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PENCIRIAN DAN SIFAT-SIFAT KOMPOSIT POLIPROPILENA (PP)/ ETILENA 

PROPILENA DIENA MONOMER (EPDM) TERISI KALSIUM KARBONAT 

 

 

ABSTRAK 

 

 

 Komposit elastomer termoplastik bagi adunan polypropilena (PP) dan etilena propilena diena 

monomer (EPDM) yang diperkuat kalsium karbonat telah dikaji. Kesemua komposit disediakan 

menggunakan pencampur bilah-Z pada 180
o
C dan kelajuan rotor 50 rpm. Kesan pembebanan pengisi 

kalsium karbonat terisi komposit PP/EPDM keatas sifat-sifat mekanikal, penyerapan air, morfologi dan 

sifat-sifat terma telah dikaji. Secara umumnya, didapati pembebanan kalsium karbonat yang semakin 

meningkat telah meningkatkan modulus elastisiti, penyerapan air, kestabilan terma dan penghabluran 

komposit didapati berkurang. Manakala kekuatan tensil dan pemanjangan pada takat putus didapati 

berkurang. Agen pengserasi, MAPP atau agen pengkupel 3-APE digunakan untuk meningkatkan sifat-sifat 

mekanikal komposit. Kehadiran MAPP atau 3-APE telah meningkatkan kekuatan tensil, modulus elastisiti, 

kestabilan terma, penghabluran komposit kecuali pemanjangan pada takat putus dan penyerapan air yang 

didapati semakin berkurang. Kajian mikroskop electron penskanan (SEM) menunjukkan bahawa 

kehadiran MAPP atau 3-APE telah meningkatkan  interaksi antara muka pengisi-matrik. Kesan modifikasi 

kimia kalsium karbonat dengan asid akrilik (AA) untuk komposit PP/EPDM telah meningkatkan kekuatan 

tensil, modulus elastisiti, kestabilan terma dan penghabluran komposit tetapi penyerapan air didapati 

berkurang. Morfologi SEM menunjukkan komposit rawatan dengan asid akrilik menghasilkan penyebaran 

pengisi di dalam matrik yang lebih baik. Kesan pemvulkanan dinamik bagi komposit PP/EPDM/CaCO3 

menunjukkan kekuatan tensil, pemanjangan pada takat putus dan modulus elastisiti yang lebih tinggi 

tetapi penyerapan air yang rendah. Kajian SEM pada permukaan patahan tensil komposit pemvulkanan 

dinamik menunjukkan peningkatan interaksi antara muka di antara kalsium karbonat dan matrik 

PP/EPDM. Komposit pemvulkanan dinamik mununjukkan kestabilan terma yang lebih baik dan 

penghabluran yang lebih tinggi. 
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CHARACTERIZATION AND PROPERTIES OF CALCIUM CARBONATE FILLED 

POLYPROPYLENE (PP) / ETHYLENE PROPYLENE DIENE TERPOLYMER (EPDM) 

COMPOSITES 

 

 

ABSTRACT 

 

 Composites of thermoplastic elastomer blend of polypropylene (PP) and ethylene propylene 

diene terpolymer (EPDM) reinforced calcium carbonate (CaCO3) was investigated. All the composites 

were prepared by using Z-blade mixer at 180
o
C and rotor speed 50 rpm. The effect of filler loading of 

calcium carbonate filled PP/EPDM composites on mechanical properties, water absorption, morphology 

and thermal properties were studied. In general, increased of calcium carbonate loading have increased 

the value of modulus of elasticity, water absorption, thermal stability, whereas tensile strength, elongation 

at break and crystallinity of composites reduced. A compatibilizer, (MAPP) or coupling agent, (3-APE) was 

used to improve the mechanical properties of composites. The presence of MAPP or 3-APE improved the 

tensile strength, modulus of elasticity, thermal stability and crystallinity composites, whereas elongation at 

break and water absorption reduced. Results from scanning electron microscope (SEM) show that filler-

matrix interaction was improved with incorporation of MAPP or 3-APE. The effect chemical modification of 

calcium carbonate with acrylic acid (AA) in PP/EPDM composites increased the tensile strength, 

elongation at break, modulus of elasticity, thermal stability and crystallinity composite but water absorption 

reduced. The micrograph SEM showed the treated composites with acrylic acid has better dispersion in 

PP/EPDM matrix. Effects of dynamic vulcanization on the properties of PP/EPDM/CaCO3 composites 

exhibit higher tensile strength, elongation at break and modulus of elasticity but lower water absorption. 

The SEM study of tensile fracture surface of dynamic vulcanized composites show interfacial interaction 

between calcium carbonate and PP/EPDM matrix has been improved. The dynamic vulcanized 

composites also exhibit better thermal stability and higher crystallinity.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  Research Background 

Nowadays in new era of technologies, the improvement of material becomes an 

important in industries. Many researchers has come out with several ideas in order to 

meet the material properties requirement for most modern applications includes 

automotive, aerospace, underwater and etc. Besides, needs of sophisticated materials 

that friendly environment playing an important role due to ecological reasons.   

In recent years, polymers become an important engineering materials and the 

number of applications is increasing steadily. Polymers have increasingly replaced 

metallic components in an amazing array of applications, including automobiles, 

microelectronics, composites, civilian and military aircraft, sporting goods, toys, 

appliances, and office equipment, due to their many unique and diverse properties. 

Humans have taken advantage of the versatility of polymers for many centuries in the 

form of  naturally occurring polymers (those derive from plants and animals) include  

tars,  gums, resins, oils, wood, rubber, cotton, wool, leather, and silk. The introduction 

of these revolutionary materials began an explosion in polymer research that is still 

going on today. 

“Polymer” word literally means “many units”.  In other words, repeating many 

structural unit of a plastics chain is termed as ‘mers’. Also, polymer is a branch of 

carbon chains from petrol-chemical industry. According to the ASTM, the definition of a 

plastic is; “A material that contains as an essential ingredient an organic substance of 
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large molecular weight, is solid in its finished state, and at some stage in its 

manufacture or in its processing into finished can be shaped by flow”. Polymers are 

generally classified into three main groups according to their structure, properties and 

use as thermoplastics, thermosetting plastic and elastomers. The advantages of 

polymers are low density, corrosion resistance and resistance to chemical, high 

strength-to-weight ratio, particularly when reinforced, low electrical and thermal 

conductivity, noise reduction, relatively low cost, ease if manufacturing and complexity 

of design possibilities etc. The modification of polymer molecular architecture either 

during or post polymerization includes (i) copolymerization of more than one polymer 

(ii) control of monomer architecture (iii) post polymerization polymer reactions (iv) 

introduction of functional groups (Ebewele, 2000). 

Polymer composites receive increasingly interest because it is a relatively easy 

way to obtain new materials with balanced properties. The name polyolefinic 

thermoplastic elastomer (TPE) has been coined to refer to a specific family of 

thermoplastic alloys that offers the main advantages of two types of polymeric 

materials: elastomeric behavior at room temperature and thermoplastic behavior at 

processing temperatures. This dual behavior is obtained because the morphology 

consists of small rubber particles dispersed in a continuous thermoplastic matrix. 

To date, thermoplastic elastomer compositions based on polypropylene (PP)/ 

ethylene polypropylene diene terpolymer (EPDM) composites have increased 

tremendously in popularity.  These composites are used for a wide range of products 

including automotive parts such as rub strips, sight shields, bumper covers, side 

claddings and etc. PP/EPDM composites also excellent weatheability, low density and 

relatively low cost make them a common component in a number of exterior and 

interior automotive applications (De and Bhowmick, 1990).   

Polypropylene is an economical material that offers a combination of 

outstanding physical, chemical, mechanical, thermal and electrical properties not found 

in any other thermoplastic. In addition, toward the comparison with low or high density 
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polyethylene, it has a lower impact strength, but superior working temperature and 

tensile strength. Polypropylene (PP) is one of the important commodity polymers. It is 

widely used in automobile, household appliance and construction industry due to its 

balanced mechanical properties. The application of PP, however, is limited by its 

brittleness, especially at low temperature, as well as low stiffness at elevated 

temperature. 

Most commercial elastomer are based on ethylene propylene diene terpolymers 

(EPDM), because of its stability against high temperatures, oxygen and ozone, thus 

giving to the corresponding good heat, oxidation and ozone resistance. Ethylene 

propylene diene terpolymer (EPDM) is an unsaturated polyolefin rubber with wide 

applications, it has become extensively used in making automotive tire sidewalls, cover 

stripes, wires, cables, hoses, belting, footwear, roofing barriers and sporting goods. 

 In the past decade, the use of inorganic filler to improve the physical properties 

of polymer composites has become widespread in the production of high-performance 

materials. Adding inorganic filler can enhance the stiffness but result in a decrease of 

toughness. To overcome the drawback resulted by only adding elastomer or filler, a lot 

of work has been done on polymer/elastomer/filler ternary system, where both 

elastomer and filler were used to enhance the toughness and stiffness simultaneously 

(Zhang et al., 2000; Jancar & Dibenedetto, 1995). 

Fillers are essential components of multiphase composite structures. The use of 

fillers in the preparation of polymeric compositions increases every year, because of 

the advantages which can be obtained, such as reduction in the final price of the 

product, improvement in process ability and achievement of specific. Usually, fillers 

form the minor dispersed phase in a polymeric matrix. Various fillers have been 

employed in ternary phase polymer composites. These include talc, calcium carbonate 

(Kolarik et al., 1990) and kaolin. In particular, the fillers can improve the toughness, 

processibility, heat distortion temperature of polymer blends, and conductive fillers can 

even make the insulative polymer blend to become a conductive one.  
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Mineral filler such as calcium carbonate (CaCO3) used in the PP/EPDM 

composites to reduce cost and improve the properties of the composites. Besides, this 

type of filler has a primary function as a mechanical property improver likes slightly 

increased of modulus of elasticity (Zuiderduin et al., 2003; Xanthos, 2005). It is 

available in different grades: dry processed, wet or water ground and can be easily 

surface treated (Lazzeri et al., 2005) and usually micron-sized (easier to disperse) with 

a broad size distribution and irregular shape (Osman et al., 2004).  

Gonzalez et al., (2002) used CaCO3 particles treated by different coupling 

agents to modify the mechanical properties of PP/HDPE blends. They found that, due 

to the particular characteristics of the coupling agents, each treated CaCO3 particles 

gave rise to increase in a specific mechanical property. The main problem of 

preparation of CaCO3 thermoplastic elastomer composite is the incompatibility of 

hydrophilic CaCO3 and hydrophobic thermoplastic elastomer matrix. 

Maleic anhydride grafted polypropylene (MAPP) was used as a compatibilizer in 

order to improve the properties of PP/EPDM/CaCO3 composites. MAPP has been used 

as a coupling agent to promote the filler-matrix adhesive strength. Furthermore, the PP 

part of MAPP adheres to the long hydrophobic chains of the PP virgin matrix and 

lowers the surface tension of the fibres and form a strong interface (Mohanty and 

Nayak, 2007).  MAPP have been widely used to improve the interfacial interaction 

between the components in polymer blends and polymer composites to maximize the 

physical properties (Moad, 1999). Qui et al., (2005) reported that the novel technique 

for preparing maleic anhydride grafted polypropylene offers new opportunities in 

modification of polyolefins, which has also the advantages of solventless, lower 

process temperature, energy efficient, low cost, and simple running process.  

Since 1950’s, silanes have been used, whereby it had been instrumental in 

producing successful fibreglass reinforced thermoset polyester composite applied on 

automotive industry. The incorporation of coupling agents onto the filler surface is an 

obvious solution in order to modify interaction or increased the bonding of filler to 
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polymer by either altering the strength or changing the size of the interaction. Liang and 

Li, (2000) reported that the treatment of glass beads with silane coupling agents have 

successfully improved the tensile strength and modulus of elasticity of PP. Demjen, 

(1997) on studied of the treatment of calcium carbonate using eight types of silane 

coupling agents to determine their effect on PP/CaCO3 composite. The incorporation of 

aminofuctional silane coupling agents was carried out in the reactive coupling of PP 

and CaCO3, in which both are inactive components, leading to increased strength and 

decreased deformability. Bezerdi et al., (1998) concluded that the reactive 

(aminosilane) coupling agent lead to an increase in composite strength in their 

research used linear elastic fracture mechanics to characterize fracture resistance of 

PP/CaCO3 composites with aminosilane coupling agent.  

Some of academicians, researchers or industrial scientists have a significant 

interest in developing techniques for modifying the surfaces of solid substrates without 

altering the bulk properties (Ma et al., 2001). Acrylic acid was classified as surface 

modifiers in polymer composites industry. Some of the method used for rubber 

surfaces is surface modification using acrylic acid. According to Kaynak et al., (2001), 

the interface between an epoxy resin matrix and recycled scrap car tire rubber particles 

can be improved by the modification of the surfaces of rubber particles. Okrasa et al., 

(2001) reported that the larger modification of the molecular relaxation processes is 

observed in the hydroxypropyl cellulose: poly (Acrylic acid), (HPC:poly(AA)) 

composites, where the stronger intermolecular interactions are present.  

Vulcanization or cross-linking is the process in which mainly polymer is 

converted from a plastic state to an elastic state or a hard rubber state. The process is 

brought about by linking of macromolecules at their reactive sites (Ismail et al., 2004). 

Dynamic vulcanization (DV) is a process of cross-linking the elastomer during its melt 

mixing with molten plastic. It can improve properties such as mechanical properties 

(Mehrabzadeh and Delfan, 2000), resistance to heat and resistance to attack by fluid 

(Ismail et al., 2001). It is quite obvious that the cross-link density of the dispersed 
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