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abstract
In recent years, there has been growing international concern about climate change as a result of greenhouse gas emissions 
from human activity. Various process integration techniques have thus been developed to assist in determining the optimal 
allocation of energy sources to sectoral or regional demands under carbon footprint constraints; for example, the source-
sink representation of this problem has been solved using graphical and algebraic pinch analysis techniques as well as linear 
programming. This work presents an extension of the original problem by incorporating a game-theoretic, two-level decision 
framework, which is a more accurate representation of real-life energy planning applications. The upper level decision-maker 
(i.e., the government) seeks to minimise total costs to society by selecting appropriate emission limits for each sector as well 
as subsidy levels for clean energy sources; on the other hand, the lower level decision-maker (i.e., industry) seeks to minimize 
total energy-related costs subject to the emission limits set by the government. This problem is a static Stackelberg game 
which may be formulated as a fuzzy bi-level optimisation model. A numerical example from literature is used to illustrate the 
modeling approach. The case study is then solved using an adaptive multi-particle simulated annealing algorithm to yield an 
approximate Stackelberg solution.  
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1.0	INTRODUCTION
In recent years, growing international concern about climate 
change has led to increased research emphasis on mitigation of 
emissions of greenhouse gas (GHG) emissions. Since a large 
portion of global GHG emissions are in the form of CO2 from 
energy use, various approaches to achieve this goal include 
fuel substitution, efficiency enhancement and carbon capture. 
Process systems engineering (PSE) techniques have also been 
developed to optimise the utilisation of different fuels in energy 
systems with carbon emission constraints. For example, Tan and 
Foo (2007) developed a graphical pinch analysis approach for 
allocating fossil fuels to different energy sinks or demands, so 
as to minimise the requirement for clean or low-carbon energy 
sources such as renewable or nuclear power. The technique is 
based on approximating such energy sources as having virtually 
zero carbon emissions, which is justified by their low carbon 
footprint in comparison to conventional fossil fuels. The graphical 
method was also shown to be equivalent to a linear programming 

(LP) problem. A subsequent paper (Foo et al., 2008) showed how 
the same problem may be solved numerically through cascade 
analysis.  

The basic carbon pinch approach was then extended to 
segregated targeting problems (Lee et al., 2009; Bandyopadhyay 
et al., 2010), as well as problems involving demand growth 
(Atkins et al., 2010), carbon capture and storage or CCS (Tan et 
al., 2009a) and carbon footprint visualisation for industrial plants 
(Tjan et al., 2010). Furthermore, the methodology was also shown 
to be applicable to land use (Foo et al., 2008), water footprint 
(Tan et al., 2009b) and emergy (Bandyopadhyay et al., 2010) 
constraints in energy planning. More recently, there has been a 
shift in emphasis towards mathematical programming, which is 
able to handle complex energy planning considerations that are 
not possible using purely pinch-based approaches. For example, 
Pękala et al. (2010) extended the basic LP model from Tan and 
Foo (2007) to cases involving biofuel production with trade 
considerations, and to deployment of CCS retrofits in the power 
sector (Tan et al., 2009a).
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The main limitation of these insight-based and mathematical 
programming-based optimisation approaches is the implicit 
assumption that a single decision-maker exists for the energy 
system. In reality, energy planning involves the complex interaction 
of multiple players or stakeholders. Thus, such problems are 
best dealt with using game theory, which accounts for the self-
interested behavior of independent agents. In its simplified form, 
the interaction may be reduced to one that occurs between an upper 
level regulatory decision-maker (i.e., government) on one hand, 
and a lower level decision-maker (i.e., private industry) on the 
other. In general it may be assumed that the government plays the 
role of trying to influence industry to behave in an environmentally 
responsible manner (through regulations or economic incentives), 
while industry seeks to maximise profit. This sort of leader-
follower interaction may be represented as a Stackelberg game 
(Stackelberg, 1951; Simaan and Cruz, 1973) where the leader’s 
problem is to determine appropriate incentive strategies that induce 
the follower to react in a manner that favors the leader’s interests 
(Salman and Cruz, 1981). This situation requires that the leader 
anticipates the follower’s reactions. A static Stackelberg game can 
be formulated as a bi-level mathematical programming problem 
(Bard, 1998) which essentially consists of one optimisation model 
(representing the follower’s desires) nested within an outer model 
(representing the leader’s objective).

This paper presents a bi-level optimisation model for the 
carbon constrained energy planning problem originally posed by 
Tan and Foo (2007). The approach assumes that the leader decides 
on the emission limits and subsidy levels for clean energy, while 
the follower seeks only to maximise profit (or minimise cost). 
The model is described in the next section. A hybrid approach is 
then shown for determining an approximate Stackelberg strategy, 
which involves relaxation of constraints in a fuzzy optimisation 
model, followed by determination of a highly satisfactory (i.e., 
“satisficing”) solution using an adaptive multi-particle simulated 
annealing (AMPSA) algorithm. A case study based on literature is 
then used to illustrate the methodology. Finally, conclusions are 
drawn and prospects for future research are identified.  

2.0	 PROBLEM STATEMENT
The idealised bi-level carbon constrained energy planning 
problem may be stated as follows. The problem consists of two 
decision makers, the first representing government and the second 
representing industry. Assume that there are m energy sources, for 
which the available quantity and carbon intensities are known. In 
addition, there is one additional resource denoted as clean or zero-
carbon energy, whose carbon intensity is so low when compared 
to the other fuels as to be negligible; there is no specified limit 
for this energy source. There are also n sinks, each with a fixed 
energy demand and carbon emission limit imposed by the upper 
level decision maker. The problem is for the upper level decision 
maker to minimise external costs (borne by society as a result 
of emissions) by setting appropriate levels of subsidy for clean 
energy and emission limits, subject to the lower level decision 
maker’s objective to minimise direct energy costs, and subject to 
system-wide energy balances. A further simplifying assumption is 
that all energy sources are fully interchangeable.  

3.0 	BI-LEVEL PROGRAMMING MODEL 

Parameters
B External cost per unit of carbon dioxide emissions

Cz Unsubsidized cost per unit of clean energy

Ci Cost per unit of energy source i
Dj Energy demand of sink j
Fmax,j Maximum allowable carbon emission intensity limit 

per unit energy for sink j
Hi Carbon footprint per unit of energy source i
R Maximum fraction of clean energy cost to be 

subsidized

Si Maximum availability of energy source i

Leader’s Variables
A Subsidy per unit of clean energy

Fj Carbon emission intensity limit per unit energy for  
sink j

G1 Total cost burden to society

Follower’s Variables
Eij Amount of energy from source i allocated to sink j
G2 Total energy cost

Zj Amount of clean energy allocated to sink j

	
The leader’s objective (Equation 1) is to minimise the cost burden 
to society:

	 min G1					                  (1)

subject to:

 	 G1 = A 
 j

   Zj + B  
j
   Fj Dj			               (2a)

 					      				  
	 Fj ≤ F max j		  ∀j			              (2b)

	 The first term in Equation 2 is the cost of subsidising clean 
energy in the system, while the second term is the external cost 
of environmental impacts arising from carbon emissions. The 
follower’s objective (Equation 3) is to minimise total energy 
costs:

	 min G2 					                            (3)

subject to:

	 G2 = (Cz – A)   
j
   Z j   +   

i
   Ci    

j
  Eij 		               (4)

	 The first term in Equation 4 is the cost of the subsidised clean 
energy, while the second term is the cost of fossil energy. A limit 
may be set for the fractional subsidy (R) of clean energy cost, as in 
Equation 5:	
				  

Σ Σ Σ

Σ Σ
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	 A ≤ RCz					                   (5)

	 The energy balance for each demand is:

	 Zj +   
i
  Eij = Dj 	 ∀j			                 (6)

	 The first and second terms on the left hand side of Equation 
6 indicate the amount of clean and fossil fuel allocated to a given 
sink, respectively. The carbon emission balance for each demand 
is:

	    
i
  Hi Eij ≤ Fj Dj 	 ∀j 			                 (7)

	 Equation 7 assumes that clean energy generates negligible 
carbon emissions, and that whatever emissions are generated by 
fossil fuel use should fall within the limits imposed by the leader. 
The energy balance for each source is:
				     					   
	   

j
   Eij ≤ Si		  ∀i		                             (8)

	 Equation 8 simply states that the amount of each energy 
source allocated to the sinks cannot exceed the available supply. 
In addition to these equations, all variables are non-negative. The 
corresponding non-negativity constraints are no longer listed here 
so as to save space. It can be seen that bilinear terms are present in 
Equations 2 and 4, and thus the model is a non-linear programming 
(NLP) formulation.

4.0	 FUZZY BI-LEVEL PROGRAMMING 		
	 MODEL 

Fuzzy Model Parameters 

A’ Subsidy level per unit of clean energy based on 
follower’s optimum

A* Subsidy level per unit of clean energy based on leader’s 
optimum

F’j Carbon emission intensity limit per unit energy for 
sink j based on follower’s optimum

F*j Carbon emission intensity limit per unit energy for 
sink j based on leader’s optimum

G’1 Total cost burden to society based on follower’s 
optimum

G*1 Total cost burden to society based on leader’s 
optimum

G’2 Total energy cost based on follower’s optimum

G*2 Total energy cost based on leader’s optimum

Fuzzy Model Variables 

λ Fuzzy Degree of Satisfaction
	

	 The fuzzy approach to solving the general bi-level 
mathematical programming model was first proposed by Lai (1996) 
and Shih et al. (2001), and has since been developed further, for 
example by Lee (2001) and Sinha (2003). The general approach is 
applicable to both linear and non-linear problems. 

The main steps are as follows:

	 The model is solved as a single-level optimisation problem 
using the leader’s objective function (Equation 1), and 
disregarding the follower’s objective function (Equation 3). 
All the constraints (Equations 2a, 2b, 4 – 8) are also used 
in this step. This step determines the values of the objective 
functions G*1 , G*2, and the leader’s variables A* and F*j. 
This is the solution if the leader is in a position to decide on 
the values of all the variables in the system. Inspection of the 
model clearly shows that finding the solution is trivial, and 
that the leader’s preferred solution is G*1 = A* = F*j = 0. 
Thus, the model reduces to an LP which can easily be solved 
to find a global optimum.

	 The model is again solved as in the previous step, this time 
using the follower’s objective function (Equation 3) and 
disregarding the leader’s (Equation 1). As in the previous step, 
all the constraints (Equations 2a, 2b, 4 – 8) are considered. In 
this step, the values of G’1, G’2, and the leader’s variables A’ 
and F’j are determined, which correspond to the solution if 
the follower was in control of all the variables in the system. 
It can also be seen easily that the follower will obviously 
prefer maximum subsidy and emission limits, which entails 
saturating the constraints given by Equations 2b and 5. Once 
these are set to the limiting values, the model again reduces to 
an LP for which the global optimum can be found readily.

	 If the solutions in Steps 1 and 2 coincide, then they correspond 
to the exact Stackelberg strategy for the system. However, 
such cases will be rare. Thus, in general, it will be necessary to 
reconcile the conflict of interest between leader and follower. 
The procedure entails having the leader set fuzzy bounds for 
his objective and control variables; likewise, the follower  also 
sets fuzzy bounds for his own objective function. Generally, 
these fuzzy bounds are subjectively defined (Lai, 1996; Lee, 
2001; Shih et al., 2001; Sinha, 2003), but the solutions to 
Steps 1 and 2 can be used as basis for identifying reasonable 
values. The leader then relinquishes control to the follower, on 
the condition that his fuzzy bounds are used as constraints, in 
addition to all other constraints listed in the previous section. 
For simplicity, the fuzzy bounds are assumed to be defined 
by linear membership functions (Lai, 1996; Lee, 2001; Shih 
et al., 2001; Sinha, 2003) as follows: 

		 G1 – G'1  ≥  λ ( G*1 – G'1 )			                (9)

 		 A – A'  ≥  λ ( A* – A' )			              (10)

		 Fj – F'j  ≥  λ ( F*j – F'j )	 ∀j		             (11)

	 G2 – G*2  ≥  λ ( G'2 – G*2 )	 ∀j 		             (12)

	 The variable λ which ranges from 0 to 1 is introduced as an 
index of fuzzy degree of satisfaction of the constraints. A 
solution is partially satisfactory in the fuzzy sense when 0 < λ 
< 1. Note that when λ →1, G1, A and Fj approach the optimal 
values from Step 1 while G2 approaches the optimum from 

Σ

Σ

Σ
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Step 2. Hence, it is in effect possible to seek a compromise 
that may be considered as an approximate Stackelberg 
strategy (Tan et al., 2010) by maximising the value of λ:

	 max λ					                (13)

	 Thus, the original bi-level problem has been translated into 
an equivalent single-level fuzzy optimisation problem. The non-
linear programming (NLP) model may then be solved using an 
appropriate optimisation algorithm. The next section describes the 
stochastic algorithm used in this work. 

 
5.0	 ADAPTIVE MULTI-PARTICLE  
	 SIMULATED ANNEALING (AMPSA) 

AMPSA Nomenclature 

α Random walk coefficient

β Particle interaction coefficient

∆k,t + 1 Change in fitness value of the kth solution between 
successive iterations

f(xk,t + 1) Fitness value of the kth candidate solution in
iteration t + 1

f(xk,t) Fitness value of the kth solution in iteration t

Pk,t + 1 Probability of updating the kth solution

rk,t + 1 Vector of random numbers in the interval
[–0.5, 0.5]

Rk,t + 1 Matrix with diagonals comprised of random 
numbers in the interval [0, 1] and with all non-
diagonal elements at 0

ρ Adaptive cooling coefficient

st Standard deviation of all fitness values in iteration 
t

Tt Temperature in iteration t

xk,t + 1 Vector of decision variables corresponding to the 
kth candidate solution in iteration t + 1

x1,t  Vector of decision variables corresponding to best 
solution in iteration t

xk,t Vector of decision variables corresponding to kth 
solution in iteration t

This section describes the simulated annealing (SA) based 
stochastic algorithm used to solve the fuzzy NLP derived from 
the original bi-level model. SA was originally developed by 
Kirkpatrick et al. (1983) based on a mathematical analog of 
metallurgical annealing. In the latter, the crystalline lattice of a 
heated metallic substance is allowed to reach the lowest possible 
energy levels by means of slow cooling. The enhanced algorithm 
is described below.

The adaptive multi-particle simulated annealing (AMPSA) 
technique was developed by Tan (2008) for general optimisation 

problems encountered in process systems engineering applications. 
The algorithm combines features of SA and particle swarm 
optimisation (PSO); the latter optimisation method was developed 
by Kennedy and Eberhart (1995). Unlike conventional SA, it 
involves parallel search using multiple particles that interact 
among themselves in order to accelerate the search for near-optimal 
solutions. In every iteration, a candidate solution is determined 
through a random perturbation of each of the multiple particles or 
solutions currently present in the algorithm:  

	  	  						    
	 xk,t + 1 =  xk,t  + αrk,t + 1  + βRk,t + 1 ( x1,k  +  xk,t )	 ∀k,t     (14)

Equation 14 shows that the random perturbations consist of 
a random walk component (given by the second term on the right 
side of the equation) plus an interaction component (given by the 
last term) which biases the search of each particle towards the 
direction of the best solution currently available (i.e., k = 1). Note 
that the final term disappears for the “lead particle” corresponding 
to the best solution. The next step is to determine whether the 
candidate solution determined by Equation 14 is to be accepted 
or not. The probability of acceptance is given by the Metropolis 
criterion:

	  			    				  
	 Pk,t + 1  = min 1,e –      		 ∀k,t 		             (15)

where:

∆k,t + 1  =  f(xk,t + 1) – f(xk,t)	 ∀k,t		                      (16)

Equations 15 and 16 assume that the problem is one of 
function minimisation. If the new solution is better than the 
current one, then a “greedy” heuristic is employed and the new 
solution automatically replaces the old one. It thus becomes 
the starting point for the next iteration. If, however, the new 
candidate solution is worse than the previous one, it is not rejected 
outright. Instead, it is accepted with a probability defined by the 
exponential distribution in Equation 15. It can be easily seen that 
the probability of accepting such solutions declines as the extent 
of fitness deterioration increases. The probability distribution is 
modulated by the temperature parameter, which in AMPSA is a 
linear function of the standard deviation (or degree of diversity) of 
the currently available multiple solutions:

				     				  
	 Tt  = ρst 			   ∀t 		             (17)	

In general, the diversity of the different solutions being 
computed in parallel declines as the algorithm progresses; as 
a result, the value of the temperature parameter falls as well. 
This achieves the cooling effect that is normally accomplished 
by geometric progression in conventional SA. In this case, the 
temperature is said to be adaptive since it responds to the quality 
of the solutions found by the algorithm to date.

It should be emphasized that, in practice, AMPSA, as with 
most stochastic algorithms, does not exhibit true convergence in 
the strict mathematical sense. Solutions found by such techniques 
are said to be “satisficing,” i.e., not strictly optimal, but highly 
satisfactory (or near-optimal) from the application standpoint. 
Furthermore, a stochastic algorithm will not necessarily give 
exactly the same solution each time when it is used to solve the same 

∆k,t + 1

Tk
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three regions. Each region has a specified energy demand and a 
carbon emissions limit to be set by the leader. The data for the 
sources and sinks are shown in Table 1. The maximum allowable 
emissions limits in the final column correspond to carbon 
intensity limits of 20, 50 and 100 kt/EJ for Regions I, II, and 
III, respectively. However, the leader’s objective is to minimise 
total costs to society, which consists of the cost to subsidise clean 
energy plus the external costs associated with carbon emissions. 

optimization problem repeatedly. In this work, the algorithm was 
implemented in a program coded in Visual Basic for Applications 
(VBA) (Tan, 2008). 

6.0	 CASE STUDY 
This illustrative case study is based on the example from Tan 

and Foo (2007), which involves the static allocation of clean or 
zero-carbon energy, along with coal, oil and natural gas, across 

Source
Quantity 

(EJ)
Carbon footprint 

(kt/EJ)
Sink

Requirement 
(EJ)

Emissions limit 
(kt)

Coal 600 105 Region I 1000 20,000

Oil 800 75 Region II 400 20,000

Natural gas 200 55 Region III 600 60,000

Zero-carbon No limit 0 Total 2000 100,000

Table 1: Energy sources and sinks (Tan and Foo, 2007) [16]

Table 2: Solution to case study 

Variable Leader’s model Follower’s model Fuzzy limits
Fuzzy model solved  by 

AMPSA

λ n/a n/a n/a 0.11 ± 0.02

G1(103 cost units) 0 390 0 – 390 315 ± 10

G2 (103 cost units) 3,200 2,353 2,353 – 2,700  2,662 ± 8

A (cost units/EJ) 0 320 0 – 200 180 ± 4

F1 (kt/EJ) 0 20 0 – 12  9.0 ± 1.5

F2 (kt/EJ) 0 50 0 – 40 29.2 ± 5.7

F3 (kt/EJ) 0 100 0 – 50  39.9 ± 5.8

Z1 (EJ) 1,000 773 n/a 902 ± 15

Z2 (EJ) 400 133 n/a 274 ± 32

Z3 (EJ) 600 0 n/a  344 ± 44

E11 (EJ) 0 100 n/a  70 ± 24

E12 (EJ) 0 0 n/a  81 ± 34

E13 (EJ) 0 500 n/a  159 ± 57

E21 (EJ) 0 127 n/a  22 ± 21

E22 (EJ) 0 267 n/a  41 ± 44

E23 (EJ) 0 100 n/a  97 ± 77

E31 (EJ) 0 0 0 0

E32 (EJ) 0 0 0 0

E33 (EJ) 0 0 0 0
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Here it is assumed that the maximum acceptable value for the 
subsidy (A) is 320 cost units per EJ, equivalent to 20% of the cost 
of clean energy, while the coefficient for environmental costs is  
B = 1 unit per kiloton (kt) of CO2. The follower seeks to minimize 
the cost of supplying energy to the different sinks, assuming that 
the costs of clean energy, coal, oil and natural gas are 1,600, 1,000, 
1,200 and 1,250 units per EJ, respectively. In this case study, 
fictitious cost units are used but the relative magnitudes of the 
coefficients are based on realistic assumptions. A similar approach 
to costing is used by Pękala et al. (2010).

Solving the model using the leader’s objective function while 
disregarding the follower’s objective (Step 1) gives the result in 
the second column of Table 2. Note that this step assumes that 
the leader is able to dictate all decisions within the system. Since 
this step reduces the model to LP, the solution can be easily found 
using any optimization software; in this case, Lingo 11.0 was used. 
The optimal level of subsidy (A) as well as the emission limits (F1, 
F2 and F3) are all zero, which leads to the external costs borne by 
society (G1) to be zero as well. These limits force the follower 
to use only zero-carbon energy sources to meet the demands of 
the three regions, such that fossil energy use (Eij for all i and j) 
becomes zero throughout the system. The corresponding cost for 
the follower (G2) becomes 3,200 × 103  units. 

On the other hand, Step 2 involves solving the model using 
the follower’s objective function, while disregarding the leader’s, 
which then gives the result in the third column of Table 2. Here 
it is assumed that the follower dictates the decisions; the model 
again reduces to a simple LP which is solved here with Lingo 
11.0. Thus, subsidy level for clean energy (A) as well as regional 
emission limits F1, F2 and F3) reach their maximum levels, which 
leads to an external cost (G1) of 390 × 103 units, while the total of 
energy costs (G2) is at the minimal level of 2,353 × 103 units. Note 
that the energy sources used are 906 EJ (773 + 133 + 0 EJ) of 
clean energy, 600 EJ (100 + 0 + 500 EJ) of coal and 494 EJ (127 + 
267 + 100 EJ) of oil. Interestingly, there is no usage of natural gas 
at all in either the leader’s or the follower’s solution. Thus, the use 
of this fuel may be excluded from the fuzzy model as well.

The next step is to determine the fuzzy bounds for the leader’s 
control variables and objective function, relative to his previously 
determined optimum. The fuzzy range for the follower’s objective 
function is also determined. It should be noted that, in general, 
these limits may be determined subjectively (Lai, 1996; Shih et 
al., 2001, Lee, 2001 and Sinha, 2003); however, the solutions to 
Steps 1 and 2 provide some indication of reasonable numerical 
values to be used so that a partially acceptable solution can be 
found. These ranges are given in the fourth column of Table 2 
and are then integrated into a single, unified fuzzy NLP model, as 
described previously. The model is then solved for a near-optimal 

or satisficing solution using an AMPSA program coded in VBA 
(Tan 2008). This program has twenty particles and terminates after 
1,000 iterations, which gives a total of 20,000 function evaluations 
(20 × 1,000) per run. As with most stochastic algorithms, AMPSA 
does not exhibit convergence towards an optimum in the strict 
mathematical sense, but in general will yield satisficing solutions 
if properly tuned. The final column of Table 2 shows the range 
of values (average ± standard deviation) found for ten repeated 
runs using AMPSA. It can be seen that the results for λ as well 
as the leader’s and follower’s objectives (G1 and G2) are fairly 
consistent. On the other hand, there is considerable variation in 
the final values of the decision variables, with the exception of the 
level of subsidy (A). This result indicates that the problem exhibits 
degeneracy – i.e., there may be multiple solutions that exhibit the 
same optimal or near-optimal objective function values.

Table 3 shows an example of an allocation network 
for which λ = 0.10, A = 180 cost units/EJ, F1 = 5.8 kt/EJ,  
F2 = 31.7 kt/EJ and F3 = 45.1 kt/EJ. This solution is randomly 
selected from the ten runs implemented for the case study; it must 
be emphasized that it is only one of many possible schemes that 
achieves an approximate Stackelberg strategy. In this case, the 
resulting objective function values are G1 = 322 × 103 cost units 
for the leader and G2 = 2,666 × 103 cost units for the follower; it 
may be seen that both of these values fall within the statistical 
range of variation given in Table 2. Note that, in this solution, 
the three region use a combined 1,535 EJ (933 + 275 + 327 
EJ) of clean energy, as compared to only 906 EJ without the 
leader’s intervention in the form of carbon emission limits and 
subsidies. Thus, by using an approximate Stackelberg strategy, 
the leader is able to induce environment-friendly behavior even 
when the decision of the follower is motivated purely by cost 
considerations. 

7.0 	CONCLUSION
A hybrid approach to the determination of approximate Stackelberg 
solutions in bi-level carbon-constrained energy planning problems 
has been developed. This technique assumes that the upper 
level decision-maker, or leader, controls the emission limits 
to be imposed on the lower-level decision-maker, or follower, 
as well as subsidy levels for clean energy sources. The leader 
(i.e., government) seeks to minimise total costs to society as a 
result of environmental impacts as well as the direct expense of 
the clean energy subsidy. On the other hand, the follower (i.e., 
industry) is assumed to control the actual allocation of energy 
sources to different demands in order to minimise energy costs 
while meeting the emission limits imposed by the leader. The 
solution procedure involves relaxing the conflicting solutions of 

Table 3: Example of a satisficing energy allocation network (values given in EJ) 

Zero-carbon Coal Oil Natural gas

Region I 933 24 43 0

Region II 275 110 16 0

Region III 327 219 54 0

Excess n/a 248 687 200
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the leader and follower to yield a fuzzy non-linear program (NLP); 
a satisficing or near-optimal solution can then be found using an 
adaptive, multi-particle simulated annealing algorithm (AMPSA). 
As demonstrated by a numerical case study, the model makes it is 
possible for the leader to identify appropriate emission limits and 
subsidy levels to induce the follower to allocate energy sources 
in an environmentally responsible manner, even when the latter’s 
principal goal is to minimize costs. Further research can still be 

done to extend the model to more realistic cases by relaxing some 
of the simplifying assumptions used in this paper.
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