DECLARATION OF THESIS

<table>
<thead>
<tr>
<th>Author's full name</th>
<th>DAHLIA BINTI ZAKARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of birth</td>
<td>17th JULY 1984</td>
</tr>
<tr>
<td>Title</td>
<td>PROPERTIES AND BIODEGRADABILITY OF WASTE PAPER FILLED POLYURETHANE FOAMS COMPOSITES.</td>
</tr>
<tr>
<td>Academic Session</td>
<td>2009/2010</td>
</tr>
</tbody>
</table>

I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as:

- [] CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
- [] RESTRICTED (Contains restricted information as specified by the organization where research was done)*
- [] OPEN ACCESS I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)

1, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of ______ years, if so requested above).

Certified by:

SIGNATURE

840717-01-5130
(NEW IC NO. / PASSPORT NO.)

SIGNATURE OF SUPERVISOR

DR. IR. SALMAH HUSSEINSYAH
NAME OF SUPERVISOR

Date: ________________

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.
GRADUATE SCHOOL
UNIVERSITI MALAYSIA PERLIS

PERMISSION TO USE

In presenting this thesis in fulfillment of post graduated degree from the Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole part, for scholarly purpose maybe granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or part there of for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and Universiti Malaysia Perlis, for any scholarly use which may be made any material from my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or in part should be addressed to:

Dean of Graduated School
Universiti Malaysia Perlis (UniMAP)
1ST Floor, Block A, Taman Pertiwi
Indah, Jalan Kangar-Alor Star, Seriab,
Kangar Perlis.
This thesis titled Effect of Properties and Biodegradability of Waste Paper Filled Polyurethane Foams Composites was prepared and submitted by Dahlia Binti Zakaria (Matrix Number: 0730410154) and has been found satisfactory in terms of scope, quality and presentation as partial fulfillment of the requirement for the award of degree of Master of Science (Materials Engineering) in University Malaysia Perlis (UniMAP). The members of the Supervisory committee are as follows:

DR. IR SALMAH HUSSEINSYAH,
Lecturer
School of Materials Engineering
Universiti Malaysia Perlis
(Head Supervisor)

PN. AZLIN FAZLINA OSMAN,
Lecturer
School of Materials Engineering
Universiti Malaysia Perlis
(Co-Supervisor)

Checked and Approved by

(DR. IR. SALMAH HUSSEINSYAH)
Head Supervisor

(Date:____________)

School of Materials Engineering
Universiti Malaysia Perlis
2010
ACKNOWLEDGEMENT

Bismillahirrahmanirrahim,

Alhamdulillah, to The Great Almighty who grants me the knowledge, strength and determination to accomplish my MSc. research work.

My deepest gratitude to my main supervisor, Dr. Ir. Salmah Husseinsyah for her guidance, assistance and concern throughout my research. I also acknowledge Pn. Azlin Fazlina as my co-supervisor in this master research.

I would like to express my appreciation to technician especially Mr. Norzaidi, Mr. Nasir, Mr. Azmi, Mr. Wadi, Mr. Hadzrul and Mr. Ku Hasrin for their commitment and kindness helped me in laboratory. My appreciation also goes to Prof. San Myint, Dr. Supri, Dr. Surya and not forgetting to late lecturer Allahyarham Prof Nasir for their comment, knowledge and support.

Life is not enjoy without good friends, I send my eternal love and gratefulness to my moral support who are Nurul Izza, Raudhah, Siti Shuhadah, Ismail, Siti Rohana, postgraduate colleagues at School of Materials Engineering and School of Environmental Engineering.

My deepest thanks and most heart-felt gratitude to my beloved mum, Hjh. Juriah Ibrahim and my adored dad, Hj. Zakaria A. Shukor for their endless love, encouragement, prayers and patience that supported me through the whole course of this study. Finally, to my loving husband, Mr. Mohd. Hasnol Aini for his patience and had consistently giving encouragement and support that gave me a duplex spirit to work.

Last but not least, thanks to Universiti Malaysia Perlis for providing me with the research grant and also to the School of Materials Engineering for their superb facilities. Lastly, my deepest gratitude and appreciation to Ministry of Science and Innovation (MOSTI) for support me by giving the scholarship of National Science Fellowship (NSF).

Thanks for everything to everyone with the great memories I’ve got during this master research.
2.2.5 Basic Foam Components 16
2.2.6 Isocyanates 17
2.2.7 Diphenyl methane 4,4-diisocyanate (MDI) 20
2.2.8 Polyols 22
2.2.9 Water 27
2.3 Foam Fundamentals 28
 2.3.1 Foam Structure 29
 2.3.1.1 Compression Properties 32
 2.3.2 The Foaming Process 34
 2.3.3 Raw Material Conditioning 34
 2.3.4 Mixing 35
2.4 Cell Growth 37
 2.4.1 Cell Opening 39
 2.4.2 Cure 40
2.5 Surfactant 42
2.6 Catalysts 43
 2.6.1 Tertiary Amine Catalysts 45
 2.6.2 Organometallic Catalysts 47
 2.6.3 Triethylene diamine (TEDA) 48
 2.6.4 Methylene chloride (MC) 49
2.7 Fillers or Extenders 50
 2.7.1 Waste paper 51
 2.7.2 Polyurethane foam extended with biomass materials 53
2.8 Biodegradable of Foam 58
2.9 Thermal Analysis 59

CHAPTER 3. RESEARCH METHODOLOGY

3.1 Materials 61
 3.1.1 Raw Materials 61
3.1.2 Filler
 3.1.2.1 Paper Sludge 62
 3.1.2.2 Office White Paper/Old Newspaper 62
3.1.3 Catalysts 64

3.2 Preparation of Waste Paper Foam Composites 64
 3.2.1 Preparation of Waste Paper Foam with Different Filler Loading 64
 3.2.1.1 Preparation of waste paper foam with different catalyst 65
 3.2.1.2 Preparation of Partial Replacement TDI in MDI Old Newspaper Foam Composites 66

3.3 Physical and Mechanical Properties Measurements 67
 3.3.1 Density Test 67
 3.3.2 Compression Test 68
 3.3.3 Hardness Test 69
 3.3.4 Morphology Study 69
 3.3.5 Biodegradable Test 70
 3.3.6 Thermogravimetry Analysis (TGA) 71

CHAPTER 4. RESULTS AND DISCUSSION

4.1 Effect of Different Types and Loading of Waste Paper Filled Polyurethane Foam Composites 72
 4.1.1 Compressive Strength 72
 4.1.2 Compressive Modulus 73
 4.1.3 Density Properties 75
 4.1.4 Hardness 76
 4.1.5 Morphology Study 77
 4.1.6 Thermogravimetric analysis (TGA) 82
 4.1.7 Biodegradable Properties 87

4.2 Effect of Triethylene Diamine (TEDA) on Properties of Waste Paper Filled Polyurethane Foam Composites 94
 4.2.1 Compressive Strength 94
4.2.2 Compressive Modulus 97
4.2.3 Density Properties 100
4.2.4 Hardness 102
4.2.5 Morphology Study 105
4.2.6 Thermogravimetric analysis (TGA) 109

4.3 Effect of Methylene Chloride (MC) on Properties of Waste Paper Filled Polyurethane Foam Composites.
4.3.1 Compressive Strength 115
4.3.2 Compressive Modulus 117
4.3.3 Density Properties 118
4.3.4 Hardness 120
4.3.5 Morphology Study 122
4.3.6 Thermogravimetric analysis (TGA) 126

4.4 Effect of Different Types and Loading of Old Newspaper on Partial Replacement of TDI in MDI Foam Composites.
4.4.1 Compressive Strength 132
4.4.2 Compressive Modulus 133
4.4.3 Density Properties 133
4.4.4 Hardness 134
4.4.5 Morphology Study 135
4.4.6 Thermogravimetric analysis (TGA) 137

CHAPTER 5. CONCLUSIONS AND SUGGESTION FOR FURTHER WORK

5.1 Conclusions 140
5.2 Suggestion for Further Work 142

REFERENCES 143

APPENDIX A 154
Figure 2.1	Reaction between a polyisocyanate and polyol to form urethane.	8
Figure 2.2	Formation of urethane network.	9
Figure 2.3	First step of the blow reaction.	11
Figure 2.4	Second step of the blow reaction.	12
Figure 2.5	Formation of a biuret linkage.	12
Figure 2.6	The gelation or cross-linking reaction.	13
Figure 2.7	Formation of an allophanate linkage.	13
Figure 2.8	Schematic representation of the phase separation behavior in Polyurethane foams (Herrington & Hock, 1998).	15
Figure 2.9	Isomers of Toluene Diisocyanate.	18
Figure 2.10	Routes for the production of commercial TDI blends (Herrington & Hock, 1998).	19
Figure 2.11	Diphenyl methane 4,4-diisocyanate.	21
Figure 2.12	Repeat units of the common polyether polyols used in flexible foam production (Herrington & Hock, 1998).	23
Figure 2.13	Base catalyzed production of poly(propylene oxide) (Herrington & Hock, 1998).	24
Figure 2.14	Mechanism of base catalyzed ring-opening polymerization (Woods, 1982).	25
Figure 2.15	Side reaction resulting in a monofunctional chain (monol) (Woods, 1982).	26
Figure 2.16	Schematic compression stress-strain curve for a foam.	33
Figure 2.17 N,N-Dimethylcyclohexylamine. 45
Figure 2.18 Triethylenediamine. 46
Figure 2.19 Dichloromethane. 50
Figure 2.20 Molecule structure of cellulose. 53
Figure 3.1 Compression testing. 68
Figure 3.2 Scanning electron microscope machine model JSM-6-160L A. 70
Figure 4.1 The effect of different waste paper loading on compressive strength of polyurethane foam composites. 73
Figure 4.2 The effect of different waste paper loading on compressive modulus of polyurethane foam composites. 74
Figure 4.3 Effect of different waste paper loading on density of polyurethane foam composites. 76
Figure 4.4 The effect of different waste paper loading on hardness of polyurethane foam composites. 77
Figure 4.5 Scanning electron micrograph of polyurethane foam at magnification 50X. 79
Figure 4.6 Scanning electron micrograph of paper sludge foam composites (20 php PS) at magnification 50X. 79
Figure 4.7 Scanning electron micrograph of paper sludge foam composites (40 php PS) at magnification 50X. 80
Figure 4.8 Scanning electron micrograph of office white paper foam composites (20 php OWP) at magnification 50X. 80
Figure 4.9 Scanning electron micrograph of office white paper foam composites (40 php OWP) at magnification 50X. 81
Figure 4.10 Scanning electron micrograph of old newspaper foam composites (20 php ONP) at magnification 50X. 81
Figure 4.11 Scanning electron micrograph of old newspaper foam (40 php ONP) at magnification 50X. 82
Figure 4.12 Thermogravimetric analysis (TGA) curves of paper sludge foam composites at different filler loading. 84
Figure 4.13 Thermogravimetric analysis (TGA) curves of OWP foam composites at different filler loading.

Figure 4.14 Thermogravimetric analysis (TGA) curves of ONP foam composites at different filler loading.

Figure 4.15 Effect of biodegradation on the weight loss of PS foam composites.

Figure 4.16 Effect of biodegradation on the weight loss of OWP foam composites.

Figure 4.17 Effect of biodegradation on the weight loss of ONP foam composites.

Figure 4.18 Scanning electron micrograph of PU foam after 6 months buried in soil.

Figure 4.19 The scanning electron microscope of PS foam composites (20 php PS) after 6 months buried in soil at magnification 50X.

Figure 4.20 The scanning electron microscope of PS foam composites (40 php PS) after 6 months buried in soil at magnification 50X.

Figure 4.21 The scanning electron microscope of OWP foam composites (20 php OWP) after 6 months buried in soil at magnification 50X.

Figure 4.22 The scanning electron microscope of OWP foam composites (40 php OWP) after 6 months in soil at magnification 50X.

Figure 4.23 The scanning electron microscope of ONP foam composites (20 php ONP) after 6 months in soil at magnification 50X.

Figure 4.24 The scanning electron microscope of ONP foam composites (40 php ONP) after 6 months in soil at magnification 50X.

Figure 4.25 The effect of PS loading on compressive strength of PS foam composites with and without TEDA catalyst.

Figure 4.26 The effect of OWP loading on compressive strength of OWP foam composites with and without TEDA catalyst.

Figure 4.27 The effect of ONP loading on compressive strength of ONP foam composites with and without TEDA catalyst.

Figure 4.28 The effect of different waste paper loading on compressive strength of waste paper foam composites with TEDA catalyst.

Figure 4.29 The effect of PS loading on compressive modulus of PS foam composites with and without TEDA catalyst.
Figure 4.30 The effect of OWP loading on compressive modulus of OWP foam composites with and without TEDA catalyst.

Figure 4.31 The effect of ONP loading on compressive modulus of ONP foam composites with and without TEDA catalyst.

Figure 4.32 The effect of different waste paper loading on compressive modulus of waste paper foam composites with TEDA catalyst.

Figure 4.33 The effect of different waste paper loading on the density of waste paper foam composites with TEDA catalyst.

Figure 4.34 The effect of PS loading on density of PS foam composites with and without TEDA.

Figure 4.35 The effect of PS loading on hardness of PS foam composites with and without TEDA catalyst.

Figure 4.36 The effect of OWP loading on hardness of OWP foam composites with and without TEDA catalyst.

Figure 4.37 The effect of ONP loading on hardness of ONP foam composites with and without TEDA catalyst.

Figure 4.38 The effect of waste paper loading on the hardness of waste paper foam with TEDA catalyst.

Figure 4.39 Scanning electron micrograph of polyurethane foam with TEDA catalyst at magnification 50X.

Figure 4.40 Scanning electron micrograph of PS foam composite (20 php PS) with TEDA catalyst at magnification 50X.

Figure 4.41 Scanning electron micrograph of PS foam composite (40 php PS) with TEDA catalyst at magnification 50X.

Figure 4.42 Scanning electron micrograph of OWP foam composite (20 php OWP) with TEDA catalyst at magnification 50X.

Figure 4.43 Scanning electron micrograph of OWP foam composite (40 php OWP) with TEDA catalyst at magnification 50X.

Figure 4.44 Scanning electron micrograph of ONP foam composite (20 php ONP) with TEDA catalyst at magnification 50X.

Figure 4.45 Scanning electron micrograph of ONP foam composite (40 php ONP) with TEDA catalyst at magnification 50X.

Figure 4.46 Thermogravimetric analysis (TGA) curves of old newspaper composites foam with TEDA at 0, 20, 40 php ONP.
Figure 4.47	Thermogravimetric analysis (TGA) curves of old newspaper foam composites (40 php ONP) with and without TEDA.	111
Figure 4.48	The effect of ONP loading on the compressive strength of ONP foam composites with and without MC catalyst.	116
Figure 4.49	The effect of filler loading on the compressive strength of waste paper foam composites with methylene chloride (MC).	116
Figure 4.50	The effect of ONP loading on the elastic modulus of ONP foams composites with and without MC catalyst.	117
Figure 4.51	The effect of filler loading on the compressive modulus of waste paper foams composites with MC catalyst.	118
Figure 4.52	The effect of different waste paper loading on density of waste paper foam composites with MC catalyst.	119
Figure 4.53	The effect of PS loading on density of PS foam composites with and without MC catalyst.	119
Figure 4.54	The effect of PS loading on hardness of PS foam composites with and without MC catalyst.	120
Figure 4.55	The effect of OWP loading on hardness of OWP foam composites with and without MC catalyst.	121
Figure 4.56	The effect of ONP loading on hardness of ONP foam composites with and without MC catalyst.	121
Figure 4.57	The effect of waste paper loading on the hardness of waste paper foam with MC catalyst.	122
Figure 4.58	Scanning electron micrograph of polyurethane foam composites with MC catalyst at magnification 50X.	123
Figure 4.59	Scanning electron micrograph of PS foam composites (20 php PS) with MC catalyst at magnification 50X.	123
Figure 4.60	Scanning electron micrograph of PS foam composites (40 php) with MC catalyst at magnification 50X.	124
Figure 4.61	Scanning electron micrograph of OWP foam composites (20 php OWP) with MC catalyst at magnification 50X.	124
Figure 4.62	Scanning electron micrograph of OWP foam composites (40 php OWP) with MC catalyst at magnification 50X.	125
Figure 4.63	Scanning electron micrograph of ONP foam composites (20 php ONP) with MC catalyst at magnification 50X.	125
Figure 4.64 Scanning electron micrograph of ONP foam composites (40 php ONP) with MC at magnification 50X.

Figure 4.65 Thermogravimetric analysis (TGA) curves of old newspaper foam composites with MC catalyst at different loading.

Figure 4.66 Thermogravimetric analysis (TGA) curves of old newspaper foam composites (40 php ONP) with and without MC catalyst.

Figure 4.67 Compressive strength of MDI/ONP and TDI/MDI/ONP foam composites with different filler loading.

Figure 4.68 Compressive modulus of MDI/ONP foam and MDI/TDI/ONP foam composites with different filler loading.

Figure 4.69 Density of MDI/ONP foam and MDI/TDI/ONP foam composites with different filler loading.

Figure 4.70 Hardness of MDI/ONP and MDI/TDI/ONP foam composites with different filler loading.

Figure 4.71 Scanning electron micrograph of TDI/MDI/ONP foam composites at magnification 50X.

Figure 4.72 Scanning electron micrograph of TDI/MDI/ONP foam composites (20 php ONP) at magnification 50X.

Figure 4.73 Scanning electron micrograph of TDI/MDI/ONP foam composites (40 php ONP) at magnification 50X.

Figure 4.74 Thermogravimetric analysis (TGA) curves of TDI/MDI/ONP composites foam with different filler loading.

Figure 4.75 Comparison thermogravimetric analysis (TGA) curves of MDI/ONP and TDI/MDI/ONP foam composites.
<p>| Table 2.1 | Reactivity of Isocyanates with Active Hydrogen Compounds (Herrington & Hock, 1998). | 14 |
| Table 2.2 | Formulation Basics for Flexible Polyurethane Foams (Herrington & Hock, 1998). | 17 |
| Table 2.3 | Diphenyl methane 4,4-diisocyanate (MDI) physical properties (Ulrich, 1996). | 21 |
| Table 3.1 | Semi quantitative analysis of wastw paper using an X-Ray Fluorescences Spectrometer Rigaku RIX 3000. | 63 |
| Table 3.2 | Formulation of waste paper foam composites. | 65 |
| Table 3.3 | Formulation of waste paper foam composites with triethylene diamine TEDA and methylene chloride (MC). | 66 |
| Table 3.4 | Formulation of MDI/TDI/PEG with old newspaper foam composites. | 67 |
| Table 4.1 | Percentage weight loss of paper sludge (PS) foam composites at different temperature and loading. | 85 |
| Table 4.2 | Percentage weight loss of office white paper (OWP) foam composites at different temperature and loading. | 86 |
| Table 4.3 | Percentage weight loss of old newspaper (ONP) foam composites at different temperature and loading. | 86 |
| Table 4.4 | Weight loss of waste paper foam composites after biodegradable in soil for 6 months. | 89 |
| Table 4.5 | Percentage weight loss of paper sludge (PS) foam composites produced with and without TEDA at different temperature. | 112 |
| Table 4.6 | Percentage weight loss of office white paper (OWP) foam composites with and without TEDA at different temperature. | 113 |</p>
<table>
<thead>
<tr>
<th>Table 4.7</th>
<th>Percentage weight loss of old newspaper (ONP) foam composites with and without TEDA at different temperature.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.8</td>
<td>Percentage weight loss of paper sludge (PS) foam composites with and without MC catalyst at different temperature.</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Percentage weight loss of office white paper (OWP) foam composites with and without MC catalyst at different temperature.</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Percentage weight loss of old newspaper (ONP) foam composites with and without MC catalyst at different temperature.</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Percentage weight loss of MDI/ONP and TDI/MDI/ONP foam at different temperature.</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>µ</td>
<td>Micron</td>
</tr>
<tr>
<td>µm</td>
<td>Micro meter</td>
</tr>
<tr>
<td>ABA</td>
<td>Alternative blowing agents</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CFC</td>
<td>Chlorofluorohydrocarbons</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DBTL</td>
<td>dibutyl tin dilaurate</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>EO</td>
<td>Ethylene oxide</td>
</tr>
<tr>
<td>FPF</td>
<td>Flexible polyurethane foam</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>HDI</td>
<td>Hexamethylene diisocyanate</td>
</tr>
<tr>
<td>HFC</td>
<td>Hydrofluorocarbons</td>
</tr>
<tr>
<td>HR</td>
<td>High resiliency</td>
</tr>
<tr>
<td>IPDI</td>
<td>Isophorone diisocyanate</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>LOI</td>
<td>Loss on ignition</td>
</tr>
<tr>
<td>m</td>
<td>mass</td>
</tr>
<tr>
<td>MC</td>
<td>Methylene Chloride</td>
</tr>
</tbody>
</table>
Md Mass after hydrolysis
MDI Diphenyl methane 4,4’-diisocyanate
MEKO Methyl ethyl ketoxime
min minute
mm millimeter
Mo Mass before hydrolysis
MPW Mixed-paper waste
OWP Office White Paper
ONP Old Newspaper
Pd Palladium
PEG Polyethylene glycol
PMDI Polymeric diphenyl methane 4,4’-diisocyanate
pphp Parts per hundred polyol
PS Paper Sludge
PU Polyurethane
SEM Scanning electron microscope
RNHCOOH Carbamic acid
T Temperature
Tc Crystallization temperature
Tg Glass transition temperature
Tm Melting temperature
TDI Toluylene 2,4-diisocyanate
TEDA Triethylene diamine
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGA</td>
<td>Thermogravimetry Analysis</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>v</td>
<td>volume</td>
</tr>
<tr>
<td>VPF</td>
<td>Variable pressure foaming</td>
</tr>
<tr>
<td>Wt</td>
<td>Weight</td>
</tr>
<tr>
<td>$\Delta H^\circ_{f(com)}$</td>
<td>Heat of fusion of composites</td>
</tr>
<tr>
<td>γ</td>
<td>Interfacial surface tension</td>
</tr>
<tr>
<td>Φ</td>
<td>Relative density</td>
</tr>
<tr>
<td>ρ_f</td>
<td>Density of foam</td>
</tr>
</tbody>
</table>
SIFAT-SIFAT DAN KEBOLEHBIOROSOTAN SISA KERTAS TERISI KOMPOSIT BUSA POLIURETANA

ABSTRAK

PROPERTIES AND BIODEGRADABILITY OF WASTE PAPER FILLED POLYURETHANE FOAMS COMPOSITES

ABSTRACT

The research is focused to study the properties of polyurethane foam reinforced with different types and content of waste paper. The comparison of the effects of three types of waste paper, such as paper sludge (PS), old newspaper (ONP) and office white paper (OWP) on physical, mechanical, thermal, biodegradable properties and morphology of PU foam was studied. The result show ONP foam significantly highest value of compressive strength, compressive modulus and hardness compared than PS and OWP foam composites. The increasing filler loading improved the mechanical properties but reduced the density of foam. Scanning electron microscopy (SEM) study indicated that the addition of waste paper in polyurethane foam reduced the open cell structure of foam. The biodegradation study of waste paper foam composites increased with increasing of waste paper loading. However, the ONP foam composites showed higher degradation in soil compared to the OWP foam and followed by PS foam composites. The results of thermogravimetric analysis (TGA) showed PS foam composites has highest thermal stability compared with OWP and ONP foam composites. The PS foam composites exhibit the highest of crystallization. The presence of the triethylene diamine (TEDA) as catalyst has improved the compressive strength, compressive modulus, hardness and density of waste paper foam composites. The thermal stability of waste paper foam composites with TEDA is higher than waste paper foam composites without TEDA. The micrographs of waste paper foam composites with TEDA show the addition of filler and catalyst can affect the crosslinking of the foam composites to produce the smaller cell structure. The waste paper foam composites with methylene chloride (MC) have higher of compressive strength, compressive modulus and hardness but lower the density and thermal stability compare to waste paper foam composites without MC. The morphology of waste paper foam composites with different filler loading with MC show smaller open cell compared to without catalyst. Partial replacement of toluene diisocyanate (TDI) in diphenyl methane 4,4’-diisocyanate (MDI) of ONP foam indicates higher compressive strength, compressive modulus, hardness and density compared to MDI/ONP foam composites. The micrograph of TDI/MDI/ONP foam composites show that the foam close cell structure compared to MDI/ONP foam composites. The TDI/MDI/ONP foam composites have better thermal stability than MDI/ONP foam composites.
CHAPTER 1

INTRODUCTION

1.1 Research Background

1.1.1 The Necessity for Biodegradable Plastic

Disposal of plastic waste into landfills has became increasingly prohibitive due to high costs and legislative pressure. Growing environmental awareness and reductions in available landfill capacity have prompted plastics recycling programs in most developed countries (Joseph, 1995). In the past, plastic polymeric materials have been designed to degradation. However, with mounting environmental and legislative pressure to reduce plastic and packaging wastes, there has been an increased demand for biodegradable polymers that are compatible with the environment (Mohee et al., 2007). Plastic foams are synthetic polymers that are used widely throughout the world for various applications. Synthetic polymeric foams have pervaded every aspect of modern life. Although foams provide numerous benefits, they also cause a significant environmental problem because of their recalcitrant and xenobiotic nature. Biodegradation may provide solution to the problem, but not enough is known about the biodegradation process of synthetic plastic and plastic based foams (Gautam et al., 2007). Petroleum based foams
are, like most of the plastics and resins from which they are issued, non-biodegradable, even over several decades time (Perkowitz, 2000).

An obvious benefit of recycling and use of biodegradable plastic is that both reduce the requirement for landfill or incineration of waste materials. Biodegradable plastics can be managed by composting, generally perceived as more environmentally beneficial than landfill or incineration. In fact, advocates of composting often refer to it as natural or biological recycling (Fenton, 1992). Composting, in contrast, is designed to accelerate biodegradation and serve as an alternative to landfilling. Use of biodegradable plastics permits disposal through composting and therefore can reduce the burden on landfill if system to direct the product or package to composting are in place and utilized. In addition, for products that pose a litter problem, the use of biodegradable plastics can greatly reduce their prevalence and longevity in the environment (Freedonia, 2004).

The ASTM standard D5988-03, biodegradability of plastic materials has been defined as the capability of undergoing decomposition into carbon dioxide, methane, water, inorganic compounds or biomass predominantly by the enzymatic action of microorganisms. The standard requires 60–90% decomposition of the plastic within 60–180 days in a composting environment (Mohee et al., 2007).

The increasing research interest in biodegradable polymers over the past two decades has led to the availability of a large variety of novel polymers with claims of biodegradability. Among these polymers, polyurethanes (PUs) are an interesting family of materials. The PUs are segmented multiphase elastomers. They are a unique class of polymers because a large variety of PUs with widely varying physical and chemical properties can be synthesized. Recently, biodegradable materials have gained importance