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ABSTRACT
A failure criterion with the existence of coupling terms is employed to investigate the progressive failure in anisotropic
laminated carbon-epoxy plates. The criterion is employed because it is developed recently. Moreover, the criterion allows
interaction between fiber and matrix properties. This paper is aimed to investigate the contribution of the coupling terms and
thus, to simulate the progressive failure of the carbon-epoxy plates. A mathematical model and computational model are
presented for the analysis. The deformation of the plates is predicted based on higher order shear deformation theory.
Variation of material properties through thickness is used and accommodated by a discrete layer approach. A program based
on finite element method is developed to determine the lamina stresses. Stresses calculated are used in the present failure
model to determine the first ply failure and last ply failure, by progressively reducing the stiffness of the laminas. Finally, the
first ply failure and last ply failure results are used to determine the lower and upper bounds within which the true load
carrying capacity lies. The numerical results obtained show some improvement compared to other failure criteria.
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1. INTRODUCTION
In conventional structures, it is sufficient to have the members
that are made only of materials, which are usually considered
as homogeneous and isotropic in design; however, modern
structures such as in aircraft and aerospace industry would
require more than that. Designing materials, which are strong
and stiff yet light in weight, are desired. The search for a
material, which is to be light and at the same time strong has
resulted in the use of high strength, high modulus fibers
reinforced in low strength, low modulus and low density
matrix material, and thus leads to the development of
composite materials. Such composites, idealised as orthotropic
lamina, are bonded together to form a laminate and are used as
structural components. Though the development of such fiber
reinforced composite materials offers more variety in materials
selection, it also increases the complexity in design and
analysis, especially in ensuring the structure to perform
without failure. 

Unlike isotropic materials, composite materials
demonstrate failure behaviour differently. In laminated
composite materials, failure is distinguished by its mode of
failure; which are the fiber failure in tension, matrix failure in
tension, fiber failure in compression, matrix failure in
compression and delamination. Failure in one direction of any
single layer implies neither total failure of that layer, nor the
whole structure. Load carrying capacity still exists not only in
the structure, but also in the layer itself [1]. Therefore, the most
common way to deal with failure of a composite laminate is by
using two definitions of failure. First Ply Failure (FPF) occurs
when initial failure of a single layer in a laminate fails in any

mode of failure. Last Ply Failure (LPF) occurs after the
structure has degraded to the point where it is no longer
capable of carrying additional load. 

The present study is aimed to simulate and analyse the
progressive failure of the plates from the initial failure, which
is the First Ply Failure, up to the total failure, which is the Last
Ply Failure. A failure criterion with the existence of coupling
terms to determine the mode of failure for composite materials
is employed. The uniqueness of this criterion compared to all
other existing criteria which could determine mode of failure,
is that it includes the coupling terms, which relate the
interaction between the longitudinal and transverse stresses. As
a consequence, it allows the interaction between the fiber
properties and the matrix properties in terms of the strength of
the material, which other failure criteria have neglected. The
behaviour and the pattern of the progressive failure are studied.
The results obtained with current failure criterion are then
compared with the results obtained with existing failure
criteria.

2. LITERATURE SURVEY
The most common and oldest method, in terms of finite
element analysis for a laminated composite plate, is the
standard laminate strength analysis [2]. However, the
method neglects the local effects such as fiber misalignment,
material discontinuities and free edge effects and assumes
that the stiffness of the laminate receives no contribution
from failed layers.

In 1982, Lee has performed the finite element based failure
analysis by using his own direct mode determining failure
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criterion [3]. The major drawback of a three-dimensional
failure analysis is the tremendous amount of memory space and
calculation time required. Later, improvement on the
computational aspects of the three-dimensional formulation is
done by other researchers [4,5]. However, the process is still
found complicated to be implemented. This phenomenon leads
to the search for more efficient finite element analysis of
composite plates. Therefore, two-dimensional plate
formulations for composite plates are then developed
aggressively. Reddy and Pandey have developed a first ply
failure analysis of composite laminates based on first order
shear deformation plate theory [6]. The limiting factor of this
analysis is the inadequacy of the first order shear deformation
theory for thick composite plates. Engblom and Ochoa develop
a two dimensional plate analysis to the above, but with
increased interpolation in the through thickness direction [7,8].
Their analysis is carried out to the last ply failure. Tolson and
Zabaras have also developed two-dimensional progressive
failure analysis of fiber reinforced laminated composite plates
using higher order shear deformation theory [2]. Lee’s [3] and
Hashin’s [9] failure criteria are used to determine the mode of
failure, so that stiffness reduction could be done up to the last
ply failure. However, both criteria neglect the interaction of the
coupling effect between the longitudinal stress and the
transverse stress. The coupling terms are completely absent in
all the equations for both criteria. Therefore, the objective of
this paper is to develop and simulate a two-dimensional finite
element progressive failure analysis of carbon fiber reinforced
laminated composite plates by employing a failure criterion
with interaction terms and later, investigate the contribution of
the coupling terms based on the failure curves.

3. HIGH ORDER SHEAR DEFORMATION
Higher order shear deformation theory is developed to improve
both the classical lamination theory and the first order shear
deformation theory by removing the assumption that a line
which is originally straight and perpendicular to the middle
surface remains straight when the laminate is extended or bent.
A higher order term is included in the assumed displacements
to describe the warping effect. According to the High-Order
Shear Deformation Lamination Theory [10], the assumed
displacements are as follows:

u (x, y, z) = u0(x,y) – zθx(x, y) + z3ξx(x, y) (1)

v (x, y, z) = v0(x,y) – zθy(x, y) + z3ξy(x, y) (2)

w (x, y, z) = w0(x,y) (3)

where, u, v and w, are the laminate displacements in the 
x-, y- and z-directions respectively. u0, v0 and w0 refers to the
middle surface displacements. θx and θy refers to the bending
slope in the x- and y- axes respectively, while ξx and ξy refers to
the warping slopes. The strains are then written in vector form
as in Equation (4).

(4)

εx and εy are the normal strains in the x- and y- directions
respectively. γxy is the shear strain in the xy-plane. The
transverse shear strains could be written in vector form and
shown in Equation (5).

(5)

These strains, εx, εy, γxy, γxz and γyz, are then substituted into
Equation (6) and Equation (7) to calculate the stresses.

(6)

(7)

The symbols, σx and σy, are the normal stresses in the x- and
y- axes respectively, while τxy is the shear stre ss in the xy-plane.
τxz and τyz are the transverse shear stresses. k refers to the kth

layer of the laminate. The [Q– ] is the transformed reduced
matrix and its elements, Q–

ij
, are given in terms of the reduced

stiffnesses, Q
ij
. The reduced stiffnesses,  Q

ij 
are defined in terms

of engineering constants [1]. These formulations are used in
the finite-element program to determine the strains and stresses
for the laminate analysis.

4. ALGORITHM
To determine the strength of a laminated plate, an incremental
load analysis procedure is employed. For a given load, the
stresses in each lamina can be calculated. Then the stresses in
the material coordinates system are calculated. These stresses
are then inserted into the failure criterion to determine if failure
has occurred within a lamina of any element. If no failure
occurs, the load would be increased to initiate the first failure.
If failure occurs in the initial load, the analysis could be
restarted at a lower initial load. When the first ply failure
occurs, the stiffness is modified according to the mode of
failure. 

In the analysis done, the plate model is meshed into sixteen
(4x4) uniform rectangular elements and each element has four
Gauss points. The failure is checked for one by one layer of a
Gauss point in an element. Therefore, altogether there are 256
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points checked for matrix or fiber failure, where else, 192
points are checked for delamination. A fiber mode failure at a
Gauss point of an element would reduce the stiffness matrix of
the failed lamina within that element. Consequently, Q11, Q12,
Q16, Q55 (σL, σLZ, σLT) would be reduced to zero for the failed
lamina. If failure were detected at less than four Gauss points,
the appropriate stiffness components would be reduced to zero
for that element. Since, the total element stiffness is calculated
from the summation of the stiffness contributed of all the
Gauss points in that element, the failure occurs in more than
one Gauss point, will have a greater impact on the total
stiffness of that particular element.

A matrix failure at a Gauss point of an element would
reduce the stiffness for that element in a different manner. Q22,
Q12, Q16, Q44 (σT, σTZ, σLT) would be reduced to zero for this
failed lamina. Again, if failure were to occur at 1, 2 or 3 Gauss
points, the stiffness matrices would be reduced accordingly for
that Gauss points and consequently, the stiffness of that
element would reduce accordingly.

Delamination is the final mode of failure. It is characterised
by the interlaminar stresses acting between adjacent layers. An
interface of two adjacent layers is identified as delamination
failure if either 

(8) 

where Sz is the through-thickness shear strength [11]. A
delamination failure at a Gauss point of an element would have
yet another effect on the stiffness matrix. For both laminas
adjacent to the delamination, Q33, Q44, Q55 (σZ, σTZ, σLZ) are
reduced to zero in both laminas adjacent to the failed interface.
Obviously, when all the members of the element stiffness
matrix have been reduced to zero the elements make no further
contribution to the structure and is considered to have
undergone total failure.

The composite analysis program is written to carry out the
required calculations. It stores the lamina stiffness properties.
For each element, an array is assigned to carry the information
of the failure result for specific layer number and Gauss point
location. Therefore, based on that information, stiffness
properties can be reduced one at a time, appropriately as failure
of the specific location is determined. The reduced material
property matrices in global coordinates, Qij, must be
recalculated every time new stresses are calculated to insure
that the stresses take the failed lamina into effect. Once the new
material stiffness matrices are calculated for each element, the
elemental stiffness is then calculated for all the elements. The
stresses are recalculated at this first ply failure (FPF) load using
the newly calculated element stiffness matrices. These new sets
of stresses are once again inserted into the failure criteria to
check whether further failure will occur. If further failure
happens, the stiffness is reduced appropriately and the stresses
are recalculated once again at the FPF load. These ‘equilibrium
iterations’ continue until no further failures occur at that
particular FPF load.

If no further failure occurs, the load is incremented for the
second time. Again, the stresses are calculated, and the
laminate is checked for failure. Stiffness reduction and load
increment continue until the stiffness matrix has been reduced
to zero for all laminas at a single (x, y) location. This is
considered to constitute last ply failure (LPF) or the ultimate
strength. A flow chart of the algorithm described is given in
Figure 1.

5. FAILURE MODEL

5.1 Fiber mode failure in tension 
Considering transversely isotropic material [1], the equation
used to determine the tensile failure in fiber mode is

(9)

XT YTwhere A = ––– and B = ––– .
XC                               YC

In equations (9) to (12), the meaning of the symbols is
explained as below:

σ1, the longitudinal stress in 1-direction
σ2, the normal stress in 2-direction
σ3, the normal stress in 3-direction
τ4, the shear stress in 23-plane
τ5, the shear stress in 31-plane
τ6, the shear stress in 12-plane
1,2,3 refers to the axes in the principal material coordinates,
where 1-direction is associated with the fiber direction.
XT, axial or longitudinal strength in tension
Xc, axial or longitudinal strength in compression
YT, transverse strength in tension
YC, transverse strength in compression
S, shear strength

Figure 1: Flow chart diagram of the procedure for the progressive
failure analysis
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5.2 Matrix mode failure in tension
Considering transversely isotropic material [1], the equation
used to determine the tensile failure in matrix mode is 

(10)

5.3 Fiber mode failure in compression 
Considering transversely isotropic material [1], the equation
used to determine the compressive failure in fiber mode is 

σ1 = XC (11)

5.4 Matrix mode failure in compression 
Considering transversely isotropic material [1], the equation
used to determine the compressive failure in matrix mode is

(12)

6. COMPARISON OF THE NUMERICAL
SOLUTION TO EXACT SOLUTION

To validate the finite-element computer program developed,
the current finite-element formulation is compared with
classical plate theory, three dimensional elasticity formulation
and other finite element formulations. The computer program
is used to determine the stresses distribution of a 0/90/90/0
laminated composite plate subjected to a sinusoidally
distributed transverse load as equation below; 

P = P0 (sinπx/a) (sinπy/a) (13)

The orthotropic material properties used for the comparison
are those of a graphite/epoxy compound as below;

E1 = 25 x 106 psi

E2 = 1 x 106 psi

v12 = 0.25

v13 = 0.25

v23 = 0.25

G12 = 0.5 x 106 psi

G13 = 0.5 x 106 psi

G23 = 0.2 x 106 psi

Table 1. Normalised displacements for a 0/90/90/0 plate under sinusoidal transverse pressure

Span to thickness Central defllection
ratio, Source

S

4 A – Present finite-element formulation 4.411
B – Exact elasticity solution[12] 4.491
C – FE formulation of Panda et al[4] -
D – FE formulation of Tolson et al[2] 4.393

10 A – Present finite-element formulation 1.671
B – Exact elasticity solution[12] 1.709
C – FE formulation of Panda et al[4] 1.448
D – FE formulation of Tolson et al[2] 1.671

20 A – Present finite-element formulation 1.178
B – Exact elasticity solution[12] 1.189
C – FE formulation of Panda et al[4] 1.114
D – FE formulation of Tolson et al[2] 1.177

50 A – Present finite-element formulation 1.029
B – Exact elasticity solution[12] 1.031
C – FE formulation of Panda et al[4] 1.016
D – FE formulation of Tolson et al[2] 1.026

100 A – Present finite-element formulation 1.007
B – Exact elasticity solution[12] 1.008
C – FE formulation of Panda et al[4] 1.003
D – FE formulation of Tolson et al[2] 1.006
E – Classical Plate Theory[2] 1.000
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All plates analysed are square with planar dimension a x a,
and total thickness, h. The plate is meshed into sixteen (4 x 4)
uniform rectangular elements. Eight-noded element is used
throughout the calculations. The origin of the plate is located at
the lower left corner of the midplane. 

The plate is simply supported and the boundary conditions
used are as follows;

Tabulated results for displacements are presented in Table
1, while results for stresses distributions are presented in 
Table 2. 

The displacements and stresses reported are stated in their
normalised form. This is done to remove the effects of varying
loads and changing aspect ratios, S = a/h. The normalising
equations used are as follows:

(14)
where  

(15)

(16)

(17)

(18)

(19)

(20)

P0 is the maximum value pressure load applied on top of the
surface.

A detail analysis is done for the case where the aspect ratio
of the plate, S = 10. Tabulated results for the stresses
distributions are presented in Table 2. Stresses reported are
stated in their normalised form. This is done to compare with
other results obtained by other researchers.

The column with the title ‘Source’ indicates the source of
the results displayed in Table 2. The letter B, C and D used are
the same source as used in Table 1. The letter B is representing
the exact elasticity solution as given by Pagano and Hatfield
[12]. Letter C represents the results obtained by Panda and
Natarajan [4]. Letter D represents the results obtained by
Tolson and Zabaras [2] for four by four (4x4) elements. Letter
E refers to the solutions obtained using Classical Lamination
Theory [2]. Table 2 obviously proves that the stresses obtained
using the finite-element program developed are close to the
exact solution.

7. PROGRESSIVE FAILURE OF A PLATE
UNDER TRANSVERSE LOADING
The computer program is used to investigate the first ply and
last ply failure loads of a 0/90/90/0 laminated composite plate
[1]. The plate is subjected to a sinusoidally distributed
transverse load where P=P0 (sinπx/a)(sinπy/a) The plate is
square with the dimensions of a x a. The thickness of the plate
is h, with the aspect ratio, S = a/h. The analysis is performed on
different aspect ratios. The aspect ratio is varied from 5 to 100.
Two sets of dimensions is used to increase the analysis
reliability. The first dimensioning of the analysis is carried out
in metric system. The length of the plate is 40 mm. The second
set of analysis is carried out with the length of the plate is 2
inches. Only a quarter of the plate needs to be modelled due to
the geometric symmetry of the problem [6]. The plate is simply
supported and the boundary conditions used are as in Figure 2. 

Table 2. Normalised stresses for a simply supported 0/90/90/0 square plate

10 A 0.600 0.390 0.0276 0.284 0.174

B 0.559 0.403 0.0276 0.301 0.196

C 0.532 0.307 0.0250 - -

D 0.575 0.401 0.0280 0.299 0.191

Figure 2: The boundary condition for quarter of a 
square plate

where
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The material and strength properties for the carbon-epoxy
composite used [1,2] are shown below. Sixteen eight-noded
elements are used to insure reasonable accuracy in stress
calculations. The progressive failure analysis is performed
using the present failure criterion. Lee failure criterion is used
as a comparison.

E1 = 180 GPa
E2 = 10.6 GPa
E3 = 10.6 GPa
v12=v13 = 0.28
v23 = 0.28
G12 = G13 = 7.56 GPa
G23 = 7.56 GPa
XT = 1500 MPa
XC = 1500 MPa
YT = 40 MPa
YC = 250 MPa
SA = 68 MPa
ST = 68 MPa
SZ = 68 MPa

To ensure the results are converging and accurate, two sets
of simulation are done [1]. The first analysis is performed with
the dimensions of the plate length, a = 2 inches and the
material properties used are in pound per square inch, psi.
Second analysis is carried out in the metric dimensioning
system. This is done to see the reliability of the normalised
equation in calculating the normalised First Ply Failure Load,
FPF* and the normalised Last Ply failure load, LPF*, with
respect to the aspect ratio, S. Therefore, the material properties
used are in N/m2 (Pa). The length and width of the plate, a,
under consideration is 40 mm (0.04 m).

8. RESULTS AND DISCUSSION
The results of the analysis are tabulated in Table 1 and Table 2.
Figure 3 shows the first ply and last ply failure curves for the
0/90/90/0 laminated as a function of aspect ratio. The failure
loads in the graph have been normalised as 

FPF* =(FPF)S2/106 (21)

and  LPF* =(LPF)S2/106 (22)

Table 3a. FPF loads using present failure criterion

Aspect Ratio,
5 10 20 50 100S

Ply thickness, 
2 1 0.5 0.2 0.1ti (mm)

Unnormalised
FPF Load 41.7 16.0 4.3 0.7 0.18
(MPa)

Normalised 
Load, 1044 1603 1732 1758 1764
FPF* (MPa)

Table 3b. LPF loads using present failure criterion

Aspect Ratio,
5 10 20 50 100S

Ply thickness, 
2 1 0.5 0.2 0.1ti (mm)

Unnormalised
LPF Load 41.7 19.5 6.0 1.0 0.26
(MPa)

Normalised 
Load, 1048 1956 2415 2600 2640
LPF* (MPa)

Table 3a and 3b display the exact values of the FPF load
and LPF load as well as the normalised loads. The title ‘Present
Failure Criterion’ indicates that the data in the table are
determined using the present failure criterion. The title ‘Aspect
Ratio, S’ refers to the aspect ratio of the plate analysed. ‘Ply
thickness, ti’ indicates the thickness of each ply in the laminate.
For the analysis performed in the S.I. unit, the thickness of
each ply is given in millimetre while for the analysis performed
in the U.S. customary unit, the thickness is given in inches.
‘Unnormalised Load’ refers to the actual FPF or LPF load, P0,
applied in the analysis. The load could be applied in Pascal or
psi depending on the analysis. The ‘normalised load’ is the load
calculated using the normalising equations as in Equations (21)
and (22).

The normalised FPF loads, FPF* and LPF loads, LPF*, in
Table 3 are plotted against the aspect ratio and the graphs are
shown in Figure 3. The graphs are plotted in such a way to
compare with the existing results [2]. In general, the graphs
reveal the same behaviour of the progressive failure. The
results shown in Figure 3 converge for the LPF curve but the
FPF curve maintains an equal percent difference throughout. It
is interesting to observe that for the aspect ratio less than 12,
the last ply failure loads using the Lee criterion are lower than
the last ply failure loads using the present criterion. Overall
results show that the FPF and LPF boundary using the present
criterion are inbound when compared to the FPF and LPF
boundary using the Lee criterion. This is due to the coupling
terms in the present criterion, where the interaction of the
stresses in the longitudinal and transverse direction has
improved the boundary of the FPF and LPF of the laminate.
The interaction of the stresses has enabled the stresses in the
transverse direction to produce an effect to the stresses in the
longitudinal direction. A phenomenon of compensating each
other has taken place, which balanced the difference in
longitudinal and transverse stresses, as well as the strength in
both directions. The interaction terms have allowed interaction
of the fiber and matrix strength, as well as the tensile and
compressive strength. Therefore, unlike other failure criteria,
the present criterion does not allow independent failure mode
based on only one direction. It has created a dependency and
effect of the longitudinal stresses on the transverse stresses,
and vice versa. The interaction has improved the failure
boundary by upgrading the FPF limit. However, as a
consequence, the interaction has also decreased the LPF limit.
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As a whole, it has made the limit of FPF and LPF a smaller
region and which is more realistic and reliable in term of the
laminate strength. 

Figure 4 shows the graphs for the non-normalised load with
respect to the aspect ratio, S. The distributed load is in psi and
applied to a plate with the width, a = 2 inches. In order to
enlarge the graphs for better observation, the figure is focused
on the aspect ratio larger than 10. The actual load applied for 
S = 5 is not shown in the diagram. From the graphs, it is clear
that as the aspect ratio increase, the boundary region of the FPF
and LPF gets smaller, except at S = 10, where the FPF and LPF
limit falls on the same point. The reason for this to happen is
because the first mode of failure that occur for a plate with the
aspect ratio, S = 10 is delamination. This is true because a
laminate, which is constructed from thick laminas, will tend to
delaminate as compared to a laminate, which is constructed
from thin laminas. From the analysis done, for a plate with
aspect ratio equal and greater than 10, the first mode of failure
that occur is the tensile matrix failure. Figure 4 also shows that
for a plate with aspect ratio, S, beyond 100, the FPF and LPF
load will converge to a point. The maximum boundary region
of the lower limit, FPF and upper limit, LPF happens when 
S = 10 to 20. Therefore, for a plate with aspect ratio 10 to 20,
an average of another 30 percent load could be applied after the
first failure occurs. Another thing that could be observed from
the graphs is that the distributed load, P0, decreases
exponentially as the aspect ratio, S, increases.

Figures 5a through 6d show the progression of failure
within the 0/90/90/0 laminated plate with S = 50 using the
present failure criterion. No such detail progressive failure has
been presented for a plate with an aspect ratio of 50. Moreover,
these results are determined using the present failure criterion,
which means that the present failure criteria are used to
simulate the progressive failure of the plate. As shown in

Figure 5a, the failure occurs in the area closest to the centre of
the plate at the bottom 0º lamina. The initial failure is matrix
mode caused by tensile stresses. To be exact, the initial failure
that occurs is a tensile matrix failure and the location is on the
layer number 4 of the sixteenth element at the fourth Gauss
point of the plate. 

When the normalised load applied is increased to 1772
MPa, the matrix failure progressed to the next Gauss Point of
element 16 at the bottom of the 0o lamina. At this FPF* value,
after the first ‘equilibrium iteration’ is done, the initial matrix
failure has progressed to its neighbour that is the Gauss point
number 2, as shown in Figure 5b. This is a typical example of
a progressive failure that occurs in a composite laminate. We
could observe in Figure 5b that the pattern of the failure is not
symmetry. In the sixteenth element on layer number 4, Gauss
point number 2 and Gauss point number 4 have undergone
tensile matrix failure but Gauss point number 3 has not been
affected.

Figure 3: Normalised first ply failure and last ply failure load

Figure 4: First ply failure and last ply failure load

Figure 5a: Failure progression of a 0/90/90/0 plate under transverse
sinusoidal load (FPF – normalised load 1772 MPa)

Figure 5b: Failure progression of a 0/90/90/0 plate under 
transverse sinusoidal load (after equilibrium iteration – 
normalised load 1772 MPa)
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Figures 6a to 6d show a more aggressive example of the
progressive failure, which leads to total failure of the same
carbon-epoxy composite plate. The step-by-step presentation
of the progressive failure that occurs, when the plate is
subjected to a normalised load of 2600 MPa, is displayed in
detail. As we could observe in Figure 6a, when the applied load
is increased to 2600 MPa (normalised unit), additional failure
occurs on the plate as compared to Figure 5. At this normalised
FPF load, layer 4 has undergone severe matrix mode failure
caused by tensile stresses. At the same time, fiber mode failure
caused by tensile stresses has occurred in the first element of
layer 1 and layer 4. Figure 6a also shows clearly that layer 2
and layer 3, which is the inner layer of the plate and bounded
by layer 1 and layer 4, have not been affected at all. 

However, after the first equilibrium iteration, as shown in
Figure 6b, element 1 in layer 1 undergone failure in matrix
mode and fiber mode caused by tensile stresses, as well as fiber
mode failure caused by compressive stresses. At this instant, a
fiber mode failure caused by compressive stresses has initiated
at the area closest to the centre of the plate in layer 1. 

After the second equilibrium iteration, as shown in Figure
6c, failure has progressed significantly in layer 1. Various
mode of failure has occurred in layer 1. In layer 4, matrix mode
and fiber mode failure caused by tensile stresses widespread to
three-quarter of the layer. However, at this instant, layer 2 and
layer 3 have still not been affected. 

Figure 6d shows the failure region after the third
equilibrium iteration for the normalised FPF load at 2600 MPa.

It is obvious that layer 1 has
undergone severe failure. The
diagonal elements of layer 1 have
undergone total failure. Various
mode of failure has widespread to
three-quarter of the layer. Layer 4
has also undergone severe matrix
and fiber mode failure caused by
tensile stresses. It is interesting to
note that after the third equilibrium
iteration, failure progresses to layer 2
and layer 3. Layer 2 experiences
severe failure, whereby the diagonal
region fails totally, while failure in
matrix mode caused by the tensile
stresses progresses rapidly. 

Figure 6d also shows that failure
in matrix and fiber mode caused by
tensile stresses has initiated and
widespread rapidly in layer 3. It is
interesting to observe that layer 3
and layer 4, which is the two layers
at the bottom of the laminate, at this
moment, have only experienced
matrix and fiber mode failure caused
by the tensile stresses. The top two
layers, which are layer 1 and layer 2,
experience various mode of failure
that causes the diagonal region to fail
totally. This shows that the two
layers below the mid-plane of the
plate, is dominantly under the tensile
state of stress and this is causing the
severe tensile failure.

8. CONCLUSION
The main objective to simulate the
progressive failure of fiber
reinforced carbon-epoxy plates has
been achieved successfully. As
forecasted, the results obtained show
that the present failure criterion with
the existence of coupling terms,
improve the prediction of the
progressive failure. The results are

Figure 6a: Failure progression of a 0/90/90/0
plate under transverse sinusoidal load 
(FPF – normalised load 2600MPa)

Figure 6c: Failure progression of a 0/90/90/0
plate under transverse sinusoidal load 
(After second equilibrium iteration – 
normalised load 2600MPa)

Figure 6b: Failure progression of a 0/90/90/0
plate under transverse sinusoidal load 
(After first equilibrium iteration – 
normalised load 2600MPa)

Figure 6d: Failure progression of a 0/90/90/0
plate under transverse sinusoidal load 
(After third equilibrium iteration – 
normalised load 2600MPa)
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more realistic and reliable. Furthermore, the validation of the
results compared to analytical result, experiment and other
computational results ensures it accuracy.

The discussion on the results of this analysis, supported by
figures and the explanation of each figure in this section, is
hoped to give a better understanding on the progressive failure
of the 0/90/90/0 carbon-epoxy composite laminate. The
tabulated results as well as the graphs are presented in such that
they could be used as future references. 

The work done is hoped to give a better understanding on
how a fiber reinforced composite laminate fails, and more
importantly the behaviour of the progressive failure. The study
will help engineers to design an optimum fiber reinforced
composite laminate that could withstand desired service and
load condition. The beauty of the progressive failure of a
composite laminate is that it allows the laminate to withstand
the load even after FPF as long as the load applied does not
exceed the ultimate LPF load. Moreover, it also allows us to
predict when the laminate will fail totally. A comprehensive
understanding of the progressive failure behaviour of the
laminates will make us appreciate the service that fiber
reinforced composite laminates could offer in our structural
design and applications. ■
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