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FABRIKASI DAN PENCIRIAN PENDERIA-BIO SELA-NANO ELEKTROD 
TEGAK BERDASAR SILIKON UNTUK PENGESANAN PROTEIN 

 
 
 

ABSTRAK 
 
 

Penderia-bio sela-nano merupakan peranti kelas baru yang telah menarik 
perhatian dan minat yg mendalam di kalangan penyelidik diatas potensi mereka di dalam 
aplikasi nanoteknologi. Peranti sela-nano ini yang difabrikasi menggunakan teknologi 
piawai Semikonduktor Komplimentari Logam Oksida (CMOS), mempunyai potensi untuk 
beroperasi sebagai simpang bio-molekul berikutan saiznya yang mengurangkan kesan 
pengutuban elektrod dengan menghiraukan frekuensi. Teknologi simpang ini adalah 
sistem penukar biologi-kepada-digital yang membolehkan penukaran masa nyata isyarat 
dielektrik bio-molekul kepada maklumat digit. Penderia-bio sela-nano ini mengandungi 
elektrod substratum silikon yang didop berat dan elektrod polisilikon yang dipisahkan 
secara tegak oleh peruang silikon oksida dengan jarak tetap 80nm. Pembangunan proses 
aliran di dalam penyelidikan ini mengandungi parameter – parameter dan resipi – resepi 
terperinci untuk menakrif peruang sela-nano ini. Dua (2) jenis topeng kerintangan 
digunakan di dalam proses ini iaitu Topeng Kerintangan Elektrod dan juga Topeng 
Kerintangan Pad Aluminium. Kedua – dua topeng kerintangan ini direkabentuk 
menggunakan perisian AutoCAD dan rekabentuknya dipindahkan ke atas topeng 
keringatan jenis lutsinar. Fokus utama penyelidikan ini ialah untuk menghasilkan peruang 
sela dengan menggunakan kaedah Plasma Terganding Beraruhan – Pemunar Ion 
Bertindak Balas (ICP – RIE) untuk memunar lapisan polisilikon dan asid hidroflorik (HF) 
penimbal untuk memunar lapisan silikon oksida. Walau bagaimanapun, silikon oksida 
tersebut tidak dipunar sepenuhnya, supaya lapisan yang tertinggal akan bertindak 
sebagai  peruang sela mekanikal. Langkah terakhir melibatkan proses pemercitan dan 
pencorakkan aluminium ke atas pad sentuh menggunakan teknik piawai litografi-foto. Ini 
dilakukan untuk membantu mengurangkan kebolehubahan di dalam rintangan sentuhan 
apabila peranti sela-nano ini dikuarkan. Matlamat utama di dalam penyelidikan ini adalah 
untuk merekabentuk, memfabrikasi, menciri, dan menguji penderia-bio sela-nano elektrod 
tegak berdasar silikon yang akan digunakan untuk mengesan protein sasaran di dalam 
larutan berair.       
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FABRICATION AND CHARACTERIZATION OF SILICON BASED VERTICAL 
ELECTRODE NANOGAP BIOSENSOR FOR PROTEIN DETECTION 

 
 
 

ABSTRACT 
 
 

The nanogap biosensor is a new class of device that has attracted attention and 
great interest among the researchers due to their potential applications in 
nanotechnology. This nanogap device which are fabricated using standard Complimentary 
Metal Oxide Semiconductor (CMOS) technology, have the potential to serve as the 
biomolecular junctions because their size reduces electrode polarization effects 
regardless of frequency. This junction technology is essentially a biology-to-digital 
converter system that enables real time conversion of biomolecular dielectric signals into 
digital information. This nanogap biosensor consists of a heavily doped silicon substrate 
electrode and poly-silicon electrode vertically separated by a fixed distance of 80 nm 
silicon oxide spacer. The process flow development in this research consists of detailed 
parameters and recipes to define the nanogap spacer. Two (2) types of masks are used in 
the process which are the Electrode Mask and the Aluminum Pad Mask. Both masks are 
designed by using the AutoCAD software and transferred onto a transparency. The main 
focus in this research is to create the gap spacer by using Inductive Coupled Plasma – 
Reactive Ion Etch (ICP- RIE) to etch the poly-silicon layer and buffered hydrofluoric acid 
(HF) to etch the silicon oxide layer. However, the silicon oxide was not completely etched, 
so that the remaining will act as the mechanical spacer gap. The final step involved 
sputtering and patterning aluminum onto contact pads using a standard photolithography 
technique. This was done to help minimize the variability in contact resistance when the 
nanogap device was probed. The overall goal of this research is to design, fabricate, 
characterize, and test the silicon based vertical electrode nanogap biosensor that will be 
used to detect and identify target proteins in aqueous solution.  
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CHAPTER 1 

 

BACKGROUND 

 

1.1 Introduction  

 

Understanding the relationship between protein structure and its function is 

paramount to unlocking life’s processes on a molecular scale, and it is important to 

develop efficient measurement tools necessary to record these relationships. 

Previously, researchers have extensively developed Deoxyribonucleic acid (DNA) 

chips for gene expression profiling and mutation mapping (Thomas, Hopkins, & 

Brady, 1998; Chang et al., 2007) over the past decade as seen in Figure 1.1. 

Wang et al. (2001) have reported electrochemical detection of DNA using 

magnetic particles for separation and concentration of target DNA. 

 

 

 

 

 

 

 

 

Figure 1.1: Example of a DNA Chip for Infectious Disease Diagnosis (“DNA Chip 
Fabrication Technology”, 2008) 
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Since the activity of encoded proteins can directly manifest gene function 

(Emili, & Cagney, 2000) and plays an essential role in molecular biological 

analysis (Kelvin, 2001), researchers and scientists must develop a protein biochip 

or biosensor that can identify target proteins and provide information that is useful 

to many medical applications including the diagnosis of cancer in the early stage 

and drug discovery.  

 

The basic construction concept of a protein chip, as seen in Figure 1.2, is 

somewhat similar to the DNA chip because it has a glass, plastic, and a silicon 

oxide surface immobilized with bio-molecules (Chang et al., 2007). Bio-molecules 

functional magnetic particles have been extensively applied in various 

bioelectronic applications.  

 

 

Figure 1.2: Example of a protein chip (DeFrancesco, 1999) 
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These bio-molecules are the fundamental building blocks of living cells such 

as double stranded DNA, protein structure and antibodies. The bio-molecules 

have been electrically characterized predominantly by a single or few molecule 

experiments (Joachim, 2000; Mayor, 2003; Ruttkowski et al., 2005). Specific 

junctions between the cells of these bio-molecules conduct electrical and chemical 

signals that result from various kinds of stimulation. The output signals will provide 

information of normal functions of the cells such as energy storage, information 

storage and retrieval, tissue regeneration, and sensing (Frank, n.d). 

 

In this chapter, an overview of biosensors and biomolecules will be 

presented, and the discussion continues with the objectives of this research, the 

research scope, the problem statement and lastly the whole dissertation layout of 

this thesis.  

 

1.2 Overview of Biosensor 

 

  A biosensor is an analytical device which converts a biological response 

into an electrical signal as seen in Figure 1.3. The term biosensor is often used to 

cover sensor devices used in order to determine the concentration of substances 

and other parameters of biological interest even when they do not utilize a 

biological system directly (Chaplin, 2004).  
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Figure 1.3: Schematic diagram of main components of biosensor (a) biocatalyst 
(b) transducer (c) amplifier (d) processor (e) display (Chaplin, 2004) 

 

Many of today's biosensor applications are similar, in that they use 

organisms which respond to toxic substances at a much lower level than human to 

warn us of their presence. Such devices can also be used in both environmental 

monitoring and water treatment facilities (Chaplin, 2004).  

 

Biosensors have the potential to affect many areas. Field application areas 

including medicine, physical therapy, music, and the video game industry, can all 

benefit from the introduction of biosensors (Tonnesen, & Withrow, 2008). The 

most widespread example of a commercial biosensor is the blood glucose 

biosensor, which uses an enzyme to break blood glucose down.  

 

Biosensors are typically classified by the type of recognition element or 

transduction element employed. A sensor might be described as a catalytic 

biosensor if its recognition element comprised an enzyme or series of enzymes, a 

living tissue slice (vegetal or animal), or whole cells derived from microorganisms 

such as bacteria, fungi, or yeast. The sensor might be described as a bio-affinity 
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sensor if the basis of its operation were a bio-specific complex formation. 

Accordingly, the reaction of an antibody with an antigen or hapten, or the reaction 

of an agonist or antagonist with a receptor, could be employed. In the former case, 

the sensor might be called an immunosensor (Tonnesen, & Withrow, 2008).  

 

There are three basic principles of detection of biosensors. Optical 

biosensors which are based on the phenomenon of surface plasmon resonance 

are evanescent wave techniques. This utilizes a property shown of gold and other 

materials, specifically that a thin layer of gold on a high refractive index glass 

surface can absorb laser light, producing electron waves on the gold surface 

(“Biosensors – Application and How Multiwalled Carbon Nanotubes Are Used In 

Sensor Production”, 2008). 

 

Electrochemical biosensors are normally based on enzymatic catalysis of a 

reaction that produces or consumes electrons where such enzymes are rightly 

called redox enzymes. The sensor substrate usually contains three electrodes, a 

reference electrode, an active electrode and a sink electrode. The target analyte is 

involved in the reaction that takes place on the active electrode surface, and the 

ions produced will create a potential which is subtracted from that of the reference 

electrode to give a signal (Yvon, 2008).  
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Piezoelectric sensors utilize crystals which undergo an elastic deformation 

when an electrical potential is applied to them. An alternating potential produces a 

standing wave in the crystal at a characteristic frequency. This frequency is highly 

dependent on the elastic properties of the crystal, such that if a crystal is coated 

with a biological recognition element the binding of a large target analyte to a 

receptor will produce a change in the resonance frequency, which gives a binding 

signal (Chaplin, 2004).   

 

The quality of the results obtained from sensors based on biological 

recognition elements depends most heavily on their ability to react rapidly, 

selectively, and with high affinity. Antibodies and receptors frequently react with 

such high affinity that the analyte does not easily become unbound. To reuse the 

sensor requires a time-consuming regeneration step. Nonetheless, if this step can 

be automated, semi continuous monitoring may be possible (Yvon, 2008). 

 

1.3 Problem Statement 

 

Over the past years, several groups have reported on carbon nanotube, 

semiconductor nanowire chemical (Kong et al., 2008; Steuermann et al., 2002), 

and biomolecular sensors (Kong et al., 2008; Steuermann et al., 2002; Cui, Wei, 

Park, & Lieber, 2001). The biosensing applications are in many ways, driven by 

the emerging concepts of system biology (Davidson et al., 2003; Kitano, 2002) and 

the translation of those concepts into the clinic (Hood, Heath, Phelps, & Lin, 2004) 
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