAL DATA MODELING AND CHEBYSHEV APPROXIMATION OF SPLINE

9

REFERENCES

[1] J.H. Park, Chebyshev Approximation of Discrete

Polynomials and Splines, Unpublished dissertation,

1999.

[2] CD. Covington, Cubic Spline Modeling of Speech

Spectra, IEEE Inter-national Conference on Acoustics,

Speech and Signal Processing, Vol. 10, pp 1125 - 1128,

April 1985.

[3] H.S. Hou, and H.C. Andrew, Cubic Splines for Image

Interpolation and Filtering, IEEE Transactions on

Acoustics, Speech and Signal Processing, Vol. 26, No.6,

pp 508 - 517, December 1978.

[4] R. Haruki, and T. Horiuchi, Data Fitting by Spline

Functions Using the Biorthornormal Basis of the B-

spline Basis, IEEE International Confer-ence on Pattern

Recognition, Vol. 3, pp 270 - 273, September 2000.

[5] D. L. Portigal, A Magnetic Recording Simulation

Program Having an Improved Fit to Actual Hysteresis

Loops, IEEE Transactions on Magnetics, Vol. 11, No. 3

pp 934 - 941, May 1975.

[6] O. Kreylos, and B. Hamann, On Simulated Annealing

and the Construc-tion of Linear Spline Approximations

for Scattered Data, IEEE Trans-actions on Visualization

and Computer Graphics. Vol. 7, No. 1, pp 17 -31, March

2001.

[7] L. Crousel, and J.J. Neirynick, Polynomial Chebyshev

Application of The Ideal Filter, IEEE Transaction on

Circuit and System, Vol. 15 No. 4, pp 307-315,

December 1968.

[8] F. Robert, Handbook of Applicable Mathematics Volume

III Numerical Methods, Churchhouse, John Wiley and

Sons, 1992.

[9] M. Mizuta, Algebraic Curve Fitting for

Multidimensional Data with Ex-act Squares Distance,

IEEE International Conference on Systems, Man and

Cybernatics, Vol. 1, pp 516 - 521, October 1996

[10] K.C.P. Wong, H.M. Ryan, J. Tindle, J. Blackett, M. W.

Watts, Digital Measurement of Lightning Impulse

Parameters using Curve Fitting Algorithms, High

Voltage Engineering Symposium, Vol.1, pp 270 - 273,

August 1999.

[11] F. L. Kitson, An algorithm for Curve and Surface

Fitting using B-spline, IEEE International Conference

on Acoustics, Speech and Signal Process-ing, Vol. 1,

No.89, pp 1207 - 1210, May 1989.

[12] T.W. Parks, and J.H. McClellan, Chebyshev

Approximation for Nonre-cursive Digital Filters with

Linear Phase, IEEE Transaction on Circuit Theory,

Vol.19, No. 2, pp 189 - 194, March 1972.

[13] M. C. Cox, A.B. Forbes, P.M. Harris, Software Support

for Metrology Best Practice Guide No. 4 Discrete

Modelling, Unpublished source, 2000.

[14] S.A. Dyer and J.S. Dyer, Cubic-spline Interpolation:

Part 1, IEEE In-strumentation and Measurement

Magazine, Vol. 4, No. 1, pp 44-46, March 2001.

001-009•two dimensional  6/22/06  11:28 AM  Page 9


