

SURFACE MODIFICATION, CHARACTERIZATION AND PROPERTIES OF REGENERATED CELLULOSE NYPA FRUTICANS FILLED MICROCRYSTALLINE CELLULOSE BIOCOMPOSITE FILMS

by

VANIESPREE A/P GOVINDAN (1440411218)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

2017

UNIVERSITI MALAYSIA PERLIS

		DECLARATION OF THESIS		
Author's full name	:	VANIESPREE A/P GOVINDAN		
Date of birth	:	27 MAY 1989		
Title	:	SURFACE MODIFICATION, CHARACTERIZATION AND PROPERTIES		
		OF REGENERATED CELLULOSE NYPA FRUTICANS FILLED		
		MICROCRYSTALLINE CELLULOSE BIOCOMPOSITE FILMS		
Academic Session	:	2017		
I hereby declare that the at the library of UniMAP	e thesis 2. This th	becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed nesis is classified as :		
/ CONFIDENTIA	L	(Contains confidential information under the Official Secret Act 1972)*		
RESTRICTED		(Contains restricted information as specified by the organization where research was done)*		
OPEN ACCESS	5	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)		
I, the author, give perm	nission t	to the UniMAP to reproduce this thesis in whole or in part for the purpose of		
research or academic e	xchange	e only (except during a period of years, if so requested above).		
	sil	Certified by:		
(his				
SIGNA	TURE	SIGNATURE OF SUPERVISOR		
890527-0	3-5320	DR. TEH PEI LENG		
(NEW IC NO. /	PASSP	ORT NO.) NAME OF SUPERVISOR		
Date : 16 AUC	GUST 2	017 Date : <u>16 AUGUST 2017</u>		

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

Undertaking this PhD has been a truly life-changing experience for me and it would not have been possible to do without the support and guidance that I received from many people.

First and foremost, I would like to thank God, the Almighty, for His showers of blessings throughout my research work to complete the research successfully. I would like to convey my heartfelt gratitude and sincere appreciation to my ex-supervisor, late Assoc. Prof. Ir. Dr. Salmah Husseinsyah for her endless guidance, encouragement, advices, ideas, and mentorship throughout my research journey. Through her depth of knowledge, enthusiasm for my topic and tremendous expertise enables me to develop an understanding of this research thoroughly. I would also like to acknowledge my current supervisor, Dr. Teh Pei Leng for her insightful comments and support from the initial to the final level of this project Thank you for the countless hours of revisions and advice on my thesis. I appreciate the willingness to work on a tight schedule and help me to graduate in a timely manner. Without her support and continuous optimism this thesis would hardly have been completed. I also would like to thank my co-supervisor, Dr. Mohd Shahmie for his supervision and supports.

Completion of this thesis would not have come to a successful completion, without the help I received from the Dean of School of Material Engineering, Dr. Khairel Rafezi, and the technicians.

I am grateful to my family and relatives for their continuous and unparalleled love, help and support. I am forever indebted to my parents (Mrs. Karthiyani and late Mr. Govindan) for giving me the opportunities and experiences that have made me who I am. They selflessly encouraged me to explore new directions in life and seek my own destiny. This journey would not have been possible if not for them, and I dedicate this milestone to them. I owe my deepest gratitude to my uncle, Mr. Separamanier. Without his guidance and encouragement, I would not have today's accomplishments.

It is a pleasure to thank my brothers, Mr. Kathiravan and Mr. Lingeswarran for their guidance and suggestions throughout writing process that has been a valuable input for this thesis. They have made available their support in a number of ways, especially towards the completion of this thesis.

I also would like to thank my friends Ms. Cynthia Shanthini, Ms. Shalini Devi, Ms. Nithiya, Ms, Mohana Sunthari and Ms. Kalai Malar for their strong support and complete understanding all the way.

Finally, I would like to thank everyone that have involved in this project directly and indirectly in completing this project successfully.

...preting this project

TABLE OF CONTENTS

		PAGE
TH	ESIS DECLARATION	i
AC	KNOWLEDGEMENT	ii
TAI	BLE OF CONTENTS	iv
LIS	T OF TABLES	xi
LIS	T OF FIGURES	xiv
LIS	T OF ABBREVATIONS	XXV
LIS	T OF SYMBOLS	xxviii
ABS	STRAK	xxix
ABS	STRACT	XXX
 CHI 1.1 1.2 1.3 1.4 1.5 	APTER 1: INTRODUCTION Research Background Problem Statement Research Objectives Scope of Study Thesis Preface	1 1 7 8 9 10
СН	APTER 2: LITERATURE REVIEW	11
2.1	Biocomposite Films	11

2.2	Biopo	lymers	14
	2.2.1	Cellulose	20
		2.2.1.1 Structure and Properties of Cellulose Fibers	23
		2.2.1.2 Crystalline Structure of Cellulose	24
		2.2.1.3 Amorphous Regions	26
		2.2.1.4 Hydrogen Bonding	27
	2.2.2	Microcrystalline Cellulose (MCC)	30
2.3	All Ce	ellulose Composite	30
2.4	Ionic	Liquid	35
	2.4.1	Dissolution of Cellulose in Ionic Liquid	37
	2.4.2	N, N-Dimethylacetamide (DMAc)/ Lithium Chloride (LiCl)	41
	2.4.3	Cellulose Activation	45
	2.4.4	Regeneration Process	46
2.5	Regen	nerated Cellulose	48
2.6	Plant	Based Natural Fibers (Lignocellulosic Complex)	49
	2.6.1	Classification of Natural Fibers	53
	2.6.2	Advantages and Disadvantages of Natural Fibers	55
2.7	Nypa	Fruticans Fibers	56
2.8	Fiber-	matrix Interface	59
	2.8.1	Mechanism of Fiber-matrix Adhesion	59
	2.8.2	Nicolais and Narkis Theory	63
	2.8.3	Nielsen Theory	65
2.9	Pretre	atment of Lignocelluloses	66
	2.9.1	Alkaline Pretreatment	68
	2.9.2	Delignification/Bleaching Treatment	69

	2.9.3 Acid Hydrolysis	70
2.10	Chemical Modification	71
	2.10.1 Acrylic Acid (AA)	73
	2.10.2 Methacrylic Acid (MAA)	75
	2.10.3 Butyl Methacrylate Acid (BMA)	76
	2.10.4 Maleic Acid (MA)	77
	2.10.5 Adipic Acid (ADA)	79
	2.10.6 Acetic Acid (AAc)	81
	2.10.7 3-Aminopropyltriethoxysilane (APTES)	82
2.11	Biodegradation	84
	2.11.1 Enzymatic Hydrolysis of Cellulose	86
	OTIS	
CHA	APTER 3: RESEARCH METHODOLOGY	88
3.1	Materials	88
	3.1.1 Matrix	88
	3.1.2 Cellulose Dissolution solvent	88
	3.1.3 Filler	89
	3.1.4 Pretreatment Chemicals	90
	3.1.5 Chemical Modification	91
3.2	Pretreatment of NF	94
3.3	Chemical Modification of NF	94
3.4	Preparation of MCC RC Biocomposite Films	95
3.5	Preparation of Untreated and Treated NF RC Biocomposite Films	96
3.6	Fourier Transform Infrared Spectroscopy (FTIR)	97
3.7	Tensile Test	97

3.8	Scanning Electron Microscopy (SEM)	98
3.9	X-ray Diffraction (XRD)	99
3.10	Thermal Gravimetric Analyzer (TGA)	99
3.11	Moisture Content	100
3.12	Enzymatic Biodegradation	100

CHA	APTER	4: RESULTS AND DISCUSSION	102
4.1	Effect	of MCC Content on the Properties of RC films	102
	4.1.1	Tensile Properties	102
	4.1.2	X-Ray Diffraction Analysis	110
	4.1.3	Thermogravimetry Analysis (TGA)	114
	4.1.4	Moisture Content	118
	4.1.5	Enzymatic Biodegradation	119
		LOC'LO	
4.2	Effect	of NF Content on the Properties of NF RC Biocomposite Films	121
	4.2.1	Tensile Properties	122
	4.2.2	X-Ray Diffraction Analysis	130
	4.2.3	Thermogravimetry Analysis (TGA)	134
	4.2.4	Moisture Content	137
	4.2.5	Enzymatic Biodegradation	138
4.3	Effect Films	t of Acrylic Acid on the Properties of NF RC Biocomposite	141

4.3.1	Fourier Transform Infrared (FTIR) Analysis	141
4.3.2	Tensile Properties	144

	4.3.1	X-Ray Diffraction Analysis	151
	4.3.2	Thermogravimetry Analysis (TGA)	153
	4.3.3	Moisture Content	156
	4.3.4	Enzymatic Biodegradation	158
4.1	Effect Films	of Methacrylic Acid on the Properties of NF RC Biocomposite	160
	4.4.1	Fourier Transform Infrared (FTIR) Analysis	160
	4.4.2	Tensile Properties	163
	4.4.3	X-Ray Diffraction Analysis	171
	4.4.4	Thermogravimetry Analysis (TGA)	173
	4.4.5	Moisture Content	175
	4.4.6	Enzymatic Biodegradation	177
		C.CO	
4.2	Effect Bioco	of Butyl Methacrylate Acid on the Properties of NF RC mposite Films	179
	4.5.1	Fourier Transform Infrared (FTIR) Analysis	179
	4.5.2	Tensile Properties	182
	4.5.3	X-Ray Diffraction Analysis	189
	4.5.4	Thermogravimetry Analysis (TGA)	191
	4.5.5	Moisture Content	193
	4.5.6	Enzymatic Biodegradation	195
4.3	Effect Films	of Maleic Acid on the Properties of NF RC Biocomposite	197

4.6.1Fourier Transform Infrared (FTIR) Analysis197

4.6.2	Tensile Properties	200
4.6.3	X-Ray Diffraction Analysis	208
4.6.4	Thermogravimetry Analysis (TGA)	210
4.6.5	Moisture Content	212
4.6.6	Enzymatic Biodegradation	214

4.4	Effect	of Adipic Acid on the Properties of NF RC Biocomposite Films	216
	4.7.1	Fourier Transform Infrared (FTIR) Analysis	216
	4.7.2	Tensile Properties	219
	4.7.3	X-Ray Diffraction Analysis	227
	4.7.4	Thermogravimetry Analysis (TGA)	229
	4.7.5	Moisture Content	231
	4.7.6	Enzymatic Biodegradation	233
		LOC'E	
4.5	Effect	of Acetic Acid on the Properties of NF RC Biocomposite Films	235
	4.8.1	Fourier Transform Infrared (FTIR) Analysis	235
	4.8.2	Tensile Properties	238
	4.8.3	X-Ray Diffraction Analysis	247
	4.8.4	Thermogravimetry Analysis (TGA)	248
	4.8.5	Moisture Content	252
	4.8.6	Enzymatic Biodegradation	253

4.6	Effect of 3-aminopropyltriethoxysilane on the Properties of NF RC	255
	Biocomposite Films	
	4.9.1 Fourier Transform Infrared (FTIR) Analysis	255

4.9.2	Tensile Properties	258
4.9.3	X-Ray Diffraction Analysis	266
4.9.4	Thermogravimetry Analysis (TGA)	268
4.9.5	Moisture Content	270
4.9.6	Enzymatic Biodegradation	272

4.10	Comparisons of the Effect of Different Chemical Modifications Using	274
	Different Functional Group Based Chemicals at 3 wt% of NF Content	
	on the Properties of NF RC Biocomposite Films	
	4.10.1 Tensile Properties	274
	R. A.	
	4.10.2 X-Ray Diffraction (XRD)	278
	4 10.3 Thermogravimetric Analysis (TGA)	281
	4.10.5 Thermogravinieure Anarysis (10A)	201
	4.10.4 Moisture Content	283
		• • •
	4.10.5 Enzymatic Biodegradation	285
	C C	
	×C	
CHAPTER 5: CONCLUSIONS AND FUTURE WORK		288
0111	S S S S S S S S S S S S S S S S S S S	200
5.1	Conclusions	288
5.2	Recommendation for Future Works	290
	× MIS	
	(C)	
RFF	FRENCES	292
NL/I	ERENCED	
LIST	COF PUBLICATIONS	334
LIST	COF AWARDS	335
ΔΡΡΙ	FNDICES	336
		550

LIST OF TABLES

NO.		PAGE
2.1	Proposed mechanisms of cellulose-DMAc/LiCl complexation	42
2.2	Chemical composition of nypa fruticans fiber (wt% of the original Oven-dried sample basis)	58
3.1	Properties of Microcrystalline Cellulose (MCC)	88
3.2	Properties of N, N-Dimethylacetamide (DMAc)	89
3.3	Properties of Lithium Chloride (LiCl)	89
3.4	Chemical composition of Nypa Fruticans Fiber	90
3.5	Properties of Sodium Hydroxide (NaOH)	90
3.6	Properties of Sodium Chlorite (NaClO ₂)	91
3.7	Properties of Sulfuric Acid (H2SO4)	91
3.8	Properties of Acrylic Acid (AA)	92
3.9	Properties of Methacrylate Acid (MAA)	92
3.10	Properties of Butyl Methacrylate Acid (BMA)	92
3.11	Properties of Maleic Acid (MA)	93
3.12	Properties of Adipic Acid (ADA)	93
3.13	Properties of Acetic Acid (AAc)	93
3.14	Properties of 3-aminopropyltriethoxysilane (APTES)	94
3.15	Formulation of MCC RC Biocomposite Films	95
3.16	Formulation of Untreated and Treated NF RC Biocomposite Films	96
4.1	The crystallinity index (CrI) of MCC RC films	112
4.2	TGA and DTG data of MCC RC films	117

4.3	Weight loss of RC films after 14 days on enzymatic biodegradation	121
4.4	The crystallinity index (CrI) of NF RC biocomposite films	132
4.5	TGA and DTG data of NF RC biocomposite films	136
4.6	Weight loss of NF RC biocomposite films after 14 days on enzymatic biodegradation	140
4.7	The crystallinity index (CrI) of untreated and treated NF RC biocomposite films with AA	151
4.8	TGA and DTG data of untreated and treated NF RC biocomposite films with AA	153
4.9	Weight loss of untreated and treated NF RC biocomposite films with AA after 14 days on enzymatic biodegradation	158
4.10	The crystallinity index (CrI) of untreated and treated NF RC biocomposite films with MAA	171
4.11	TGA and DTG data of untreated and treated NF RC biocomposite films with MAA	175
4.12	Weight loss of untreated and treated NF RC biocomposite films with MAA after 14 days on enzymatic biodegradation	178
4.13	The crystallinity index (CrI) of untreated and treated NF RC biocomposite films with BMA	189
4.14	TGA and DTG data of untreated and treated NF RC biocomposite films with BMA	193
4.15	Weight loss of untreated and treated NF RC biocomposite films with BMA after 14 days on enzymatic biodegradation	196
4.16	The crystallinity index (CrI) of untreated and treated NF RC biocomposite films with MA	210
4.17	TGA and DTG data of untreated and treated NF RC biocomposite films with MA	212
4.18	Weight loss of untreated and treated NF RC biocomposite films with MA after 14 days on enzymatic biodegradation	216
4.19	The crystallinity index (CrI) of untreated and treated NF RC biocomposite films with ADA	228

- 4.20 TGA and DTG data of untreated and treated NF RC biocomposite 231 films with ADA
- 4.21 Weight loss of untreated and treated NF RC biocomposite films 234 with ADA after 14 days on enzymatic biodegradation
- 4.22 The crystallinity index (CrI) of untreated and treated NF RC 248 biocomposite films with AAc
- 4.23 TGA and DTG data of untreated and treated NF RC biocomposite 251 films with AAc
- 4.24 Weight loss of untreated and treated NF RC biocomposite films 255 with AAc after 14 days on enzymatic biodegradation
- 4.25 The crystallinity index (CrI) of untreated and treated NF RC 268 biocomposite films with APTES
- 4.26 TGA and DTG data of untreated and treated NF RC biocomposite 270 films with APTES
- 4.27 Weight loss of untreated and treated NF RC biocomposite films 273 with APTES after 14 days on enzymatic biodegradation
- 4.28 Tensile properties for untreated and treated NF RC biocomposite 278 films at 3 wt% of NF content.
- 4.29 Crystallinity index of untreated and treated NF RC biocomposite 280 films at 3 wt% of NF content.
- 4.30 TGA and DTG analysis of untreated and treated NF RC 282 biocomposite films at 3 wt% of NF content.
- 4.31 Moisture content of untreated and treated NF RC biocomposite 285 films at 3 wt% of NF content.
- 4.32 Weight loss on enzymatic biodegradation for untreated and treated 287 NF RC biocomposite films at 3 wt% of NF content.

LIST OF FIGURES

NO.		PAGE
2.1	Classifications of biocomposites	12
2.2	Classification of main biopolymer	15
2.3	The life cycle of biodegradable plastics	17
2.4	Life cycle of cellulose in an industrial context	21
2.5	Molecular structure of cellulose	24
2.6	Atomic arrangement and hydrogen bonding network in cellulose I_{α} . Carbon (\bullet), oxygen (O), deuterium atoms (\bullet). Hydrogen bonding is indicated by dotted lines	25
2.7	Hydrogen bonding network in cellulose I_{β} Carbon (), oxygen (), deuterium atoms (). Hydrogen bonding is indicated by dotted lines	25
2.8	Schematic of amorphous cellulose and crystalline cellulose	27
2.9	Possible rotational conformation of the cellulose hydroxymethyl group. t and g denote trans and gauche, meaning its dihedral angles of 60° and 180° relative to the ring oxygen and C ₄ , marked by the red lines	28
2.10	Cellulose crystal with intra- and intermolecular hydrogen bonds	30
2.11	The chain conformations of cellulose I (left) and cellulose II (right)	30
2.12	Surface selective dissolution process to prepare all cellulose composites	35
2.13	A classification of cellulose solvent systems	38
2.14	Proposed interaction between solvent and polymer acting as the dissolution mechanism of the system cellulose in DMAc/LiCl	44
2.15	Simplified scheme of the direct dissolution and subsequent precipitation of cellulose in a closed-loop process	47

2.16	Structural organization of the three major structural constituents of the fiber cell wall	50
2.17	Structure of the primary sugar groups in hemicellulose. Hexoses: a) glucose, b) mannose, c) galactose and pentose: d) xylose and e) arabinose	51
2.18	Lignin monomer units: a) <i>p</i> -coumaryl, b) coniferyl, and c) sinapyl alcohols	52
2.19	Classification of Plant Fibers	54
2.20	Various parts of the Nypa palm	57
2.21	Schematic diagram of adsorption theory	60
2.22	Schematic diagram of chemical bonding theory	61
2.23	Schematic diagram of mechanical interlocking theory	62
2.24	Schematic diagram of interdiffusion theory	62
2.25	Schematic diagram of electrostatic attraction theory	63
2.26	Deconstruction of lignocelluloses into cellulose, hemicellulose and lignin	68
2.27	Chemical structure of acrylic acid	73
2.28	Chemical structure of methacrylic acid	75
2.29	Chemical structure of butyl methacrylate	76
2.30	Chemical structure of maleic acid	78
2.31	Chemical structure of adipic acid	80
2.32	Chemical structure of acetic acid	81
2.33	Chemical structure of 3-aminopropyltriethoxysilane	83
2.34	Schematic graphic of cellulose structure and mode of action of cellulolytic enzymes EX, EG, and β G leading to the formation of D-glucose	87
4.1	Effect of MCC content on tensile strength of RC films	104
4.2	Schematic illustration of cellulose dissolution at 1 wt% and 3 wt% of MCC content, where orange denotes the undissolved part of the	104

cellulose and green denotes the dissolved cellulose matrix

4.3	SEM micrograph of tensile surface fracture of RC film (at 1 wt% MCC), where white parts denotes the cellulose matrix and black parts denotes the voids	106
4.4	SEM micrograph of tensile surface fracture of RC film (at 3 wt% MCC), where white parts denotes the cellulose matrix and black parts denotes the voids	106
4.5	Effect of MCC content on elongation at break of RC films	108
4.6	Effect of MCC content on Young's modulus of RC films	109
4.7	XRD curves of RC films	111
4.8	Schematic illustration of the transformation of cellulose I to cellulose II and the interactions among Li ⁺ cation, Cl ⁻ anion and DMAc when cellulose dissolves into the DMAc/LiCl system	113
4.9	TGA curves of RC films	115
4.10	DTG curves of RC films	115
4.11	Moisture content of RC films	119
4.12	Weight loss of RC films on enzymatic biodegradation	121
4.13	Effect of NF content on tensile strength of NF RC biocomposite films	124
4.14	SEM micrograph of tensile surface fracture of NF RC biocomposite film (at 1 wt% NF), where the voids are represented by the arrows.	126
4.15	SEM micrograph of tensile surface fracture of NF RC biocomposite film (at 3 wt% NF), where the voids are represented by the arrows.	126
4.16	Effect of NF content on elongation at break of NF RC biocomposite films	128
4.17	Effect of NF content on Young's modulus of NF RC biocomposite films	129
4.18	XRD curves of NF RC biocomposite films	131
4.19	A proposed model of possible hydrogen bonds between RC chains and NF	133

4.20	TGA curves of NF RC biocomposite films	135
4.21	DTG curves of NF RC biocomposite films	135
4.22	Moisture content of NF RC biocomposite films	138
4.23	Weight loss of NF RC biocomposite films on enzymatic biodegradation	140
4.24	FTIR spectra of untreated and treated NF RC biocomposite films with AA	142
4.25	Schematic diagram showing the key features of AA modification of the NF surface and possible mechanism approaches for the fabrication of treated NF RC biocomposite films with AA	143
4.26	Effect of NF content on tensile strength of untreated and treated NF RC biocomposite films with AA	145
4.27	SEM micrograph of tensile surface fracture of treated NF RC biocomposite film with AA (at 1 wt% NF), where the voids are represented by the arrows.	146
4.28	SEM micrograph of tensile surface fracture of treated NF RC biocomposite film with AA (at 3 wt% NF), where the voids are represented by the arrows.	146
4.29	Relative tensile strength of theoretical and experimental results of untreated and treated NF RC biocomposite films with AA	147
4.30	Effect of NF content on elongation at break of untreated and treated NF RC biocomposite films with AA	149
4.31	Relative elongation at break of theoretical and experimental results of untreated and treated NF RC biocomposite films with AA	150
4.32	Effect of NF content on Young's modulus of untreated and treated NF RC biocomposite films with AA	151
4.33	XRD curves of untreated and treated NF RC biocomposite films with AA	153
4.34	TGA curves of untreated and treated NF RC biocomposite films with AA	154
4.35	DTG curves of untreated and treated NF RC biocomposite films with AA	155

- 4.36 Moisture content of untreated and treated NF RC biocomposite 157 films with AA 4.37 159 Weight loss of untreated and treated NF RC biocomposite films with AA on enzymatic biodegradation 4.38 FTIR spectra of untreated and treated NF RC biocomposite films 161 with MAA 4.39 Schematic diagram showing the key features of MAA modification 162 of the NF surface and possible mechanism approaches for the fabrication of treated NF RC biocomposite films with MAA 4.40 Effect of NF content on tensile strength of untreated and treated NF 164 RC biocomposite films with MAA SEM micrograph of tensile surface fracture of treated NF RC 4.41 165 biocomposite film with MAA (at 1 wt% NF), where the voids are represented by the arrows. SEM micrograph of tensile surface fracture of treated NF RC 4.42 165 biocomposite film with MAA (at 3 wt% NF), where the voids are represented by the arrows. Relative tensile strength of theoretical and experimental results of 4.43 167 untreated and treated NF RC biocomposite films with MAA 4.44 Effect of NF content on elongation at break of untreated and treated 168 NF RC biocomposite films with MAA 4.45 Relative elongation at break of theoretical and experimental results 169 of untreated and treated NF RC biocomposite films with MAA 4.46 Effect of NF content on Young's modulus of untreated and treated 170 NF RC biocomposite films with MAA 4.47 XRD curves of untreated and treated NF RC biocomposite films 172 with MAA 4.48 TGA curves of untreated and treated NF RC biocomposite films 174 with MAA 4.49 DTG curves of untreated and treated NF RC biocomposite films 174 with MAA
- 4.50 Moisture content of untreated and treated NF RC biocomposite 176 films with MAA

4.51	Weight loss of untreated and treated NF RC biocomposite films with MAA on enzymatic biodegradation	178
4.52	FTIR spectra of untreated and treated NF RC biocomposite films with BMA	180
4.53	Schematic diagram showing the key features of BMA modification of the NF surface and possible mechanism approaches for the fabrication of treated NF RC biocomposite films with BMA	181
4.54	Effect of NF content on tensile strength of untreated and treated NF RC biocomposite films with BMA	183
4.55	SEM micrograph of tensile surface fracture of treated NF RC biocomposite film with BMA (at 1 wt% NF), where the voids are represented by the arrows	184
4.56	SEM micrograph of tensile surface fracture of treated NF RC biocomposite film with BMA (at 3 wt% NF), where the voids are represented by the arrows	184
4.57	Relative tensile strength of theoretical and experimental results of untreated and treated NF RC biocomposite films with BMA	185
4.58	Effect of NF content on elongation at break of untreated and treated NF RC biocomposite films with BMA	186
4.59	Relative elongation at break of theoretical and experimental results of untreated and treated NF RC biocomposite films with BMA	187
4.60	Effect of NE content on Young's modulus of untreated and treated NF RC biocomposite films with BMA	189
4.61	XRD curves of untreated and treated NF RC biocomposite films with BMA	190
4.62	TGA curves of untreated and treated NF RC biocomposite films with BMA	192
4.63	DTG curves of untreated and treated NF RC biocomposite films with BMA	192
4.64	Moisture content of untreated and treated NF RC biocomposite films with BMA	194
4.65	Weight loss of untreated and treated NF RC biocomposite films with BMA on enzymatic biodegradation	196

- 4.66 FTIR spectra of untreated and treated NF RC biocomposite films 198 with MA
- 4.67 Schematic diagram showing the key features of MA modification of 199 the NF surface and possible mechanism approaches for the fabrication of treated NF RC biocomposite films with MA
- 4.68 Effect of NF content on tensile strength of untreated and treated NF 201 RC biocomposite films with MA
- 4.69 SEM micrograph of tensile surface fracture of treated NF RC 202 biocomposite film with MA (at 1 wt% NF), where the voids are represented by the arrows
- 4.70 SEM micrograph of tensile surface fracture of treated NF RC 202 biocomposite film with MA (at 3 wt% NF), where the voids are represented by the arrows
- 4.71 Relative tensile strength of theoretical and experimental results of 204 untreated and treated NF RC biocomposite films with MA
- 4.72 Effect of NF content on elongation at break of untreated and treated 205 NF RC biocomposite films with MA
- 4.73 Relative elongation at break of theoretical and experimental results 206 of untreated and treated NFRC biocomposite films with MA
- 4.74 Effect of NF content on Young's modulus of untreated and treated 208 NF RC biocomposite films with MA
- 4.75 XRD curves of untreated and treated NF RC biocomposite films 209 with MA
- 4.76 TGA curves of untreated and treated NF RC biocomposite films 211 with MA
- 4.77 DTG curves of untreated and treated NF RC biocomposite films 211 with MA
- 4.78 Moisture content of untreated and treated NF RC biocomposite 214 films with MA
- 4.79 Weight loss of untreated and treated NF RC biocomposite films 215 with MA on enzymatic biodegradation
- 4.80 FTIR spectra of untreated and treated NF RC biocomposite films 217 with ADA

- 4.81 Schematic diagram showing the key features of ADA modification 218 of the NF surface and possible mechanism approaches for the fabrication of treated NF RC biocomposite films with ADA
- 4.82 Effect of NF content on tensile strength of untreated and treated NF 220 RC biocomposite films with ADA
- 4.83 SEM micrograph of tensile surface fracture of treated NF RC 221 biocomposite film with ADA (at 1 wt% NF), where the voids are represented by the arrows
- 4.84 SEM micrograph of tensile surface fracture of treated NF RC 221 biocomposite film with ADA (at 3 wt% NF), where the voids are represented by the arrows
- 4.85 Relative tensile strength of theoretical and experimental results of 222 untreated and treated NF RC biocomposite films with ADA
- 4.86 Effect of NF content on elongation at break of untreated and treated 224 NF RC biocomposite films with ADA
- 4.87 Relative elongation at break of theoretical and experimental results 225 of untreated and treated NF RC biocomposite films with ADA
- 4.88 Effect of NF content on Young's modulus of untreated and treated 227 NF RC biocomposite films with ADA
- 4.89 XRD curves of untreated and treated NF RC biocomposite films 228 with ADA
- 4.90 TGA curves of untreated and treated NF RC biocomposite films 230 with ADA
- 4.91 DTG curves of untreated and treated NF RC biocomposite films 230 with ADA
- 4.92 Moisture content of untreated and treated NF RC biocomposite 232 films with ADA
- 4.93 Weight loss of untreated and treated NF RC biocomposite films 234 with ADA on enzymatic biodegradation
- 4.94 FTIR spectra of untreated and treated NF RC biocomposite films 236 with AAc
- 4.95 Schematic diagram showing the key features of AAc modification 237 of the NF surface and possible mechanism approaches for the fabrication of treated NF RC biocomposite films with AAc

- 4.96 Effect of NF content on tensile strength of untreated and treated NF 239 RC biocomposite films with AAc
- 4.97 SEM micrograph of tensile surface fracture of treated NF RC 240 biocomposite film with AAc (at 1 wt% NF), where the voids are represented by the arrows
- 4.98 SEM micrograph of tensile surface fracture of treated NF RC 241 biocomposite film with AAc (at 3 wt% NF), where the voids are represented by the arrows
- 4.99 Relative tensile strength of theoretical and experimental results of 242 untreated and treated NF RC biocomposite films with AAc
- 4.100 Effect of NF content on elongation at break of untreated and treated 244 NF RC biocomposite films with AAc
- 4.101 Relative elongation at break of theoretical and experimental results 245 of untreated and treated NF RC biocomposite films with AAc
- 4.102 Effect of NF content on Young's modulus of untreated and treated 246 NF RC biocomposite films with AAc
- 4.103 XRD curves of untreated and treated NF RC biocomposite films 248 with AAc
- 4.104 TGA curves of untreated and treated NF RC biocomposite films 250 with AAc
- 4.105 DTG curves of untreated and treated NF RC biocomposite films 250 with AAc
- 4.106 Moisture content of untreated and treated NF RC biocomposite 253 films with AAc
- 4.107 Weight loss of untreated and treated NF RC biocomposite films 254 with AAc on enzymatic biodegradation
- 4.108 FTIR spectra of untreated and treated NF RC biocomposite films 256 with APTES
- 4.109 Schematic diagram showing the key features of APTES 257 modification of the NF surface and possible mechanism approaches for the fabrication of treated NF RC biocomposite films with APTES
- 4.110 Effect of NF content on tensile strength of untreated and treated NF 259 RC biocomposite films with APTES

- 4.111 SEM micrograph of tensile surface fracture of treated NF RC 260 biocomposite film with APTES (at 1 wt% NF), where the voids are represented by the arrows
- 4.112 SEM micrograph of tensile surface fracture of treated NF RC 260 biocomposite film with APTES (at 3 wt% NF), where the voids are represented by the arrows
- 4.113 Relative tensile strength of theoretical and experimental results of 262 untreated and treated NF RC biocomposite films with APTES
- 4.114 Effect of NF content on elongation at break of untreated and treated 263 NF RC biocomposite films with APTES
- 4.115 Relative elongation at break of theoretical and experimental results 264 of untreated and treated NF RC biocomposite films with APTES
- 4.116 Effect of NF content on Young's modulus of untreated and treated 265 NF RC biocomposite films with APTES
- 4.117 XRD curves of untreated and treated NF RC biocomposite films 267 with APTES
- 4.118 TGA curves of untreated and treated NF RC biocomposite films 269 with APTES
- 4.119 DTG curves of untreated and treated NF RC biocomposite films 269 with APTES
- 4.120 Moisture content of untreated and treated NF RC biocomposite 271 films with APTES
- 4.121 Weight loss of untreated and treated NF RC biocomposite films 273 with APTES on enzymatic biodegradation
- 4.122 Tensile strength of untreated and treated NF RC biocomposite films 275 at 3 wt% of NF content
- 4.123 Elongation at break of untreated and treated NF RC biocomposite 276 films at 3 wt% of NF content
- 4.124 Young's modulus of untreated and treated NF RC biocomposite 277 films at 3 wt% of NF content
- 4.125 Crystallinity index of untreated and treated NF RC biocomposite 280 films at 3 wt% of NF content

- 4.126 Thermal properties of untreated and treated NF RC biocomposite 282 films at 3 wt% of NF content
- 4.127 Moisture content of untreated and treated NF RC biocomposite 284 films at 3 wt% of NF content
- 4.128 Weight loss on enzymatic biodegradation of untreated and treated 286 NF RC biocomposite films at 3 wt% of NF content

othis tem is protected by original copyright