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ABSTRAK

UJIAN KEBOLEHARAPAN SUHU BERKITAR BAGI PAKEJ BEBOLA
TATASUSUNAN GRID (BGA) MENGGUNAKAN ANALISA UNSUR

TERHINGGA (FEA)

Ujian suhu berkitar adalah salah satu daripada ujian kebolehharapan yang selalunya digunakan
untuk menilai kebolehharapan sambungan pateri di dalam pembungkusan mikroelektronik. Tujuan ujian suhu
berkitar adalah untuk mencirikan mekanisme kegagalan mekanik haba ke atas pembungkusan
mikroelektronik. Penyelidikan ini menggunakan keupayaan komputer untuk melakukan ujian suhu berkitar
melalui analisa unsur terhingga. Analisa unsur terhingga untuk ujian suhu berkitar dijalankan dengan
menggunakan perisian unsur terhingga ANSYS™. Satu per empat model pakej bebola tatasusunan grid
(BGA) dibina secara berparameter menggunakan APDL (bahasa dan makro rekabentuk berparameter
ANSYS™). Dua jenis analisa digunakan untuk menilai keupayaan keboleharapan sambungan pateri ke atas
pakej BGA, iaitu analisa secara fizik dan analisa secara statistik. Model lesu berdasarkan tenaga Darveaux
digunakan sebagai persamaan juzuk untuk pateri. Keadaan suhu berkitar G berdasarkan piawaian JEDEC
JESD22-A104 digunakan di dalam analisa unsur terhingga. Kesan perubahan suhu berkitar dikaji dengan
menggunakan beberapa nilai berbeza bagi masa inap dan masa tanjakan. Dua kaedah rekabentuk ujikaji
statistik iaitu rekabentuk komposit berpusat (CCD) dan rekabentuk matriks Box-Behnken digunakan untuk
memperolehi faktor terpenting daripada beberapa pembolehubah rekabentuk seperti ketinggian sambungan
pateri, ketebalan papan litar tercetak (PCB), modulus Young teras di dalam satah PCB, pekali pengembangan
haba (CTE) teras di dalam satah PCB, ketebalan die, dan ketebalan mold. Proses pengoptimuman
menggunakan kaedah permukaan sambutan (RSM) digunakan untuk mengesan pembolehubah atau faktor
yang mempunyai kesan langsung ke atas kegagalan pembungkusan mikroelektronik dan juga interaksi antara
faktor. Simulasi Monte Carlo digunakan untuk melakukan penilaian kewarakan ke atas keputusan yang
diperolehi melalui pengoptimuman berdasarkan rekabentuk komposit berpusat (CCD) dan rekabentuk
matriks Box-Behnken. Daripada pemerhatian didapati bahawa perubahan pada masa tanjakan menghasilkan
kesan langsung ke atas hayat lesu pateri berbanding daripada perubahan pada masa inap.
Walaubagaimanpun, masa inap pada suhu tinggi memberikan kesan yang boleh diabaikan ke atas hayat lesu
sambungan pateri. Ketebalan mold didapati mempunyai kesan langsung paling tinggi terhadap perubahan
keupayaan keboleharapan pateri (lebih daripada 50%) daripada faktor-faktor yang lain. Selain daripada kesan
individu bagi setiap faktor, interaksi antara faktor juga dapat mengubah keupayaan keboleharapan pateri.
RSM berdasarkan kepada rekabentuk matriks Box-Behnken menghasilkan hayat lesu ciri sambungan pateri
paling tinggi iaitu bersamaan dengan 2861 kitaran atau 44.1% peningkatan daripada nilai awal set
rekabentuk. RSM berdasarkan kepada rekabentuk CCD menghasilkan pengiraan kebagusan padanan yang
terbaik. Oleh itu RSM berdasarkan kepada CCD mempunyai ketepatan yang terbaik dalam mewakili titik
sampel terhadap permukaan sambutan. 
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ABSTRACT

Thermal cycling test is one of the reliability test that has been used to evaluate the reliability of the
solder joint interconnect in ball grid array (BGA) package. The purpose of thermal cycling test is to
characterize thermomechanical failure mechanism on microelectronics package. This research utilizes the
computer capability to run the thermal cycling test by using finite element analysis (FEA). FEA of thermal
cycling test is done by using ANSYS™ finite element software. Quarter symmetry BGA package model is
built parametrically by using APDL (ANSYS™ Parametric Design Language and Macros). Two types of
analyses are used to evaluate the reliability performance of solder joints in BGA package, namely the physics
based analysis and the statistical based analysis. Darveaux’s energy based fatigue model is used as the
constitutive equation for solder. One of the temperature cycling conditions namely, G based on JEDEC
JESD22-A104 standard is used throughout the finite element analysis. The effect of different temperature
cycling condition is studied by applying different value of dwell times and ramp rates. Two screening design
methods namely, Central Composite Design (CCD) and Box-Behnken Matrix Design method are used to
isolate the most important factors amongst six design variables such as solder joint standoff height, printed
circuited board (PCB) core thickness, PCB core-in-plane Young’s Modulus, PCB core-in-plane coefficient of
thermal expansion (CTE), die thickness and mold compound thickness. The optimization process is carried
out using response surface methodology (RSM) to predict appropriate variables or factors that have a
significant influence on BGA package failure and their interactions. Monte Carlo simulations are used to
validate the randomness of the results obtained through CCD and Box-Behnken matrix design based
optimization methods. It is observed that changes in ramp rate produce significant effect in solder joint
fatigue life rather than changes in dwell time, but the dwell time at high temperature (high dwell) has a
negligible contribution to solder joint fatigue life. It is also found that the thickness of the mold has a
significant effect on the performance of the solder joint reliability (more than 50 %) as compared to that
from other factors. Besides the effect of individual factor, the interaction among factors also changes the
solder joint reliability. RSM based on Box-Behnken Matrix design offers the highest characteristic solder
joint fatigue life with a value of 2861 cycles or 41.1% enhancement from the initial design set. RSM based on
CCD offers the best goodness-of-fit measures over RSM based on Box-Behnken Matrix design. These results
show that RSM based on CCD has better accuracy in representing the sample points on response surface.
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CHAPTER 1

INTRODUCTION

1.1 Microelectronics Packaging Technology Trends

Microelectronics packaging is one of the major fields in microelectronics

engineering. The functions of a microelectronics package are to protect, power, and cool

the microelectronic chips or components and provide electrical and mechanical connection

between microelectronics parts and outside world (Tummala, 2001). The technology and

business trend of microelectronics such as further miniaturization, high performance

electronic product, increasing level of technology and function integration, cost reduction

and also short time to market lead to increase chances of failures and design complexity of

microelectronics packaging (figure 1-1).

Figure 1-1: Microelectronics Packaging Technology Trend (Bolanos, 2006)
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Performing reliability tests is important before any microelectronics product goes

to the market. The tests are becoming more challenging as more complex processes and

products must be developed in shorter time scale. Furthermore, the next generation of

microelectronics packages is expected to perform with ten time higher reliability than

today’s packages (Tummala, 2001). The packages should perform under various stress

environments, with temperature ranging from -60 °C to 175 °C for the automotive and

aerospace industries, and -50 °C to 150 °C for the telecommunication, consumer and

computer industries. Nowadays, product qualification requires many reliability tests such

as thermal shock, temperature cycling, highly accelerated temperature and humidity stress

test (HAST), to name a few. All of these tests require expensive equipment and long

testing time and this in turn will add to the total cost of the packages.

To reduce cost and process or product development time and to improve reliability

performance, integrated design for reliability (DFR) at the earlier stage of development has

become a vital practice. DFR process can be done by utilizing the capability of commercial

finite element software. By utilizing the computational capability of computer, DFR can

produce reliability test results faster than the actual reliability test. This will help in

reducing the time to market the product and also to make sure that reliable product is

produced before entering the market.

Thermal cycling test is one of the reliability tests that has been used to evaluate the

reliability of the solder joint interconnect in microelectronics package. Solder joint fatigue

crack failure caused by thermomechanical mechanism is one of the major failures in

microelectronics package. The purpose of thermal cycling test is to characterize

thermomechanical failure mechanism on microelectronics package. Finite element
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software is used to run the thermal cycling test virtually to evaluate the reliability of the

solder joint. Solder joint reliability using finite element analysis is evaluated on the basis of

physical analysis and statistical analysis. Physical analysis is used to analyze the effect of

several factors such as component geometry, material properties and loading conditions on

the performance of solder joint reliability. The statistical analysis is used to find the critical

factors and to see the interaction among the factors affecting the performance of solder

joint reliability.

1.2 Problem Statement

Solder joint fatigue crack failure is one of the major reliability issues in

microelectronics package. The evaluation of solder joint reliability by using thermal

cycling test requires a lot of time and very costly. To reduce cost and time consumption of

reliability test, finite element analysis (FEA) is usually used to run an actual reliability test

virtually. In this present analysis, commercial finite element software ANSYS™ is used to

run thermal cycling test on a BGA package to evaluate the reliability of solder joint. Solder

joint reliability using finite element analysis is evaluated on the basis of physical analysis

and statistical analysis which provide a more comprehensive and in-depth results compared

to the results obtained through an actual thermal cycling test.
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1.3 Objectives

The objectives of this research are:

 To extend the work of Hossain et al. (2007) by adding two additional design

variables (mold compound thickness and die thickness) and using a different type

of screening design (Box-Behnken Matrix design).

 To build a BGA package model for the finite element analysis using

ANSYS™.

 To understand the effects of several factors on solder joint reliability of

BGA package through physical analysis and statistical analysis.

 To find the value of inelastic strain energy and characteristic solder joint

fatigue life.

 To find the critical factors that affects the reliability performance of solder

joint.

 To find the optimum value of solder joint fatigue life.

 To develop a solder joint reliability predictive equation based on response

surface methodology.

 To analyze the effect of different temperature cycling loading condition (ramp rate

and dwell time) on the characteristic solder joint fatigue life.
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1.4 Thesis Outline

Chapter 2 outlines a literature review about basics of reliability, statistical

experimental design, screening design, solder fatigue models, and optimization technique

approaches. Chapter 3 explains the analysis to develop BGA package model in ANSYS™

finite element software and the procedure needed to run an optimization process in

ANSYS™ built-in feature known as Probabilistic Design System (PDS). Chapter 4

describes and discusses the results obtained from the analysis. Chapter 5 provides the

conclusions and suggestions for future work. Appendix A provides the APDL code used

for finite element analysis in ANSYS™ and Appendix B includes the publication that has

been published based on this present analysis.

1.5 Publication

Some of the results and discussions of this research presented in chapters 3 and 4 in

this thesis have been published in the following scientific literature (Appendix B):

 Zulkifli, M. N., Jamal, Z., Quadir, G.A., and Hashim, U. (2008). Thermal Cycling

Analysis of SnAgCu and SnPb Solder Joints Reliability. Proceeding of Malaysian

Technical Universities Conference on Engineering and Technology (MUCET)

2008, 26-31.
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CHAPTER 2

LITERATURE REVIEW

2.1 Reliability

The reliability of a packaged microelectronics system is defined as the probability

that this system will be operational within acceptable limits for a given period of time

(Tummala, 2001). Usually, the effect of microelectronics package reliability issues are

often realized at the system level, but the actual failure mechanism occurs at the lowest

hardware level. Therefore, in order to run reliability analysis on microelectronics packages,

it will require a thorough understanding about failure modes and failure mechanisms

relevant to microelectronics packaging.

The reliability of semiconductor packaging is always related on interconnection

issues such as the reliability of solder joints. This is because most of the failure modes such

as fatigue, creep, crack and voids often occur at the solder joints area (Li et al., 2007). In

electronic assemblies, fatigue of solder joints is believed to play a major role in about 90 %

of all structural and electrical failures (Tummala, 2001).

2.1.1 Temperature Cycling

To asses the reliability of microelectronic package, several reliability tests or

accelerated tests are usually used in the industry. One of the reliability tests that has been

used is thermal cycling test. Thermal cycling test is used to characterize thermomechanical
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reliability issues in microelectronics package in order to determine the ability of

components and solder interconnects to withstand mechanical stresses induced by

alternating high and low extremes (JEDEC, 2000). The repeated temperature cycling

produces stress that eventually causes solder joint fatigue crack failure because of the

thermomechanically-induced strains and stresses generated at the solder joints. Figure 2-1

shows temperature cycle profile that is usually used in a thermal cycling test (JEDEC,

2000).

Figure 2-1: Temperature Cycle Profile

There are two types of thermal cycling tests that have been used in industry;

thermal cycling and thermal shock tests. The major difference between these two tests is

the physical chamber used for testing. Thermal shock test is conducted in two separate

liquid thermal baths or two separate air chambers in which the tested components are
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