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Analisis Berangka ke atasPenukar Haba Shell-dan-Double Concentric Tube 

 

ABSTRAK 

 

 

Penukar haba Shell-dan-tube (STHEX) telah digunakan sejak beberapa dekad yang lalu.  

Secara konvensional untuk meningkatkan prestasi termo-hidraulik penukar haba klasik, 

panjang keseluruhan tiub perlu ditingkatkan.  Ini menyumbang kepada kelemahan 

utama dari segi reka bentuk penukar haba klasik terutamanya apabila 

mempertimbangkan aspek ekonomi.  Dalam kajian ini, analisis prestasi termo-hidraulik 

penukar haba shell-dan-double concentric tube (SDCTHEX) dijalankan menggunakan 

perisian komersial Dinamik Bendalir Berkomputer (CFD) ANSYS FLUENT 14.0.  

Model aliran gelora iaitu 3D realizable k-ε bersama-sama fungsi dinding scalable 

digunakan bagi keseluruhan simulasi berangka.  Kebergantungan termofizik bendalir 

kerja terhadap suhu digunakan dan penukar haba dianalisis dengan mempertimbangkan 

pemindahan haba konjugat daripada minyak panas di dalam shell dan tiub dalaman  

kepada bendalir kerja di bahagian anulus.  Tujuan pengesahan ke atas pekali 

pemindahan haba dan kejatuhan tekanan telah dilakukan, dimana kaedah Bell-

Delaware, Gnielinski, dan Haaland kolerasi dibandingkan dengan nilai-nilai simulasi 

CFD bagi SDCTHEX dan STHEX klasik.  Model SDCTHEX kemudiannya dibanding 

dengan model STHEX klasik bagi prestasi termo-hidraulik pada kadar alir jisim cecair 

panas yang berbeza.  Seterusnya, kesan diameter tiub dalaman yang berbeza dan 

susunan aliran yang berbeza (aliran bertentangan dan selari) bendalir kerja ke atas 

prestasi SDCTHEX disiasat.  Selain daripada itu, kesan pemindahan haba dan kejatuhan 

tekanan Al2O3/air bendalir nano pada kepekatan isipadu serbuk nano yang berbeza dan 

kadar alir yang berbeza didalam bahagian annulus SDCTHEX juga dianalisis.  

Keputusan menunjukkan bahawa peratus peningkatan purata keseluruhan kadar 

pemindahan haba per kejatuhan tekanan keseluruhan SDCTHEX dengan diameter tiub 

dalaman bersamaan dengan 8/12 mm / mm, hampir 343 % lebih tinggi daripada 

STHEX.  Kadar pemindahan haba keseluruhan setiap kejatuhan tekanan keseluruhan 

SDCTHEX juga didapati sensitif kepada diameter tiub dalaman.  Diperhatikan bahawa 

untuk kadar aliran jisim 22.5 kg / s, nilai Φ/∆P adalah paling maksimum kira-kira 400 

% lebih tinggi pada diameter tiub dalaman 12/16 mm / mm berbanding dengan STHEX.  

Selain daripada itu, prestasi termo-hidraulik bagi susunan aliran bertentangan bendalir 

kerja juga didapati lebih tinggi daripada susunan aliran selari bendalir bekerja yang diuji 

pada setiap kadar aliran jisim bagi bendalir panas.  Ini menunjukkan bahawa 

SDCTHEX mungkin menjadi pilihan yang ideal untuk menggantikan STHEX klasik 

dalam aplikasi industri penukar haba.  Untuk kesan  bendalir nano, keputusan  

menunjukkan bahawa pada Re yang sama, prestasi pemindahan haba meningkat dengan 

meningkatkan kepekatan isipadu serbuk nano dan ia mempunyai nilai yang lebih tinggi 

berbanding dengan air.  Tetapi jika dibandingkan pada kadar aliran jisim yang sama, 

bendalir nano pada setiap kepekatan isipadu serbuk nano tidak menunjukkan 

peningkatan pemindahan haba berbanding air.   
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Numerical Analysis of Shell-and-Double Concentric Tube Heat Exchanger 

 

ABSTRACT 
 

 
Shell-and-tube heat exchangers (STHEX) have been used for several decades.  

Conventionally to increase the thermo-hydraulic performance of classical heat 

exchangers, overall length of tubes has to be increased.  This contributes major 

disadvantage in term of classical heat exchangers design particularly considering 

economical aspect.  In this study, the thermo-hydraulic performance analysis of a shell-

and-double concentric tube heat exchanger (SDCTHEX) is carried out using 

commercially the available Computational Fluid Dynamic (CFD) software ANSYS 

FLUENT 14.0.  A 3D realizable k–ε turbulence model with scalable wall function 

treatment is used for the whole numerical simulations.  Validation on heat transfer 

coefficient and pressure drop are done, where the Bell-Delaware method, Gnielinski, 

and  Haaland correlations are compared with CFD simulation values of SDCTHEX and 

classical STHEX.  The SDCTHEX model is then compared with classical STHEX 

model for their thermo-hydraulic performances for different mass flow rates of the hot 

fluid.  Next, the effects of different inner tube diameters and different arrangement 

(counter and parallel flows) flows of working fluids flows on the performance of 

SDCTHEX are investigated.  Other than that, the effects of the heat transfer and 

pressure drop of Al2O3/water nanofluid at different Al2O3 nanoparticle volume 

concentrations and flow rates flowing inside annulus side of SDCTHEX are also 

analysed.  It is observed that, the percentage of overall heat transfer rate per overall 

pressure drop of SDCTHEX with inner tube diameter equal to 8/12 mm/mm, is 

increased nearly 343 % higher than that of STHEX. Also, the overall heat transfer rate 

per overall pressure drop of SDCTHEX is sensitive to inner tube diameter.  It is found 

that Φ/∆P for the mass flow rate of 22.5 kg/s is for to be maxed about 400 % higher at 

inner tube diameter of 12/16 (mm/mm) with respect to the STHEX. On the other hand, 

the thermo-hydraulic performance for counter flow arrangement of working fluid is also 

found higher than that of parallel flow arrangement of working fluid at any hot fluid 

mass flow rate.  For the nanofluid effect, the results obtained showed that at the same 

Re, the heat transfer performance increases by increasing the nanoparticle volume 

concentration and it’s valued higher when compared with water.  But when compared at 

the same mass flow rate, the nanofluid at any nanoparticle volume concentration does 

not show any enhancement on heat transfer when compared with water.  
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1 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

Most engineering processes either in light or heavy industries involve heat 

energy.  One such equipment used in production and absorption of heat energy is called 

heat exchanger.  In industries, heat exchangers are widely used for chemical processing, 

electricity generation, space heating, air conditioning, and refrigeration.  

A heat exchanger is a device used for transferring heat energy between two or 

more fluids that possess different temperature and separated by solid wall (thin wall).  

The mechanism of the heat energy transfer in a heat exchanger is shown in Fig. 1.1 

involving two working fluids (i.e. cold and hot fluids) and separated by a thin wall.  In 

conventional heat exchanger, heat energy is transferred by a combination of convection 

which is between fluids (cold and hot) and wall, and conduction through the thin wall 

from hot fluid to cold fluid.   

 

 

 

 

 

Figure 1.1: Heat energy transfer mechanism for two working fluids in a conventional 

heat exchanger 

 

cold fluid 

hot fluid 

thin wall 

convectionQ

convectionQconductionQ
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2 

 

Heat exchangers are classified based on four criteria which are (a) transfer 

process, (b) number of fluids, (c) construction, (d) flow arrangement, and (e) heat 

transfer mechanism. Based on those criteria, the common examples of the heat 

exchangers are used in industries are evaporator, condenser, shell and tube, automobile 

radiators, cooling tower, and double tube/pipe. 

More than 60 % of the market share in heat exchanger industry belongs to the 

shell-and-tube heat exchanger (STHEX).  The factors, are as follows (Das, 2005): 

i. They are suited for higher-pressure (over 30 kgf/cm
2
) and higher-temperature 

(over 260°C) applications. 

ii. The design and manufacturing procedures for this type is well established and 

certified by TEMA (Tubular Exchanger Manufacturer’s Association) and ASME 

(American Society of Mechanical Engineers). 

iii. For this heat exchanger type, there are well established thermal design methods 

to predict its performance such as Bell-Delaware and Kern. 

 

1.1 Shell-and-Tube Heat Exchangers 

Most of heat exchangers that are widely used in industrial process such as in Oil 

& Gas industry, food industry, chemical industry and air-conditioning are the STHEX 

type. In this type of heat exchanger, heat energy is transferred from working fluid 

flowing in the tube side to working fluid flowing in the shell side by conduction through 

the tube wall. The heat energy transfer, depending on the fluid arrangement, can happen 

either from the tube side to shell side or vice versa.  The working fluids on either the 

shell or the tube side can be in the form of liquids or gases. A heat transfer area should 

be maximised in order to transfer heat to the overall heat exchanger system efficiently. 

Working fluids for STHEXs involving only one phase fluid (either liquid or gas) on 
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each side are called single-phase heat exchangers, where two-phase are usually called as 

condensers or boilers. Figure 1.2 shows the main components of STHEX type. The 

detail explanations of them are briefly described in the following section. 

 

 

 

Figure 1.2: STHEX main components 

 

1.1.1 Tubes 

The function of the tubes in heat exchanger is to allow the heat transfer 

processes in term of conduction and convection occur between fluid in the tube side and 

the another fluid in shell side at the outer surface of tubes bundles. Tube pitch, tube 

thickness, and tube length are major characteristics from the point of view of thermal 

design features. Straight and U tubes are most common type of tube bundles in power 

and process industry exchanger.  

 

1.1.2 Tube Sheets 

Tube sheets are used to hold bundle of tubes in a STHEX. It is generally a 

circular metal plate that has been holes and to hold the tubes in place based on the 

desired tube layout. In order to make sure no clearance between tube sheet and tubes 

resulting in shell side leakage, the metal tube ends are forced to move into the grooves 

Baffle 

Inlet tube    

side nozzle 

Inlet shell 

side nozzle 

Outlet tube    

side nozzle 

Outlet shell 

side nozzle 

Tube 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



4 

 

forming using several methods such as by hydraulic/pneumatic expansion of tubes, 

welding of tubes, and rolling the tubes.  The most common method to attach between 

tube sheet and tube bundles is by rolling the tubes. In this method, two or more grooves 

are created on tube sheet in order to hold the tubes (Mukherjee, 1998) as shown in Fig. 

1.3.    

 

 

 

Figure 1.3: Rolling method between tube sheet and a tube: (a) before; (b) after 

(Mukherjee, 1998) 

 

1.1.3  Shell side/tube side nozzles 

The inlet and outlet for the working fluid the flowing inside tube and shell sides, 

is called as nozzles.  Normally, their functions are to collect or distribute the working 

fluid in STHEX. The inlet and outlet for the shell-and-tube sides basically is circular 

pipe with uniform cross section mounted to the shell channel.  

 

1.1.4 Baffles 

There are two main functions of baffles (Sekulić & Shah, 1995): 

 Fixing of the tubes in the proper position during assembly and support the tubes 

during vibration caused by normal flow on the tube bundles. 

Grooves 

Tube sheet 

Tube wall 

(a) (b) 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



5 

 

 Drive of the shell side flow from counter to cross flow the tube field in order to 

promote the turbulence so that increasing the heat transfer performance. 

 

The various baffles type used in STHEX are shown in Fig. 1.4, and the most 

commonly used is segmental baffle type.  The selection of  baffle cut, spacing, and type 

are influenced mostly by flow-induced vibration, tube support, allowable pressure drop, 

desired heat transfer rate, and flow rate (Shah & Sekulić, 2003). To make sure that the 

adjacent baffles overlap at least one full baffle tube row, the segmental baffle cut must 

be less than half of the shell inside diameter.  The baffles cut of 20 to 25 % of shell 

inside diameter is common for liquid flows on the shell side due to produce a good heat 

transfer with the reasonable pressure drop.  In order to minimize the pressure drop for 

low pressure gas flow, normally the baffle cut of 40 to 45 % is chosen (Mohammadi, 

2011).  The optimum ratio of baffle spacing to shell inside diameter that will results in 

the highest efficiency that is normally between 0.3 and 0.6 (Mukherjee, 1998). 

 

Figure 1.4: Types of baffles (Mukherjee, 1998) 
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1.2 Tubular Exchangers Manufacturers Association (TEMA) Design Code 

Several of constructions are available in STHEX designs based on desired heat 

transfer, pressure drop and so on.  The pressure inside of a STHEX is designed in 

accordance with pressure vessel design codes such as BSS (British Standards 

Specifications) 5500, ASME section VII, and so on, but a pressure vessel code alone 

cannot be expected to deal with all the special features of STHEXs. To give protection 

and guidance to purchaser, fabricators, and designers, a supplementary code is desirable 

that provides minimum standards in guarantees, design, maintenance, operation, 

installation, inspection, testing, tolerances, fabrication, corrosion allowances, thickness, 

and material for STHEXs (Hewitt, 1987).  A widely accepted standard is published by 

the TEMA which is intended to supplement the ASME Boiler and Pressure Vessel 

Code, Section VIII, Division 1.  TEMA has produced a standard notation system to 

differentiate types of STHEX and this selection process is primarily thermal design 

decision. The different type of STHEX will produced different flow paths in the shell 

side.  By this standard, three letters arrangement of STHEXs has been developed. The 

first letter represents the front head design, the second represents the shell design and 

the third letter represents the rear head design.  Seven types of shell designs, developed 

by TEMA which are E, F, G, H, J, K, and X are illustrated in ‘APPENDIX’.  Of the 

various shell design as mentioned above, the most common one is E type.  In E type, 

pure counter current flow defined when a single tube pass considered as shown in Fig. 

1.5.  This flow arrangement will increases mean temperature difference and 

effectiveness of the heat exchanger (Shah & Sekulić, 2003). 
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Figure 1.5: Schematic design of E-Shell based on TEMA notation system 

 

1.2.1 Shell-and-Tube Heat Exchangers with E-Shell 

The most common design of the shell side of STHEXs is the E-shell due to its 

simplicity, its wide operating temperatures and pressures range  driving force and low 

cost (Shah & Sekulić, 2003).  To increase the heat transfer performance on the tube 

side, the multiple passes of the tubes arrangement must be selected but this arrangement 

decreases the F factor or heat exchanger effectiveness due to some tube passes being in 

parallel flow compared with single pass tube arrangement (Shah & Sekulić, 2003).  

Figure 1.6 shows some typical E-shell arrangements based on TEMA notation system 

using three letter designs. 

 

 

 

 

 

 

Figure 1.6: Schematic representation of typical TEMA STHEX with E-shell 

(Mohammadi, 2011) 

 

(a)   BEM STHEX with one tube side 

pass 
(b)  BEM STHEX with two tube side 

passes 

(c)   AEM STHEX with two tube side 

passes 

(d)  AES STHEX with split ring (floating 

head with backing device) and two 

tube side passes 
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1.3 Problem Statement  

Shell-and-tube heat exchangers are being used for several decades. 

Conventionally to increase the thermo-hydraulic performance of the classical heat 

exchangers, overall length of tubes has to be increased.  This contributes major 

limitation in term of classical heat exchangers design particularly considering 

economical aspect.  As a consequence the floor area must be large enough to 

accommodate the entire length of these devices.  Further, the increase of the tube length 

will require more number of baffles which will result in the increase of shell side 

pressure drop (Das, 2005).   

Due to this concern, the single tube bundles have been replaced by double-

concentric tube bundles in STHEX.  As a result, the heat exchanger device is called a 

shell-and-double concentric-tube heat exchanger (SDCTHEX) which has three working 

fluids, three inlets, as well as three outlets.  The analytical study has shown that this heat 

exchangers has a better performance in terms of its size (length of tubes) when 

compared to that of a classical STHEXs.  From the open literatures (discussed in 

Chapter 2), there is no serious attempts are made to investigate performance of 

SDCTHEX in detail. Thus, it is interesting to investigate and visualize the thermo-

hydraulic performance of SDCTHEX in this study. 

 

1.4 Research Objectives 

Objectives of the research are as the following: 

i. To determine the thermo-hydraulic performance of the shell-and-double 

concentric tube heat exchanger (SDCTHEX) and the classical shell-and-

tube heat exchanger (STHEX) under the same operating conditions using 

numerical simulation. 
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