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ABSTRACT
Transfer function model of the rainfall and runoff relationship with various complexities was developed to investigate the
hydrological dynamics of a catchment that undergoes continual drainage process. The structure of the impulse response
weight of the dynamic components of the models provides some physical meaning of the responses between the hydrological
variables investigated. The study revealed that non-linear transfer function models of order one and noise term of ARIMA
(1,0,0) best   represents the monthly rainfall-runoff relationships of a drained catchment. The best- fitted transfer function
model is capable of illustrating the cumulative hydrological effect of a catchment when subjected to reclamation and drainage
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INTRODUCTION
Land drainage activities can alter the hydrological criteria of a
catchment. To evaluate the long-term hydrological impact of
drained catchment, such as found in agricultural peatland, a
sound understanding of the hydrological functions are
required. Traditionally, paired catchment experiments have
been used to evaluate the effect of disturbances [1, 2].
However, this approach is not only time consuming but also
require a properly planned and instrumented catchment study.
The paired catchment approach is also unable to evaluate the
relative importance of various factors that might underlie
differences in results between the sites [3]. Another approach
to evaluate the impact of disturbance and alteration on the
hydrologic function of a catchment is by comparing the
hydrologic record before and after the catchment being altered
[1]. As such, pre and post drainage hydrological data are thus
required. When both aforementioned approaches are not
applicable either due to the absence of paired catchment or
unavailability in pre-drainage hydrological record, as
experienced in the present study, another alternative approach
is needed to address the issue. One of many methods that can
be considered is by applying a deterministic physical-based
hydrologic model such as TOPMODEL [4] and DRAINMOD
[5]. These models are basically hill-slope and parameter–based
rich model that require an intensive quantitative knowledge in
the physical characteristics of the catchment at spatial level. 

In comparison to physical-based models, the transfer
function time-series modelling approach has several
advantages. Physical-based hydrological models require
parameterisation and are based on the predetermined theory of
hydrology, whereas a time series model is essentially a `black-
box’ [6]. It is purely calibration and requires no theory that
links the input and outputs series. Under the situations where
the theory of hydrological processes of drained catchment such
as in peat areas is yet clearly defined [7,8], time series transfer
function modelling approaches is found to be applicable. 

The main objective of this paper is to develop a dynamic
regression or transfer function (TF) model of the relationship
between rainfall and runoff of a drained catchment particularly
in agricultural peatland. It is intended to examine the ability of
the TF model to understand the dynamics of the hydrologic
behavior of the study catchment based on past time series data.
Long-term rainfall-streamflows records obtained from a 184
hectare drained and agricultural catchment located in peat
areas at Parit Madirono, Benut, Johor, Malaysia (103˚16'15” E,
01˚42'35”N, and called the Madirono catchment) [9] have been
used in the present study. 

MODELLING METHODOLOGY
The proposed methodology consists of applying the linear transfer
function modeling approach with different hydrologic variables to
investigate the stream flow dynamics of the study catchment. It is
expected that the Transfer Function model makes it possible to
provide a greater insight to the dynamic response of the stream
flow to rainfall thus the overall hydrologic behavior of the
catchment.

THE BASIC MODEL STRUCTURE
A single linear transfer function model representing the
relationship between input and output time series data can be
expressed as,

Y1 = C + v(B) Xt + Nt [1]

where Yt is the output series or exogenous variables, Xt is the input
series or endogenous variables, C is the constant term, v(B) is the
dynamic component or impulse response function of the model, Nt

is the stochastic noise and B is the backshift operator. The
stochastic noise Nt may be autocorrelated and is assumed to be
independent of Xt .Because the dynamic term v(B) in Equation 1
represents the dynamic behaviour of serial correlation of Xt at
different time lags, it can be written in a polynomial form as [10],
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v(B) = v0 + v1B + v2 B2 + ........ + vk BK [2]

where v0 through vk are called the transfer function weight or
impulse response weight. Thus, Equation 1 becomes [10],

Yt = C + ( v0 + v1B + v2 B2 + ........ + vk Bk )Xt + Nt [3]

where k is the order of the transfer function, that is the longest lag
of input series Xt used in the model.

PARSIMONIOUS MODEL STRUCTURE
An important criterion of good models is their simplicity or
parsimoniousness. For that reason, the term v(B) in Equation 3
can be rewritten in a simpler form as [11],

[4]

Thus, the parsimonious form of Equation 3 becomes

[5]

where,

ω(Β) = ω0 − ω1Β − ω2Β2 − .... −ωsΒs,
δ(Β) = 1 − δ1Β − δ2Β2 − ... − δrBr

r,s,b are constants. Constant b is called a delay factor that is,
a delay of b period before Xt begin to influence Yt . The
constant r is the decaying factor of the impulse response
weights and b is dead time factor. 

FEEDBACK CHECKING
An important assumption in building a single-equation
Transfer Function model is that there is no feedback from
earlier values of the Yt series to the current values of Xt

series. Consider again a regression-lag model in Equation 3
of order k

Yt = C + (v0 + v1B + v2B2 + .... + vkBk) Xt + Nt [6]

Decomposing the B terms into BXt = Xt-1, B2 Xt = Xt-2, etc.

Yt = C + v0Xt + v1Xt-1 + v2Xt-2 + .... + vk Xt-k + Nt [7]

To check the feedback effect of Yt series on Xt series, the
following equation is estimated,

Xt = C + b1 Xt-1 + b2Xt-2 + .... + bkXt-k

+ c1Yt-1 + c2Yt-2 + .... + ckYt-k + Nt [8]

Using multiple regressions approach, the coefficient of c1,c2,
ck can be computed and significant statistical test can be
employed. 

MODELLING ALGORITHM 
The basic modeling algorithm [10] is summarised in the
flow chart presented in Figure 1.

FREE-FORM DISTRIBUTED LAG MODEL
EQUATIONS 
As written in the Equation 1 the distributed lag equation form of
order k of the regression model is,

Yt = C + v0Xt + v1Xt-1 + v2Xt-2 + .... +vk Xt-k + Nt

where v0 ,v1 , ...., vk are impulse response weights or transfer
function coefficients and Nt is the noise series. The order of v(B)
is chosen arbitrarily according to their significant level. The
response weight values are estimated using multiple regression
approach. 

PROXY ARIMA MODEL OF THE NOISE 
In the Transfer Function model, a tentative or proxy Auto
Regressive Integrated Moving Average (ARIMA) model for the
noise series is used. The noise series produced by the
distributed lag model is compared to that of the proxy model
for their stationarity. The possible best-fit ARIMA model for the
output series of the univariate model can be applied [6]. For
instance, the best-fitted ARIMA model for the mean monthly
flow series is in the form of ARIMA (1,0,0). Thus ARIMA
(1,0,0) is choosen as the proxy noise model for the
development of a Transfer Function model of mean monthly
rainfall-runoff relationship and written as,

(1- φ 1B) Yt = C + at [9]

Considering only the noise terms,

[10]

where φ1 is the AR(1) parameter and at is the error series.

PRELIMINARY TRANSFER FUNCTION
MODEL
Having known both the dynamic and noise component (proxy
ARIMA) of the model, a Transfer Function model of order k is
thus a combination of its distributed lag model (Equation 6)

Figure 1: Transfer function modelling algorithm
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and ARIMA model of the disturbance series (Equation 10) and
written as

[11]

EXAMPLE OF THE MODELLING
IDENTIFICATION 
The following paragraphs provide a step-by-step examples in
developing a Transfer Function model for the mean monthly
rainfall-runoff series taken from an experimental catchment
[9]. Figure 2 shows the monthly rainfall-streamflow series of
the study catchment. The rainfall series is notated by Pt , as the
input variable while the flow series, Qt , as the output variable.
Rainfall series is the known factor affecting the variable of the
runoff series.

FEEDBACK CHECKING BETWEEN Pt AND Qt

Assuming that the serial relationship between Pt and Qt of order
k is written as

Qt = c + v0 Pt + v1Pt-1 + v2Pt-2 + .... vk Pt-k + Nt [12]

Thus the serial relationship between the present input series to
their past time-lag series and their past output series is written
as,

Pt = C + b1 Pt-1 + b2 Pt-2 + .... bk Pt-k + c1 Qt-1

+ c1 Qt-1 + c2 Qt-2 + .... + ck Qt-k + Nt [13]

Since the purpose of this procedure is to check whether
there is feedback effect of the output series on the input
series, thus our interest should be focused on the values of
c1, c2, ...., ck only. Using multiple regression approach, the
estimated of ci values up to order 3 are given in Table 1.
Except for the constant, C , it can be seen that all the
corresponding t values are small and not significant at 5%
level. Thus, at this particular juncture, decision is made that
there is no feedback effect from the past of the output (flow)
to the input series (rainfall).

FITTED REGRESSION LAG EQUATION 
The fitted multiple regression models to the mean-monthly
rainfall-runoff data of lagged values up to xt-3 is

Qt = 191.68 + 0137Pt - 0.0211Pt-1 - 0.059Pt-2 - 0.165Pt-3 + Nt

[14]

In fitting this model, it was assumed that the noise series Nt

belong to an ARIMA (1,0,0) model. The error series of this
proxy model appeared stationary. The statistical evidence of
Equation 14 is presented in Table 2. The plot of the transfer
function coefficients against their lags is shown in Figure 3. It
is clearly shown that a non-exponential pattern of the decaying
factor exists. Judging from Table 2 and Figure 3 and using
identification rules outlined by among others [10,11] the
following (b,r,s) model order is identified.

i. From the P values in column 5 of Table 2, it is clear that
there is no delay. The first significant coefficient is at lag 0. 
So the model constant b is set as 0. This has to be expected
with the mean monthly rainfall-runoff relationship in 
hydrology. 

ii. From Figure 2 the coefficient began to decay at lag 0. 
Thus s is 0. 

Figure 2: Mean monthly rainfall-runoff records of the study
catchment

Table 1: Statistical output of the feedback effect analysis of the 
mean monthly rainfall and  flow series

Parameter Standard   Coefficients t-test Significance 
deviation, σ level, P

Constant, C 28.42 5.896 0.000

c1 0.079 0.386 0.611 0.542

c2 0.086 -0.034 0.409 0.683

c3 0.085 0.010 0.123 0.903

Table 2: Estimates of the transfer function coefficients and their statistics

Parameter Coefficients   Std. Error t-test Significance 
level, P

C 191.684 47.682 4.020 0.000

v0 0.137 0.073 1.888 0.061

v1 -0.02114 0.073 -0.290 0.772

v2 -0.05906 0.073 -0.809 0.419

v3 -0.165 0.072 -2.278 0.024

Figure 3: Estimates of transfer function coefficient in equation 14,
showing a decaying pattern

(b,s,r) : (0,0,1)
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iii. The decay pattern of the coefficient (indicated by the dotted
line) follows a simple exponential decay. Thus r is 1.

An error series is thus obtained

Nt = Qt - 191.68 - 0.137Pt + 0.0211Pt-1 + 0.059Pt-2 + 0.165Pt-3

[15]

Figures 4 (a), (b) and (c) show the regression errors and their
ACF and PACF plots of model of Equation 15. As noticed by
the Auto-Correlation-Function (ACF) and the Partial-Auto-
Correlation-Function (PACF) plots of the Nt series, the
significant spikes at lags 1 and 3 suggest that AR(1) or MA(1)
or AR(3) or MA(3) or combination of ARIMA model could be
the best fitted model. Nevertheless using the Aikaike
Information Criteria (AIC) [11], the AR(1) model has the
smallest AIC value. Thus, in the case of mean monthly

Rainfall-Runoff relationship, ARIMA (1,0,0) model is adopted
as the best fitted error series and this conform with that of our
first assumed (proxy) model.

Now, with a dead time b = 0 , the general form of the
parsimonious for the full model of Equation 11 is

[16]

where,

ω(Β) = ω0 − ω1Β
δ(Β) = 1 − δ1Β

[17]

where,

Nt =             at and at is the error series.

Having known the estimated initial values of ω0 and φ1 , using
ordinary Least Square Method (LS) parameter ω1 , δ1 and
constant C are estimated. 

PARAMETER ESTIMATION USING
ORDINARY LEAST SQUARE (OLS) 
The objective is to find the best value of model parameter ω0,
ω1, δ1, φ1 and C, so that a best-fitted model to present the input-
output series relationship is obtained. A preliminary estimate is
chosen and the computer program refines the estimate
iteratively until the Sum of Square Errors (SSE) is minimised.
For a regression with one independent variable, these
estimators are [12], 

where X and Y are the sample means of Xi and Yi .

As practical rules [11] the initial or range value of ω0 and φ1

can be directly taken from the regression lag model result in
Equation 14. Thus, for mean monthly rainfall-flow
relationship, the final model is,

[18]

The final model parameters ω0, ω1, δ1, φ1 and C are estimated
iteratively using the ordinary Least Square (LS) method
algorithm. Equation 18 cannot be solved analytically because it
involves non-linear functions. Thus, in the present study the
parameters estimation were conducted iteratively using a
program written in MATLAB language. For the mean monthly
rainfall-runoff relationship of the present example, the
following model parameters are obtained:

Figure 4: (a) Regression errors from Equation 15
(b) ACF plot and 
(c) PACF plot

1
(1- φ1B)

009-014•transfer function model  3/19/06  1:48 PM  Page 12



Journal - The Institution of Engineers, Malaysia  (Vol. 66, No. 4, December 2005)

TRANSFER FUNCTION MODEL OF THE RAINFALL-RUNOFF RELATIONSHIP OF A DRAINED CATCHMENT

13

C = 159.53, ω0 = 0.1773, ω1 = 0.0010,
δ1 = 0.3030, φ1 = 0.2348

The sum of square error of the whole model is 37.45.

As from the previous section, with ω(Β) is of order zero 
(s = 0), δ(Β) is of order one (r = 1) and noise term is ARIMA
(1,0,0), the final model can now be written as,

[19]

where B = Pt-1 and at is the error series.

The Transfer Function model in Equation 19 has a Mean
Square Error of 37.45. The model coefficient also satisfies 
δ1  <1 , a criterion used to check the stability of a first order

model [13]. On these counts it is a reasonable model. The
final step was to check the error series of the final model. The
transfer function is of order (b,s,r) = (0,0,1) and noise term is
of (p,d,q) = (1,0,0).

MODEL INTERPRETATION 
The interpretation for the Transfer Function model in
Equation 19 for mean monthly rainfall-streamflow
relationships is as follows. When rainfall rises by one unit,
runoff responses immediately (b = 0). Then runoff rises (ω0 is
positive) initially by 0.177 units (ω0 = 0.177 ). Subsequent
time-lagged additions to the runoff series, Qt get smaller at
each succeeding period, according to the first order
exponential decay pattern, with the decay coefficient δ1 =
0.3030. The constant term (C = 159.53) indicates that the
flow series rises by 159.53 units at each time period in
addition to any other movements dictated by the transfer
function or disturbance ARIMA pattern.

MODEL PERFORMANCE AND
CONCLUSION 
The root mean square error (RMSE) and goodness of fit (R2)
method are used to examine the model performance. The
RMSE for model in Equation 19 for the mean monthly
rainfall-steramflow relationship is 31.88 mm, a value that is
reasonably small. Figure 5 compares the simulated flows
using the TF model in Equation 19 to be observed values.
Figure 6 is the plot of simulated series against observed
series. The relationship between the mean monthly rainfall

and the mean daily rainfall is fairly represented by a Transfer
function model in Equation 19. Nevertheless, based on the
scatter diagram in Figure 6 the model was underpredicted by
2% with R2 = 0.98. The transfer function models of the
rainfall-runoff relationship are capable of showing the
hydrologic dynamics of the catchment by means of their
steady state function.
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