

CLASSIFICATION OF RESPIRATORY PATHOLOGY FROM PULMONARY ACOUSTIC BASED ON RESPIRATORY CYCLE SEGMENTATION AND TWO – STAGE CLASSIFICATION

by

origit

 Rajkumar Palaniappan

 (1140610743)

 A thesis submitted in fulfillment of the requirements for the degree of

 Doctor of Philosophy in Mechatronic Engineering

School of Mechatronic Engineering

UNIVERSITI MALAYSIA PERLIS

2015

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS			
Author's full name	: Rajkumar l	Palaniappan	
Date of birth	: 24.12.1986	5	
Title	ACOUSTI		ATHOLOGY FROM PULMONARY ON RESPIRATORY CYCLE CLASSIFCATION
Academic Session	: 2015-2016		Wildhi
I hereby declare that	t the thesis be	comes the property of Universiti	Malaysia Perlis (UniMAP) and to be
placed at the library	of UniMAP.	This thesis is classified as:	
CONFIDE	INTIAL	(Contains confidential information	tion under the Official Secret Act 1972)*
RESTRIC	TED	(Contains restricted information where research was done)*	on as specified by the organization
OPEN AC	CESS	I agree that my thesis is to be copy or on-line open access (fu	made immediately available as hard ll text)
I, the author, give pe	ermission to the	he UniMAP to reproduce this the	sis in whole or in part for the purpose
	0	only (except during a period of _	years, if so requested above).
	emist		Certified by:
SI	GNATURE		SIGNATURE OF SUPERVISOR
<u> </u>	1433351		DR.KENNETH SUNDARAJ
(NEW IC I	NO. / PASSP	ORT NO.)	NAME OF SUPERVISOR
Date :			Date :

ACKNOWLEDGMENT

The successful completion of this thesis work relies on the influence of many people who have generously given their time and energy in specific ways. I take this opportunity to express my gratitude and thanks to each of you who have been a part of this PhD journey.

First and foremost I would like to express my sincere gratitude to the support and supervision of Assoc. Prof. Dr. Kenneth Sundaraj, who brought in this opportunity, for his suggestions, guidance, encouragement and challenges throughout this work from its beginning. Indeed, his inputs and ideas were of immense help in the making of this thesis.

I gratefully thank Prof. Dr. M. K. Sudarshan MD (Principal - Kempegowda Institute of Medical Sciences (KIMS)), and Assoc. Prof. Dr. D. H. Aswath Narayana MD (Head Department of Community Medicine - KIMS) for permitting the data collection process for this research to be conducted in KIMS campus and also their cooperation and guidance. I extend my thanks to Dr. S. Sebastian MD (Klang General Hospital) for the valuable comments, discussions, ideas and suggestions that helped me through this work.

I would like to express my unlimited appreciation to Prof. Dr. N. Huliraj MD (Head Department of Pulmonary Medicine - KIMS), Assoc. Prof. Dr. S. S. Revadi MD and Assoc. Prof. Dr. B. Archana MD for their valuable supervision and guidance in the data collection processes for this thesis. Their patience and positive attitude foster me in completing my data collection for this research work. I would like to express my thanks to all the members in Department of Pulmonary Medicine – KIMS for their cooperation and encouragement.

I take this time to thank the Dean, School of Mechatronic Engineering Assoc. Prof. Dr. Abu Hassan bin Abdullah and the program chairman Dr. Ruslizam bin Daud for their cooperation and administrative assistance through this course of study.

I would like to express my gratitude and thanks to the vice chancellor of UniMAP, Yang Berbahagia Brigedier Jeneral Datuk Prof. Dr. Kamarudin Hussin, for providing me an opportunity in this university and the financial support through research assistantship and graduate assistantship.

It is an honor to thank my fellow colleagues, members of AI- rehab research group who supported me in this research work. At this junction, I would like to appreciate my parents, Mr. C. Palaniappan and Mrs. P. Sridevi, brother, Mr. P. Kathir Kaman, sister-in-law Mrs. K. Anu Shankari and my niece Aishwarya for always being there for me in this solitary research journey, still being 2500 miles away from me. I also thank all my friends for their support and encouragement throughout this PhD journey.

Last but not least, I am deeply thankful to different divinities existing in the universe by the principal concept of faith for successfully completing the research.

TABLE OF CONTENTS

	PAGE
DECLARATION OF THESIS	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	ix
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xvii
ABSTRAK	xviii
ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS ABSTRAK ABSTRAK CHAPTER 1 INTRODUCTION	xix
CHAPTER 1 INTRODUCTION	9
1.1 Research Background	9
1.2 Motivations of the Work	10
1.3 Problem Statement	11
1.4 Research Objectives	12
1.5 Scope of the Thesis	15
1.6 Thesis Organization	16

CHAPTER 2 LITERATURE REVIEW 18

2.1	Physiology of Human Respiratory system	18
-----	--	----

2.2	Respiratory Pathology and the Causes	19
2.3	Computerized Respiratory Sound Analysis	20
	2.3.1 Types and Characteristics of Respiratory Sounds	20
	2.3.2 Respiratory Sounds Data Acquisition	22
	2.3.3 Respiratory Sounds Pre-processing	24
	2.3.4 Respiratory Sounds Cycle Segmentation	25
	2.3.5 Feature Extraction Techniques in Respiratory Sound Analysis	28
2.4	Machine Learning techniques in Respiratory Sound Analysis	31
2.5	Research Gap	34
2.6	Machine Learning techniques in Respiratory Sound Analysis Research Gap Summary APTER 3 METHODOLOGY	35
	0	
CHA	APTER 3 METHODOLOGY	37
3.1	Methodology	37
3.2	Respiratory Sound Acquisition Protocol	40
	3.2.1 Ethics Statement	41
	3.2.2 Subject Inclusion and Exclusion Criteria	42
	3.2.3 Data Set	42
3.3	Pre-processing	45
	3.3.1 Data Validation	45
	3.3.2 Filtering	47
	3.3.3 Respiratory Cycle Segmentation	47
3.4	Feature Extraction, Feature Reduction and Statistical Analysis	56
	3.4.1 Parametric Representation	57

		3.4.1.1 AR-Coefficients	57
		3.4.1.2 Mel-Frequency Cepstral Coefficients	58
	3.4.2	Non-Parametric Representation	59
		3.4.2.1 Wavelet Packet Transform	60
		3.4.2.2 Stockwell Transform	61
	3.4.3	Dimensionality Reduction	64
	3.4.4	Feature Vector	65
	3.4.5	Dimensionality Reduction Feature Vector Statistical Analysis ine learning K-Nearest Neighbour (k-nn) Support Vector Machine (SVM)	67
3.5	Machi	ine learning	67
	3.5.1	K-Nearest Neighbour (k-nn)	68
	3.5.2	Support Vector Machine (SVM)	68
	3.5.3	Extreme Learning Machine (ELM)	72
3.6	Classi	fier Validation and Performance Evaluation	74
	3.6.1	Conventional validation	74
	3.6.2	Ten-fold Cross validation	74
	3.6.3	Confusion Matrix	75
3.7	Summ	ary	75
	0		
СНА	PTER 4	4 RESULTS AND DISCUSSION	76
4.1	Introd	uction	76
4.2	Perfor	mance of Fuzzy Inference System	76
4.3	Result	ts of Statistical Analysis (ANOVA)	78
4.4	Perfor	mance of Parametric Feature Representation	80

	4.4.1	Performance of AR Coefficient Features with <i>k</i> -nn Classifier	80
	4.4.2	Performance of AR Coefficients Features with SVM Classifier	83
	4.4.3	Performance of AR Coefficients Features with ELM Classifier	88
	4.4.4	Performance of MFCC Features with k-nn Classifier	91
	4.4.5	Performance of MFCC Feature with SVM Classifier	94
	4.4.6	Performance of MFCC Features with ELM Classifier	99
4.5	Perfor	rmance of Non-parametric Feature Representation	102
	4.5.1	Performance of WPT based features with k-nn Classifier	102
	4.5.2	Performance of WPT based features with SVM Classifier	107
	4.5.3	Performance of WPT based features with ELM Classifier	110
	4.5.4	Performance of ST based feature with k-nn Classifier	113
	4.5.5	Performance of ST based feature with SVM Classifier	118
	4.5.6	Performance of ST based feature with ELM Classifier	121
4.6	Comp	parison between Feature Extraction Algorithms	124
4.7	Comp	arison between Machine Learning Algorithms	125
4.8	Comp	parison between Frameworks	126
4.9	Valida	ation	127
4.10	Comp	parison with Previous Works	129
4.11	Appli	cation Development	133
4.12	Summ	nary	136

CHAPTER 5	CONCLUSION AND RECOMENDATIONS	138

5.1	Summary of Findings	13	8
-----	---------------------	----	---

5.2	Research Contributions	139
5.3	Limitations	141
5.4	Recommendations for Future Works	141
REF	TERENCES	143
APP	PENDIX A	153
APP	ENDIX B	161
APP	PENDIX C	170
LIST	Γ OF PUBLICATIONS	182
LIST	r of awards	184
	PENDIX A PENDIX C FOF PUBLICATIONS FOF AWARDS FOF AWARDS Cothis technics protected by original conviction	

LIST OF TABLES

NO		PAG
2.1	Previous works on Respiratory Phase detection	27
3.1	Subject Details	44
3.2	ANOVA Results for Raw Respiratory Sound Signals	46
3.3	Fuzzy Rules	53
3.4	Constant output for Sugeno FIS	54
3.5	Feature Vector Dimension	66
4.1	Feature Significance Results for Framework 1	79
4.2	Feature Significance Results for Framework 2	79
4.3	Feature Significance Results for Framework 3	80
4.4	Performance Outcome of AR Coefficients Features and <i>k</i> -nn Classifier with Framework 1	81
4.5	Performance Outcome of AR Coefficients Features and <i>k</i> -nn Classifier with Framework 2	82
4.6	Performance Outcome of AR Coefficients features and <i>k</i> -nn Classifier with Framework 3	84
4.7	Performance Outcome of the AR Coefficients Features and SVM Classifier with Framework 1	85
4.8	Performance Outcome of the AR Coefficients Features and SVM Classifier with Framework 2	86
4.9	Performance Outcome of the AR Coefficients Features and SVM Classifier with Framework 3	87
4.10	Performance outcome of the AR Coefficients and ELM Classifier with	88
4.11	Framework 1 Performance outcome of the AR Coefficients and ELM Classifier with Framework 2	89
4.12	Performance outcome of the AR Coefficients and ELM Classifier with Framework 3	91
4.13	Performance Outcome of MFCC Features and <i>k</i> -nn Classifier with Framework 1	92
4.14	Performance Outcome of MFCC Features and <i>k</i> -nn Classifier with Framework 2	93
4.15	Performance Outcome of MFCC Features and <i>k</i> -nn Classifier with Framework 3	96
4.16	Performance Outcome of MFCC features and SVM Classifier with Framework 1	97
4.17	Performance Outcome of MFCC features and SVM Classifier with Framework 2	98
4.18	Performance Outcome of MFCC features and SVM Classifier with Framework 3	98

4.19	Performance Outcome of MFCC Features and ELM Classifier with Framework 1	99
4.20	Performance Outcome of MFCC Features and ELM Classifier with Framework 2	100
4.21	Performance Outcome of MFCC Features and ELM Classifier with Framework 3	101
4.22	Performance Outcome of WPT based Features and <i>k</i> -nn Classifier with Framework 1	103
4.23	Performance Outcome of WPT based Features and <i>k</i> -nn Classifier with Framework 2	104
4.24	Performance Outcome of WPT based Features and <i>k</i> -nn Classifier, with Framework 3	106
4.25	Performance Outcome of WPT based Features and SVM Classifier with Framework 1	107
4.26	Performance Outcome of WPT based Features and SVM Classifier with Framework 2	107
4.27	Performance Outcome of WPT based Features and SVM Classifier with Framework 3	109
4.28	Performance Outcome of WPT based Features and ELM Classifier with Framework 1	110
4.29	Performance Outcome of WPT based Features and ELM Classifier with Framework 2	111
4.30	Performance Outcome of WPT based Features and ELM Classifier with Framework 3	112
4.31	Performance Outcome of ST based Features and <i>k</i> -nn Classifier with Framework 1	114
4.32	Performance Outcome of ST based Features and <i>k</i> -nn Classifier with Framework 2	115
4.33	Performance Outcome of ST based Features and <i>k</i> -nn Classifier with Framework 3	117
4.34	Performance Outcome of ST based Features and SVM Classifier with Framework 1	118
4.35	Performance Outcome of ST based Features and SVM Classifier with Framework 2	118
4.36	Performance Outcome of ST based Features and SVM Classifier with Framework 3	120
4.37	Performance Outcome of ST based Features and ELM Classifier with Framework 1	122
4.38	Performance Outcome of ST based Features and ELM Classifier with Framework 2	123
4.39	Performance Outcome of the ST based Features and ELM Classifier with Framework 3	124
4.40	Validation Results using ELM classifier and ST based features with Framework 3 (Dataset 2)	128
4.41	Validation Results using ELM classifier and ST based features with	129

Framework 3 (R.A.L.E Dataset)

othis tem is protected by original copyright

LIST OF FIGURES

NO		PAGE
2.1	Human Respiratory System	19
2.2	General Block Diagram for Respiratory Sound Analysis	20
2.3	Types and Characteristics of Respiratory sounds	23
3.1	Block Diagram of the Methodology used in Framework 1	38
3.2	Block Diagram of the Methodology used in Framework 2	38
3.3	Block Diagram of the Methodology used in Framework 3	39
3.4	WISE Digital Stethoscope Illustration of Auscultation Points Raw Respiratory Sound Signals	41
3.5	Illustration of Auscultation Points	41
3.6	Raw Respiratory Sound Signals	43
3.7	(a) Original Signal Plot and (b) Spectrogram of the Original Signal	46
3.8	Respiratory Cycle Illustration	49
3.9	Fuzzy Inference System	51
3.10	Input Membership Function Plot for NPSD	52
3.11	Input Membership Function Plot for CNPSD	52
3.12	Output Membership Function Plot of Mamdani-type FIS	53
3.13	Input/Output Surface of the Mamdani-type FIS	53
3.14	Input/Output Surface of the Sugeno-type FIS	54
3.15	Respiratory Cycles after Segmentation	55
3.16	Flowchart for Respiratory Cycle Segmentation Algorithm	56
3.17	Block Diagram of the Process Used to Obtain the MFCC Feature	59
3.18	Vector Tree Representation of Wavelet	61
3.19	Tree Representation of Wavelet Packet Transform	61
3.20	Separating Hyperplane for a Simple Two-Class Problem	69
4.1	Correlation Coefficient plot for Mamdani method	77
4.2	Correlation Coefficient plot for Sugeno method	77
4.3	Classification Accuracy for the Three Frameworks using Ten Fold	131
4.4	Cross Validation Classification Accuracy for the Three Frameworks using Conventional Validation	132

4.5	CDSS Tool Front End	133
4.6	Patients Information Panel	134

LIST OF ABBREVIATIONS

	ANFIS	-	Adaptive Neuro-Fuzzy Inference System
	ANN	-	Artificial Neural Network
	ANOVA	-	Analysis of Variance
	AR	-	Auto Regressive
	API	-	Application Programming Interface
	CC	-	Auto Regressive Application Programming Interface Coarse Crackles Compact Disc
	CD	-	Compact Disc
	CDSS	-	Computerized Decision Support System
	CHF	-	Congestive Heart Failure
	CLS	-	Continuous Lung Sounds
	COG	-	Center of Gravity
	COPD	.5	Chronic Obstructive Pulmonary Disease
	CORSA	_	Computerized Respiratory Sound Analysis
	CRF	-	Case Report Form
	CT	-	Computer Tomography
	DFT	-	Discrete Fourier Transform
	DLS	-	Discontinuous Lung Sounds
	F	-	Female
	FC	-	Fine Crackles
	FEV	-	Forced Expiratory Volume

FFT	-	Fast Fourier Transform
FIS	-	Fuzzy Inference System
GAL	-	Grow and Learn
GMM	-	Gaussian Mixture Model
HMM	-	Hidden Markov Model
ILD	-	Interstitial Lung Disease
IPF	-	Idiopathic Pulmonary Fibrosis
IPG	-	Idiopathic Pulmonary Fibrosis Impedance Plethysmography <i>k</i> -Nearest Neighbor
k -nn	-	k -Nearest Neighbor
LVQ	-	Linear Vector Quantization
MARS	-	Marburg Respiratory Sounds
М	-	Male
MFCC	-	Mel Frequency Cepstral Coefficients
MLP	- ,	Multilayer Perceptron
Ν	.19	Normal/Control
OP •	SL-	Obstructive Pathology
PCA	-	Principal Component Analysis
© _R	-	Rhonchi
RBF	-	Radial Basis Function
RIP	-	Respiratory Inductive Plethysmography
RP	-	Restrictive Pathology
SD	-	Standard Deviation
SDK	-	Software Development Kits

SOM	-	Self Organization Maps
ST	-	Stockwell Transform
STFT	-	Short-Time Fourier Transform
SVM	-	Support Vector Machine
W	-	Wheeze
WA	-	Weighted Average
WHO	-	World Health Organization
WPT	-	Wavelet Packet Transform
WT	-	Wavelet Transform

. avelet Transform

LIST OF SYMBOLS

Pengelasan Patologi Pernafasan daripada Isyarat Akustik Pulmonari Menggunakan Representasi berparameter dan bukan berparameter ABSTRAK

Auskultasi adalah proses mendengar bunyi dalam badan dengan menggunakan stetoskop. Proses ini memberi maklumat penting mengenai keadaan semasa bagi organ-organ dalaman seperti jantung, paru-paru dan sistem pencernaan. Auskultasi adalah kaedah yang subjektif dan cenderung untuk menjadi kurang dipercayai. Analisis bunyi pernafasan berkomputer bagaimanapun adalah lebih berkesan dan boleh dipercayai. Tesis ini membincangkan pembangunan sistem sokongan keputusan berkomputer (CDSS) untuk mengesan patologi pernafasan menggunakan isyarat akustik paru-paru. Isyarat akustik pulmonari dikumpulkan daripada 72 subjek untuk membangunkan CDSS. Dalam usaha untuk membangunkan alat CDSS, tiga kerangka metodologi yang berbeza telah dicadangkan untuk menentukan klasifikasi patologi pernafasan yang paling berkesan. Isyarat akustik paru-paru telah ditapis untuk menyingkirkan bunyi dan artifak lain diikuti oleh segmentasi kitaran pernafasan. Dalam tesis ini, segmentasi kitaran pernafasan dilakukan dengan menggunakan sistem kesimpulan Fuzzy. Ciri-ciri representasi parametrik (Mel frekuensi pekali cepstral (MFCC) dan model Auto-regresif (AR)) dan representasi bukan parametrik (paket wavelet mengubah (WPT) dan transformasi Stockwell (ST)) kemudiannya diekstrak keluar. Ciri-ciri yang diekstrak telah dikurangkan dimensinya dengan menggunakan analisis komponen utama dan analisis statistik telah dilakukan untuk menentukan tahap kepentingan vektor ciri-ciri yang diekstrak dengan menggunakan analisa ANOVA sehala. Pemerhatian menunjukkan bahawa ciri-ciri yang diekstrak secara statistik signifikan dengan p < 0.05. Dalam peringkat kasifikasi pelbagai pengelas bukan linear seperti k-jiran terdekat (k-nn), mesin vektor sokongan (SVM) dan mesin pembelajaran melampau (ELM) telah dilaksanakan untuk mengklasifikasikan patologi pernafasan daripada bunyi pernafasan. Dalam peringkat klasifikasi, pengelas ELM menunjukkan prestasi yang terbaik daripada pengelas k-nn dan SVM untuk semua kerangka. Keputusan eksperimen menunjukkan bahawa pengekstrakan ciri-ciri berasaskan ST dengan pengelas ELM menunjukkan prestasi yang terbaik dengan kerangka ketiga. Penggunaan ciriciri berasaskan ST dan pengelas ELM dengan kerangka ketiga telah disahkan menggunakan satu set data yang terdiri daripada 48 subjek dan sistem itu didapati boleh dipercayai dengan purata ketepatan klasifikasi 96.63%, 97.57% dan 98.48% dalam mengklasifikasikan (bunyi normal, bunyi paru-paru berterusan dan bunyi paru-paru tidak berterusan), (bubar dan ronchi) dan (gemercik halus dan gemercik kasar). Selepas pengesahan berjaya dibuat alat CDSS dibangunkan menggunakan ciri-ciri berasaskan ST dan pengelas ELM dengan kerangka ketiga.

Classification of Respiratory Pathology from Pulmonary Acoustic Signals Using Parametric and Non-Parametric Representations

ABSRACT

Auscultation is the process of listening to the internal sounds of the body using a stethoscope. This process provides vital information on the present state of the internal organs, such as the heart, lungs and the gastrointestinal system. Auscultation is subjective and prone to be not reliable. However computerized respiratory sound analysis is more effective and reliable. This thesis discusses the development of a computerized decision support system (CDSS) to detect respiratory pathology using pulmonary acoustic signals. The pulmonary acoustics signals were collected from 72 subjects to develop the CDSS. In order to develop the CDSS tool, three different methodological frameworks were proposed to determine the most effective classification of respiratory pathology. The recorded pulmonary acoustics signals were filtered to remove noise and other artifacts followed by respiratory cycle segmentation. In this work, the respiratory cycle segmentation is performed by using Fuzzy Inference system. Parametric (Mel-frequency cepstral coefficients (MFCC) and Auto-regressive model (AR)) and Nonparametric (wavelet packet transform (WPT) and Stockwell transform (ST)) representations of features were extracted. The features extracted were dimensionally reduced using principal component analysis and a statistical analysis was performed to determine the significance level of the feature vector using One-way ANOVA. Observations showed that the extracted features were statistically significant with p < 0.05. In the classification stage various nonlinear classifiers such as k-nearest neighbor (k-nn), support vector machines (SVM) and extreme learning machine (ELM) were implemented to classify the respiratory pathology from respiratory sounds. In the classification, extreme learning machine performed better than k-nn and support vector machine classifier for all the frameworks. Experimental results showed that ST based feature extraction performed well with ELM classifier with third framework. The ST based features and ELM classifier with third framework was validated using a new set of data comprising of 48 subjects and the system was found to be reliable with mean classification accuracy of 96.63%, 97.57% and 98.48% for classifying (normal, continuous lung sounds and discontinuous lung sounds), (wheeze and rhonchi) and (fine crackles and coarse crackles) respectively. After successful validation a CDSS tool was developed using the ST based features and ELM classifier with third framework.

CHAPTER 1

INTRODCTION

This chapter presents an introduction to respiratory pathology, discussion on conventional methods used for the diagnosis of respiratory pathology, drawbacks of the existing methods and the advantages of using computerized respiratory sound analysis. The main objectives of the proposed research and the organization of the thesis are also original copyri described in the following section.

Research Background 1.1

Auscultation is the process of listening to the internal sounds of the body using a stethoscope. This process provides vital information on the present state of the internal organs, such as the heart, lungs and the gastrointestinal system (Chauhan et al., 2008; J. Earis, 1992). The stethoscope, which was invented by a French physician named René Théophile Hyacinth Laennec in 1816, has been used to perform auscultation for several years now (Welsby et al., 2003). The medical professionals auscultate the heart to indentify presence of heart murmurs, gallop and also to monitor the heart rate (Leatham, 1958). When listening to the lung sounds, medical professional listen for vital signs such as wheeze, rhonchi and crackles (Murphy, 1981). In auscultating the gastrointestinal system, medical professional listen for signs of bowel sounds (Craine et al., 1999). The stethoscope remains the most widely used instrument in clinical medicine. In addition, it has been an effective tool for the diagnosis of respiratory pathology for a number of years now. The auscultation process using stethoscope is inexpensive, non-invasive, and less time-consuming. This process mainly relies on the medical professional and hence requires

well-trained medical professional to recognise respiratory pathology from sounds. In addition, it also depends on the hearing perception of the medical professionals for accurate diagnosis. To overcome these drawbacks computerized respiratory sound analysis was proposed in the early 1980's (Nissan et al., 1993). Computerized respiratory sound analysis deals with the analysis of respiratory sounds by applying various signal processing and machine learning algorithms.

1.2 Motivations of the Work

According to the World Health Organization (WHO), respiratory disorders such as chronic obstructive pulmonary disease (COPD), Asthma, pneumonia, pulmonary fibrosis and other respiratory related illness stands third as the cause of fatality throughout the world. WHO has reported 3 million fatalities due to COPD in the year 2012 (WHO, 2012). WHO also has reported that 235 million people were suffering from Asthma in 2011 (WHO, 2013a). In the case of pneumonia, 935,000 fatalities were reported by WHO in the year 2013 (WHO, 2013b). The major cause of respiratory related illness are smoking, prolonged exposure to certain toxic agents, air pollution and hereditary. Often, patients neglect consulting medical professionals at the early stages of the pathology and only seek medical attentions when the respiratory system is affected badly. By the time the respiratory abnormality is diagnosed, the damage might be irreversible. Early diagnosis and treatment can reduce the number of fatalities drastically and improve the patient's quality of life. Few major cause for fatalities due to respiratory related illness are the lack of treatment facilities and lack of medical professional in the rural areas. The methods for diagnosing respiratory related illness include auscultation, radiography techniques and pulmonary function test are very expensive and also time-consuming. Radiography techniques such as X-rays and Computer Tomography (CT) scans causes serious side effects on human body when exposed for a longer duration (Kandaswamy et al., 2004).

Obstructive pathology cannot be easily diagnosed using the radiography technique. The pulmonary function test does not cause any serious effects however it is time-consuming, expensive and the patients need to put extra effort in some tests such as spirometry and hence it is an invasive procedure. The pulmonary function test provides additional information's such as lung volume, respiratory flow estimation and also the severity level of the pathology (Shephard et al., 1959). In spite of its advantages, the drawbacks of pulmonary function test are invasive method, expensive and time consuming method. To overcome these drawbacks, an alternative method should be developed using respiratory sound analysis to recognize the respiratory pathology. The advantages of using the computerised respiratory sound analysis include non-invasive based approach, fast diagnosis tool for medical professionals. Differential diagnosis is a process to distinguish specific disease or condition suffered by a patient or to at least eliminate any other disease or condition. This research aims to develop a Computerized Decision Support System (CDSS) to detect respiratory pathology using the respiratory sounds.

1.3 Problem Statement

There are several issues related to the classification of respiratory pathology from respiratory sounds. The previous researchers have formulated unrecognized protocols and have not followed the standard computerized respiratory sound analysis (CORSA) guidelines in the data acquisition and filtering process. In the respiratory cycle segmentation, the researchers have implemented both non-acoustic approach and acoustic approach. However, the non-acoustic approaches are considered to affect the natural breathing process and hence the acoustic approaches have been implemented by the previous researcher. In the acoustic approaches, researchers have focused on particular lung auscultation point and not developed a general method which can segment the respiratory cycles of any auscultation point. The accuracy reported by the previous researcher in segmenting the respiratory cycle was also found to be low which will have an effect on the classification of respiratory pathology. In the feature extraction stage, various parametric and non-parametric algorithms were implemented by previous researcher. However the sample size also comes into consideration and hence the reported accuracies are unreliable to predict the quality of features in categorizing the respiratory pathology. In the respiratory pathology classification stage, only few previous researchers have classified most of the respiratory pathology (Wheeze, Rhoinchi, Fine Crackles, and Coarse Crackles) categories. The previous research also shows that chinical validation was not performed in any study reported earlier. The development of CDSS tool is also not reported earlier.

1.4 Research Objectives

This research aims to develop a CDSS tool for respiratory pathology detection using respiratory sounds, signal processing algorithms and artificial intelligence techniques. Despite the presence of various studies in literature, this work focuses on various parametric and non-parametric characteristics of respiratory sound signals in an effort to identify suitable parameters to capture the minute and hidden information from the respiratory sounds for the detection of respiratory pathology. The objectives formulated for the successful implementation of the system are as follows.

i. To design an experimental protocol for collecting respiratory sounds using Computerized Respiratory Sound Analysis (CORSA) standard.

One of the main challenges in computerized respiratory sound analysis research is the acquisition of proper respiratory sound data. To develop an effective