

TEMPERATURE CYCLING RELIABILITY TEST FOR A BALL GRID ARRAY (BGA) PACKAGE USING FINITE ELEMENT ANALYSIS (FEA)

c

MUHAMMAD NUBLI BIN ZULKIFLI (0630110107)

by

A thesis submitted in fulfillment of the requirements for the degree of Master of Science (Microelectronic Engineering)

> School of Microelectronic Engineering UNIVERSITI MALAYSIA PERLIS

> > 2008

ACKNOWLEDGEMENTS

This work would have been impossible without the help of many persons. I would like to take this opportunity to thank those who have helped me to complete this work.

My Mother

For all the love, support, encouragement, guidance and prayers throughout the course of my life.

Professor Dr. Zul Azhar Zahid Jamal

For being my first supervisor who taught me a lot about science of research and being a good mentor by giving me a continuous guidance and help. Thank you for giving me such huge opportunity by taking me as a student in UniMAP.

Associate Professor Dr. Ghulam Abdul Quadir

For being the guide by helping me a lot in the development of this work. His valuable inputs, guidance and motivation have helped me during my study.

Lecturers and staff in Universiti Malaysia Perlis, UniMAP

Encik Mohd Khairuddin, Associate Professor. Ir. Mohabbatul Zaman, Puan Hasnizah and others for their support and valuable criticism.

And those who have contributed directly and indirectly to this work.

TABLE OF CONTENTS

	K
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi
LIST OF SYMBOLS	xiii
ABSTRAK	xvi
ABSTRACT	xvii
CHAPTER 1	1
INTRODUCTION	1
oro	
1.1 Microelectronics Packaging Technology Trends	1
1.2 Problem Statement	3
1.3 Objectives	4
1.4 Thesis Outline	5
1.5 Publication	5
CHAPTER 2	6
LITERATURE REVIEW	6

2.1 F	Reliabi	lity
-------	---------	------

2.1.1 Temperature	e Cycling	6
2.1.2 Failure Rate	Function	8
2.1.3 Failure Dens	sity Function	12
2.1.4 Mean Time	to Failure	13
2.2 Statistical Experim	nental Design	15
2.2.1 Regression I	Equation	18
2.2.2 Simple Line	ar Regression	19
2.2.3 Multiple Lin	near Regressions	22
2.2.4 Polynomial	Regression	25
2.3 Screening Design		26
2.3.1 Full Factoria	al Design	26
2.3.2 Fractional F	actorial Design	28
2.3.3 Central Com	posite Design	29
2.3.4 Box-Behnke	en Matrix Design	32
2.4 Solder Fatigue Mo	odel	35
2.4.1 Darveaux Er	nergy Based Fatigue Model	37
2.5 Optimization		43
2.5.1 Probabilistic	2 Design System	44
2.5.2 Goodness-of	f-Fit Measures	48
2.6 Chapter Summary	7	49

6

CHAPTER 3

ANALYSIS	51
	30°
3.1 Finite Element Analysis (FEA)	51
3.1.1 Material Definition and Element Definition	52
3.1.2 Geometry Creation	56
3.1.3 Meshing	60
3.1.4 Load Definition and Solution	61
3.1.5 Postprocessing and Results	67
3.2 Ramp Rate and Dwell Time Analysis	70
3.3 Optimization Analysis	71
3.3.1 Response Surface Method Based on CCD	76
3.3.2 Response Surface Method Based on Box-Behnken Matrix Design	79
3.3.3 Monte Carlo Method	81
3.4 Chapter Summary	81
CHAPTER 4	83
RESULTS AND DISCUSSION	83
4.1 Deterministic Results	83
4.2 Effects of Varying Ramp Rate and Dwell Time	90
4.3 Optimization Results	92
4.3.1 Probabilistic Results	104

51

CHAPTER 5	123
CONCLUSION	123
R	3
5.1 General Conclusion	123
5.2 Suggestion for Future Work	125
DEFEDENCIES	107
REFERENCES	127
APPENDICES	135
Appendix A – Finite Element APDL Code	135
Appendix B – Publication	163
· spro	
ten	
THIS	
\bigcirc	

LIST OF TABLES

K
28
29
32
34
41
53
53
55
57
63
69
70
72
77
78
80
83
88
90
93
94

Table 4-6: Comparison between Performance Parameters for RSM based on CCD and RSM based on Box-Behnken Matrix Design Optimization Techniques	95
Table 4-7: Goodness-of-fit Measures for RSM based on CCD and RSM based on Box-Behnken Matrix Design	109
Table 4-8: Probability Parameters Results for RSM based on CCD and RSM based on Box-Behnken Matrix Design	121
COX	
. All ar	
otto	
clet	
· SP	
tent	
-	

LIST OF FIGURES

		<
	Figure 1-1: Microelectronics Packaging Technology Trend	1
	Figure 2-1: Temperature Cycle Profile	7
	Figure 2-2: Bathtub Curve	10
	Figure 2-3; Interaction of Factors, Process, and Responses	16
	Figure 2-4: Stages in Statistical Experiment Design	17
	Figure 2-5: Fitted Regression Line	22
	Figure 2-6: Design Space for Full Factorial Design with 3 Design Variables	27
	Figure 2-7: Design Space for Half-Factorial Design with 3 Design Variables	29
	Figure 2-8: Design Space for Central Composite Design with 3 Design Variables	31
	Figure 2-9: Design Space for Box-Behnken Matrix Design with 3 Design Variables	34
	Figure 2-10: General Fatigue Modeling Steps	35
	Figure 2-11: Darveaux's Methodology Procedure	37
	Figure 2-12: Typical Constant Load Creep Behavior of Metal	38
	Figure 3-1: ANSYS™ Finite Element Analysis Steps	51
•	Figure 3-2: VISCO107 and SOLID45 Element Geometry and Direction of Degree of Freedom	56
	Figure 3-3: Types of Symmetry	58
	Figure 3-4: BGA Package Outline	59
	Figure 3-5: Side View of Quarter Symmetry BGA Package Model	59
	Figure 3-6: Darveaux's Model Meshing Consideration	60
	Figure 3-7: Package Model Boundary Constraints	62
	Figure 3-8: Thermal Cycles Loading	65

Figure 3-9: Probabilistic Design Data Flow Chart Used in ANSYS [™]	72
Figure 3-10: Statistical Distribution Graphs	74
Figure 3-11: Optimization Process Flow Chart using RSM based on CCD in ANSYS TM	76
Figure 3-12: General Analysis Process Flow Chart	82
Figure 4-1: Critical Solder Joint Location	84
Figure 4-2: Stress Intensity Plot for Solder Joints	85
Figure 4-3: Stress Intensity Plot for BGA Package Model	86
Figure 4-4: Vector Sum Displacement Plot of BGA Package Model	87
Figure 4-5: Plastic Work History for Case 1	91
Figure 4-6: Solder Joint Contact Angle	97
Figure 4-7: Stress Intensity Distributions in BGA Package with Respect to the Changes of Mold Compound Thickness	99
Figure 4-8: Location of Critical Solder Joint with Respect to the Changes of Mold Compound Thickness	102
Figure 4-9: Response Surface Plots from Central Composite Design Sets	111
Figure 4-10: Response Surface Plots from Box-Behnken Matrix Design Sets	113
Figure 4-11: Sensitivity Plot for Design Variables	116
Figure 4-12: Distribution Function Histogram of SFAIL	119
Figure 4-13: Cumulative Distribution Function of SFAIL	120

LIST OF ABBREVIATIONS

		K
	APDL	ANSYS [™] Parametric Design Language and Macros
	BGA	Ball Grid Array
	CCD	Central Composite Design
	CTE	Coefficient of Thermal Expansion
	DFR	Design for Reliability
	DIE	Die Thickness
	DOE	Design of Experiment
	FEA	Finite Element Analysis
	GUI	Graphical User Interface
	HAST	Highly Accelerated Temperature and Humidity Stress Test
	JEDEC	Joint Electron Device Engineering Council
	MLD	Mould Compound Thickness
	MTTF	Mean Time to Failure
	PCB	Printed Circuited Board
	PDS	Probabilistic Design System
	RSM	Response Surface Method
	SFAIL	Solder Joint Fatigue Life
\bigcirc	SSE	Sum of Squares of the Errors
	SSR	Regression Sum of Squares
	SST	Total Sum of Squares
	STD	Solder Joint Standoff Height

ΤK

rer. nersen

LIST OF SYMBOLS

	σ	The Applied Stress
	Q_a	The Apparent Activation Energy
	n	The Stress Exponent
	α	The Stress Level at Which the Power Law Dependence Breaks Down
	\mathcal{E}_{C}	The Creep Strain
	\mathcal{E}_T	Transient Creep Strain
	B The Transient Creep	
$\frac{d\varepsilon_c}{dt}$ Instantan		Instantaneous Creep Rate
	\mathcal{E}_{p}	Time-Independent Plastic Strain
	G	Shear Modulus
	\mathcal{E}_{in}	Total Inelastic Strain Energy
ε_p ε_c		Time Independent Plastic Strain
		Time Dependent Creep Strain
ΔW_{ave} The Average Viscoplastic Strain Energy I		The Average Viscoplastic Strain Energy Density Accumulated per Cycle
	V	The Volume of Each Element
	N_0	The Number of Cycles to Crack Initiation
O T	$\frac{da}{dN}$	The Crack Growth Rate per Thermal Cycle
	α	The Characteristic Solder Joint Fatigue Life
	a	The Total Distance the Crack Travels
	<i>S</i> ₀	Initial Value of Deformation Resistance
	Q/R	Activation Energy / Boltzmann's Constant

А	Pre-Exponential Factor
ζ	Multiplier of Stress
m	Strain Rate Sensitivity of Stress
$h_{ m o}$	Hardening Constant
s^	Coefficient of Deformation Resistance Saturation Value
n	Deformation Resistance Value
a	Strain Rate Sensitivity of Hardening
tem is prote	scedtra
\bigcirc	

ABSTRAK

UJIAN KEBOLEHARAPAN SUHU BERKITAR BAGI PAKEJ BEBOLA TATASUSUNAN GRID (BGA) MENGGUNAKAN ANALISA UNSUR TERHINGGA (FEA)

Ujian suhu berkitar adalah salah satu daripada ujian kebolehharapan yang selalunya digunakan untuk menilai kebolehharapan sambungan pateri di dalam pembungkusan mikroelektronik. Tuluan ujian suhu berkitar adalah untuk mencirikan mekanisme kegagalan mekanik haba ke atas pembungkusan mikroelektronik. Penyelidikan ini menggunakan keupayaan komputer untuk melakukan ujian suhu berkitar melalui analisa unsur terhingga. Analisa unsur terhingga untuk ujian suhu berkitar dijalankan dengan menggunakan perisian unsur terhingga ANSYS™. Satu per empat model pakei bebola tatasusunan grid (BGA) dibina secara berparameter menggunakan APDL (bahasa dan makro rekabentuk berparameter ANSYS™). Dua jenis analisa digunakan untuk menilai keupayaan keboleharapan sambungan pateri ke atas pakej BGA, iaitu analisa secara fizik dan analisa secara statistik. Model lesu berdasarkan tenaga Darveaux digunakan sebagai persamaan juzuk untuk pateri. Keadaan suhu berkitar G berdasarkan piawaian JEDEC JESD22-A104 digunakan di dalam analisa unsur terhingga. Kesan perubahan suhu berkitar dikaji dengan menggunakan beberapa nilai berbeza bagi masa inap dan masa tanjakan. Dua kaedah rekabentuk ujikaji statistik iaitu rekabentuk komposit berpusat (CCD) dan rekabentuk matriks Box-Behnken digunakan untuk memperolehi faktor terpenting daripada beberapa pembolehubah rekabentuk seperti ketinggian sambungan pateri, ketebalan papan litar tercetak (PCB), modulus Young teras di dalam satah PCB, pekali pengembangan haba (CTE) teras di dalam satah PCB, ketebalan die, dan ketebalan mold. Proses pengoptimuman menggunakan kaedah permukaan sambutan (RSM) digunakan untuk mengesan pembolehubah atau faktor yang mempunyai kesan langsung ke atas kegagalan pembungkusan mikroelektronik dan juga interaksi antara faktor. Simulasi Monte Carlo digunakan untuk melakukan penilaian kewarakan ke atas keputusan yang diperolehi melalui pengoptimuman berdasarkan rekabentuk komposit berpusat (CCD) dan rekabentuk matriks Box-Behnken. Daripada pemerhatian didapati bahawa perubahan pada masa tanjakan menghasilkan kesan langsung ke atas hayat lesu pateri berbanding daripada perubahan pada masa inap. Walaubagaimanpun, masa inap pada suhu tinggi memberikan kesan yang boleh diabaikan ke atas hayat lesu sambungan pateri. Ketebalan mold didapati mempunyai kesan langsung paling tinggi terhadap perubahan keupayaan keboleharapan pateri (lebih daripada 50%) daripada faktor-faktor yang lain. Selain daripada kesan individu bagi setiap faktor, interaksi antara faktor juga dapat mengubah keupayaan keboleharapan pateri. RSM berdasarkan kepada rekabentuk matriks Box-Behnken menghasilkan hayat lesu ciri sambungan pateri paling tinggi iaitu bersamaan dengan 2861 kitaran atau 44.1% peningkatan daripada nilai awal set rekabentuk. RSM berdasarkan kepada rekabentuk CCD menghasilkan pengiraan kebagusan padanan yang terbaik. Oleh itu RSM berdasarkan kepada CCD mempunyai ketepatan yang terbaik dalam mewakili titik sampel terhadap permukaan sambutan.

This

ABSTRACT

Thermal cycling test is one of the reliability test that has been used to evaluate the reliability of the solder joint interconnect in ball grid array (BGA) package. The purpose of thermal cycling test is to characterize thermomechanical failure mechanism on microelectronics package. This research utilizes the computer capability to run the thermal cycling test by using finite element analysis (FEA). FEA of thermal cycling test is done by using ANSYS[™] finite element software. Quarter symmetry BGA package model is built parametrically by using APDL (ANSYS™ Parametric Design Language and Macros). Two types of analyses are used to evaluate the reliability performance of solder joints in BGA package, namely the physics based analysis and the statistical based analysis. Darveaux's energy based fatigue model is used as the constitutive equation for solder. One of the temperature cycling conditions namely, G based on JEDEC JESD22-A104 standard is used throughout the finite element analysis. The effect of different temperature cycling condition is studied by applying different value of dwell times and ramp rates. Two screening design methods namely, Central Composite Design (CCD) and Box-Behnken Matrix Design method are used to isolate the most important factors amongst six design variables such as solder joint standoff height, printed circuited board (PCB) core thickness, PCB core-in-plane Young's Modulus, PCB core-in-plane coefficient of thermal expansion (CTE), die thickness and mold compound thickness. The optimization process is carried out using response surface methodology (RSM) to predict appropriate variables or factors that have a significant influence on BGA package failure and their interactions. Monte Carlo simulations are used to validate the randomness of the results obtained through CCD and Box-Behnken matrix design based optimization methods. It is observed that changes in ramp rate produce significant effect in solder joint fatigue life rather than changes in dwell time, but the dwell time at high temperature (high dwell) has a negligible contribution to solder joint fatigue life. It is also found that the thickness of the mold has a significant effect on the performance of the solder joint reliability (more than 50 %) as compared to that from other factors. Besides the effect of individual factor, the interaction among factors also changes the solder joint reliability. RSM based on Box-Behnken Matrix design offers the highest characteristic solder joint fatigue life with a value of 2861 cycles or 41.1% enhancement from the initial design set. RSM based on CCD offers the best goodness-of-fit measures over RSM based on Box-Behnken Matrix design. These results show that RSM based on CCD has better accuracy in representing the sample points on response surface. this tem is pr

CHAPTER 1

INTRODUCTION

1.1 Microelectronics Packaging Technology Trends

Microelectronics packaging is one of the major fields in microelectronics engineering. The functions of a microelectronics package are to protect, power, and cool the microelectronic chips or components and provide electrical and mechanical connection between microelectronics parts and outside world (Tummala, 2001). The technology and business trend of microelectronics such as further miniaturization, high performance electronic product, increasing level of technology and function integration, cost reduction and also short time to market lead to increase chances of failures and design complexity of microelectronics packaging (figure 1-1).

Figure 1-1: Microelectronics Packaging Technology Trend (Bolanos, 2006)

High

Performing reliability tests is important before any microelectronics product goes to the market. The tests are becoming more challenging as more complex processes and products must be developed in shorter time scale. Furthermore, the next generation of microelectronics packages is expected to perform with ten time higher reliability than today's packages (Tummala, 2001). The packages should perform under various stress environments, with temperature ranging from -60 °C to 175 °C for the automotive and aerospace industries, and -50 °C to 150 °C for the telecommunication, consumer and computer industries. Nowadays, product qualification requires many reliability tests such as thermal shock, temperature cycling, highly accelerated temperature and humidity stress test (HAST), to name a few. All of these tests require expensive equipment and long testing time and this in turn will add to the total cost of the packages.

To reduce cost and process or product development time and to improve reliability performance, integrated design for reliability (DFR) at the earlier stage of development has become a vital practice. DFR process can be done by utilizing the capability of commercial finite element software. By utilizing the computational capability of computer, DFR can produce reliability test results faster than the actual reliability test. This will help in reducing the time to market the product and also to make sure that reliable product is produced before entering the market.

Thermal cycling test is one of the reliability tests that has been used to evaluate the reliability of the solder joint interconnect in microelectronics package. Solder joint fatigue crack failure caused by thermomechanical mechanism is one of the major failures in microelectronics package. The purpose of thermal cycling test is to characterize thermomechanical failure mechanism on microelectronics package. Finite element

software is used to run the thermal cycling test virtually to evaluate the reliability of the solder joint. Solder joint reliability using finite element analysis is evaluated on the basis of physical analysis and statistical analysis. Physical analysis is used to analyze the effect of several factors such as component geometry, material properties and loading conditions on the performance of solder joint reliability. The statistical analysis is used to find the critical factors and to see the interaction among the factors affecting the performance of solder joint reliability. origi

1.2 Problem Statement

Solder joint fatigue crack failure is one of the major reliability issues in microelectronics package. The evaluation of solder joint reliability by using thermal cycling test requires a lot of time and very costly. To reduce cost and time consumption of reliability test, finite element analysis (FEA) is usually used to run an actual reliability test virtually. In this present analysis, commercial finite element software ANSYS[™] is used to run thermal cycling test on a BGA package to evaluate the reliability of solder joint. Solder joint reliability using finite element analysis is evaluated on the basis of physical analysis and statistical analysis which provide a more comprehensive and in-depth results compared to the results obtained through an actual thermal cycling test.

1.3 Objectives

The objectives of this research are:

- To extend the work of Hossain et al. (2007) by adding two additional design variables (mold compound thickness and die thickness) and using a different type of screening design (Box-Behnken Matrix design).
 - ➤ To build a BGA package model for the finite element analysis using ANSYSTM.
 - To understand the effects of several factors on solder joint reliability of BGA package through physical analysis and statistical analysis.
 - To find the value of inelastic strain energy and characteristic solder joint fatigue life.
 - To find the critical factors that affects the reliability performance of solder joint.
 - To find the optimum value of solder joint fatigue life.
 - To develop a solder joint reliability predictive equation based on response surface methodology.
- To analyze the effect of different temperature cycling loading condition (ramp rate and dwell time) on the characteristic solder joint fatigue life.

1.4 Thesis Outline

Chapter 2 outlines a literature review about basics of reliability, statistical experimental design, screening design, solder fatigue models, and optimization technique approaches. Chapter 3 explains the analysis to develop BGA package model in ANSYSTM finite element software and the procedure needed to run an optimization process in ANSYSTM built-in feature known as Probabilistic Design System (PDS). Chapter 4 describes and discusses the results obtained from the analysis. Chapter 5 provides the conclusions and suggestions for future work. Appendix A provides the APDL code used for finite element analysis in ANSYSTM and Appendix B includes the publication that has been published based on this present analysis.

1.5 Publication

Some of the results and discussions of this research presented in chapters 3 and 4 in this thesis have been published in the following scientific literature (Appendix B):

Zulkifli, M. N., Jamal, Z., Quadir, G.A., and Hashim, U. (2008). Thermal Cycling Analysis of SnAgCu and SnPb Solder Joints Reliability. *Proceeding of Malaysian Technical Universities Conference on Engineering and Technology (MUCET)* 2008, 26-31.

CHAPTER 2

LITERATURE REVIEW

Wild

2.1 Reliability

The reliability of a packaged microelectronics system is defined as the probability that this system will be operational within acceptable limits for a given period of time (Tummala, 2001). Usually, the effect of microelectronics package reliability issues are often realized at the system level, but the actual failure mechanism occurs at the lowest hardware level. Therefore, in order to run reliability analysis on microelectronics packages, it will require a thorough understanding about failure modes and failure mechanisms relevant to microelectronics packaging.

The reliability of semiconductor packaging is always related on interconnection issues such as the reliability of solder joints. This is because most of the failure modes such as fatigue, creep, crack and voids often occur at the solder joints area (Li et al., 2007). In electronic assemblies, fatigue of solder joints is believed to play a major role in about 90 % of all structural and electrical failures (Tummala, 2001).

2.1.1 Temperature Cycling

To asses the reliability of microelectronic package, several reliability tests or accelerated tests are usually used in the industry. One of the reliability tests that has been used is thermal cycling test. Thermal cycling test is used to characterize thermomechanical reliability issues in microelectronics package in order to determine the ability of components and solder interconnects to withstand mechanical stresses induced by alternating high and low extremes (JEDEC, 2000). The repeated temperature cycling produces stress that eventually causes solder joint fatigue crack failure because of the thermomechanically-induced strains and stresses generated at the solder joints. Figure 2-1 shows temperature cycle profile that is usually used in a thermal cycling test (JEDEC, 2000).

Figure 2-1: Temperature Cycle Profile

There are two types of thermal cycling tests that have been used in industry; thermal cycling and thermal shock tests. The major difference between these two tests is the physical chamber used for testing. Thermal shock test is conducted in two separate liquid thermal baths or two separate air chambers in which the tested components are