

Effects of Water and Nitrogen Stresses on Growth, Phytochemicals and Antioxidant of Orthosiphon stamineus Plant

by

Noorhaslina Hashim (1341110974)

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of philosophy in Bioprocess Engineering

> School of Bioprocess Engineering UNIVERSITI MALAYSIA PERLIS

> > 2017

UNIVERSITI MALAYSIA PERLIS

Γ	DECLARATION OF THESIS			
Author's Full Name : N	OORHASLINA BINTI HASHIM			
G	FFECTS OF WATER AND NITROGEN STRESSES ON ROWTH, PHYTOCHEMICALS AND ANTIOXIDANT F <i>ORTHOSIPHON STAMINEUS</i> PLANT			
Date of Birth : 10	5 FEBRUARY 1980			
Academic Session : 20	016/2017			
•	s becomes the property of Universiti Malaysia Perlis the library of UniMAP. This thesis is classified as:			
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1997)*			
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*			
✓ OPEN ACCESS	I agree that my thesis to be published as online open access (Full Text)			
research or academic exchang	to reproduce this thesis in whole or in part for the purpose of e only (except during the period of years, if so			
requested above)	Certified by:			
	Certified by:			
SIGNATUR	E SIGNATURE OF SUPERVISOR			
(800216-02-55	88) PROF. DR. ABD RAZAK BIN SHAARI			
Date:	Date:			

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with the period and reasons for confidentiality or restriction. Replace thesis with dissertation (MSc by Mixed Mode) or with report (coursework)

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Dr. Abd Razak Shaari for the continuous support of my PhD study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study. Besides my supervisor, i would like to thank the rest of my co-supervisor; Prof. Dr. Awang Soh @ Mamat and Assoc. Prof. Dr. Syarhabil Ahmad for their insightful comments and encouragement., but also for the hard question which incented me to widen my research from various perspectives.

My sincere thanks also goes to the Dean of School of Bioprocess Engineering, Assoc. Prof. Dr. Syarhabil Ahmad and the staff, who gave a full cooperation in any aspects. I sincerely thank to the Director of Institute Sustainable Agro-technology (INSAT), Assoc. Prof. Dr. Mahmad Nor Jaafar for the permission to perform my field and lab researches at the station. I express my sincere gratitude to the INSAT staff, Miss Eliani, Mrs. Syarifah Rokiah, Mr. Badrul Hisyam, Mrs Rafeqah, Mr Faizal, Mr Zaidi and others, who provided me an opportunity to join their team and who gave access to the laboratory and research facilities. Also I acknowledge my friends in the following institution Mr. Adli Azimi Abd Rahman, Miss Norawanis Abd Razak and Mrs Sriyana for enlightening me the first glance of research.

I warmly express thanks and appreciate my parents for their material and spiritual support in all aspects of my life. I also would like to thank my younger brothers and sisters for they have provided assistance in numerous ways. I want to express my gratitude and deepest appreciation to my lovely daughters and son, for their great patience and understandings of my responsibilities. And finally, my lovely husband, Dear Hairullizam Rosli, without your supports and encouragements, I could not have finished this work, I can just say thanks for everything and may Allah give you all the best in return.

othis tern is protected by original copyright

TABLE OF CONTENTS

DEC	CLARATION OF THESIS	i
ACK	KNOWLEDGEMENT	ii
TAB	BLE OF CONTENTS	iv
LIST	Γ OF FIGURES	xiii
LIST	Г OF TABLES	XX
LIST	Γ OF ABBREVIATIONS	xxii
ABS	TRAK	xxiv
ABS	TRACT	XXV
CHA	T OF TABLES T OF ABBREVIATIONS TRAK TRACT Problem statement Research Objectives Research Scope	1
1.1	Problem statement	5
1.2	Research Objectives	6
1.3	Research Scope	6
CHA	APTER 2 LITERATURE REVIEW	8
2.1	Introduction to Plant Secondary Metabolites	8
	2.1.1 Phenolic compounds	8
	2.1.2 Terpenoid compounds	10
	2.1.3 Alkaloid compounds	12
2.2	Biosynthesis of Secondary Metabolite Compounds	13
	2.2.1 Phenolic compounds biosynthesis pathway	14
	2.2.2 Terpenoid compounds biosynthesis pathways	17
	2.2.3 Alkaloid compounds biosynthesis pathway	19
2.3	Uses of Plant Secondary Metabolite as Medicinal Compounds	20
	2.3.1 Phenolics	20

	2.3.2	Terpenoids	21
	2.3.3	Alkaloids	22
2.4	Factor	rs Affecting Secondary Metabolites Production	22
	2.4.1	Biotic factor	23
	2.4.2	Abiotic factor	23
		2.4.2.1 Temperature	24
		2.4.2.2 Water	25
		2.4.2.3 UV Radiation	25
		2.4.2.4 Mineral Nutrition	26
2.5	Assoc	iation of Water Stress on Production of Secondary Metabolites	26
	2.5.1	Effect of water stress at different growth stages	27
	2.5.2	Effect of stress duration	28
	2.5.3	Effect of stress levels	29
	2.5.4	Effects on Biosynthesis Pathway	29
2.6		iation of Nitrogen Stress (Nitrogen Deficiency) on Production dary Metabolites	of 30
	2.6.1	Effect of nitrogen stress at different growth stages	31
	2.6.2	Effect of stress duration	31
	2.6.3	Effect of stress levels	32
	2 .6.4	Effects on Biosynthesis Pathway	33
2.7	Ortho	siphon stamineus bioactive compounds	33
	2.7.1	Bioactive compounds	34
		2.7.1.1 Rosmarinic acid	35
		2.7.1.2 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF)	36
		2.7.1.3 Sinensetin (SEN)	37
		2.7.1.4 Eupatorin (EUP)	37

2.8	Measu	arement of plant water stress condition	38
	2.8.1	Water stress levels	38
	2.8.2	Water stress (soil moisture) measurement	39
		2.8.2.1 Time Domain Reflectromatry (TDR) Measurement	40
		2.8.2.2 Leaf water potential (LWP) measurement	40
2.9	Measu	arement of plant nitrogen stress condition	41
	2.9.1	Nitrogen stress levels	42
	2.9.2	Nitrogen stress measurement	42
		2.9.2.1 Total Chlorophyll Content	42
		2.9.2.2 Total Nitrogen (TN) in soil and leaf of plant	43
2.10	Extrac	ction and Quantification of secondary metabolites	44
	2.10.1	O. stamineus Plant Extraction	44
	2.10.2	Quantification and Identification of Bioactive Compounds Biomarker.	and 45
	2.10.3	Total Phenolic Contents	46
	2.10.4	Total Flavonoid Contents	47
	2.10.5	Antioxidant Capacity Assay	47
2.11	Biosy	nthesis Pathway by Determination of Enzyme Analysis	49
	2.11.1	Enzyme extraction	49
(2.11.2	Regulation of phenylalanine ammonia-lyase (PAL) in plants	50
	2.11.3	Regulation of tyrosine amino transferase in plants	50
CHA	PTER 3	3 RESEARCH METHODOLOGY	51
3.1	Introd	uction	51
3.2	Resea	rch Facilities and Instrumentation	51
	3.2.2	Chemicals and Reagents	51
	3.2.3	Fertilizers	52

	3.2.4	Instrumentation	52
	3.2.5	Plastic Rain Shelter	53
	3.2.6	Irrigation System in Plastic Rain Shelter	53
	3.2.7	The field capacity of soil	54
	3.2.8	Leaf water potential measurement	55
	3.2.9	Preparation of plant materials	55
		3.2.9.1 Sample Harvesting	56
		3.2.9.2 Subsample 3.2.9.3 Biomass yield	56
		3.2.9.3 Biomass yield	56
3.3	Extra	ction and Quantification of Bioactive Compounds	57
	3.3.1	Bioactive compound extraction	57
	3.3.2	Determination of Total Phenolic Content (TPC)	57
	3.3.3	Determination of Total Flavonoid Content (TFC)	58
	3.3.4	Determination of Antioxidant Capacity (AC)	59
	3.3.5	Quantification of Bioactive Compounds	60
		3.3.5.1 Preparation of O. stamineus biomarker calibration curves	60
	3.3.6	Enzyme Analysis	61
		3.3.6.1 Enzyme extraction	61
	©	3.3.6.2 Determination of Phenylalanine lyase (PAL), Cinnamic a hydroxylase (C4H) and Hydrocinnamic; Coenzyme A I (4CL)	cid 4- Ligase 62
		3.3.6.3 Assay of Tyrosine amino transferase (TAT) enzymatic activ	vity62
		3.3.6.4 Preparation of O. stamineus enzyme activity calibration cur	rve 63
	3.3.7	Statistical Analysis	63
3.4	-	iment 1: Improvement of methanolic extraction efficiency of bio ounds from leaf and stem of <i>O. stamineus</i> herbal plant.	active 64
	3.4.1	Experimental sample	64

	3.4.2	Extraction experiment	64
	3.4.3	Total phenolic content (TPC) analysis	65
	3.4.4	Antioxidant capacity assay (AC)	65
	3.4.5	Quantification of O. stamineus bioactive compound	65
3.5	On Biosy	iment 2: The Effects Of Different Levels And Duration Of Water Sta Bioactive Compounds Concentration, Antioxidant Capacity A nthesis Enzymatic Activity Of Rosmarinic Acid (RA) Of Leaf, Stem A Of <i>O. stamineus</i> .	And
	3.5.1	Experimental treatments	66
	3.5.2	Experimental treatments Water stress level monitoring Bioactive compound extraction Total phenolic content (TPC) analysis	67
	3.5.3	Bioactive compound extraction	68
	3.5.4	Total phenolic content (TPC) analysis	68
	3.5.5	Total flavonoid content (TFC) analysis	68
	3.5.6	Antioxidant capacity (AC) assay	68
	3.5.7	Quantification of O. stamineus bioactive compound	68
	3.5.8	Enzyme Analysis	68
3.6	compo	iment 3: The effects of different levels of nitrogen stress on bioactounds concentration, antioxidant capacity and biosynthesis enzymery of rosmarinic acid (RA) of leaf, stem and root of <i>O. stamineus</i> .	
	3.6.1	Experimental treatment and design	69
	3.6.2	Determination of Total Chlorophyll Content (TCC) in O. stamineus le	eaf 70
	3.6.3	Determination of Total Nitrogen Content in soil and O. stamineus lear	f71
		3.6.3.1 Digestion of O. stamineus leaf	72
		3.6.3.2 Digestion of soil	73
		3.6.3.3Colorimetric assay for total nitrogen content in soil and <i>stamineus</i> leaf	<i>0</i> . 73
	3.6.4	Bioactive compound extraction	75
	3.6.5	Total phenolic content (TPC) analysis	75

	3.6.6	Total flavonoid content (TFC) analysis	75		
	3.6.7	Antioxidant capacity (AC) assay	75		
	3.6.8	Quantification of O. stamineus bioactive compound	75		
	3.6.9	Enzyme Analysis	75		
3.7	on bio	iment 4: The interaction of different levels of water and nitrogen stream of active compounds concentration, antioxidant capacity and biosynth natic activity of rosmarinic acid (RA) of leaf, stem and root of <i>neus</i> .	esis		
	3.7.1	Experimental treatment and design	76		
	3.7.2	Water stress level monitoring	77		
	3.7.3	Experimental treatment and design Water stress level monitoring Determination of Total Nitrogen Content Bioactive compound extraction	78		
	3.7.4	Bioactive compound extraction	78		
	3.7.5	Total phenolic content (TPC) analysis	79		
	3.7.6	Antioxidant capacity (AC) assay	79		
	3.7.7	Quantification of O. stamineus bioactive compound	79		
	3.7.8	Enzyme Analysis	79		
CHA	CHAPTER 4 RESULTS AND DISCUSSIONS 80				
4.1	Intro	luction	80		
4.2		riment 1: Improvement Of Methanolic Extraction Efficiency Of Bioac ounds From Leaf And Stem of <i>O. stamineus</i> Plant.	tive 80		
(4.2.1	Total phenolic content	80		
	4.2.2	Leaf and Stem Antioxidant Capacity	85		
	4.2.3	Bioactive Constituents in O. stamineus Leaf and Stem	88		
		4.2.3.1 Rosmarinic acid	89		
		4.2.3.2 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF)	92		
		4.2.3.3 Sinensetin (SEN)	95		
		4.2.3.4 Eupatorin (EUP)	98		

4.3	1	iment 2: The Effects of Different Levels and Duration of Water Stre tive Compounds and Biomass Yield of <i>O. stamineus</i> Plant	ess on 102
	4.3.1	Leaf, Stem and Root Biomass Yield	102
	4.3.2	Total Phenolic Content	106
	4.3.3	Total Flavonoid Content	112
	4.3.4	Leaf, Stem and Root Antioxidant Capacity (AC)	116
	4.3.5	Bioactive Constituents of Leaf, Stem and Root	120
		4.3.5.1 Rosmarinic Acid (RA) Concentration	120
		 4.3.5.1 Rosmarinic Acid (RA) Concentration 4.3.5.2 Tetramethoxyflavone (TMF) content 4.3.5.3 Sinensetin (SEN) 	124
		4.3.5.3 Sinensetin (SEN)	128
		4.3.5.4 Eupatorin (EUP)	132
	4.3.6	Phenylpropanoid Pathway and Tyrosine Derived Pathway Metabolizing Enzyme Activities	y in 138
		4.3.6.1 Phenylalanine Ammonia-Lyase (PAL) Activity	138
		4.3.6.2 Cinnamic acid 4-hydroxylase (C4H) Activity	139
		4.3.6.3 Hydrocinnamic acid: CoA ligase (4CL) Activity	141
		4.3.6.4 Tyrosine Aminotransferase (TAT) Activity	142
4.4	1	iment 3: The Effects of Different Levels of Nitrogen Stress on Bioa bounds and Biomass Yield of <i>O. stamineus</i>	active 145
	4.4.1	Effects of nitrogen stress on Total Chlorophyll Content (TCC)	145
	G.4.2	Effects of different nitrogen stress levels on Total Nitrogen Co (TNC) of <i>O. stamineus</i> soil and leaf.	ontent 150
	4.4.3	Effects of different nitrogen stress levels on biomass yield of stamineus plant	of <i>O</i> . 152
	4.4.4	Effects of different nitrogen stress levels on Total Phenolic Co (TPC) of <i>O. stamineus</i> plant	ontent 156
	4.4.5	Effects of different nitrogen stress levels on Total Flavonoid Co (TFC) of <i>O. stamineus</i> plant	ontent 160
	4.4.6	Effects of different nitrogen stress levels on Antioxidant Capacity of <i>O. stamineus</i> plant	(AC) 163

- 4.4.7 Effects of nitrogen stress at different levels on the bioactive compounds of *O. stamineus* leaf, stem and root. 166
 4.4.7.1 Rosmarinic acid 166
 4.4.7.2 3'-hydroxy-5, 6, 7, 4 '-tetramethoxyflavone (TMF) 169
 4.4.7.3 Sinensetin (SEN) 171
 4.4.7.4 Eupatorin (EUP) 173
 4.4.8 Effects in phenylpropanoid pathway and tyrosine derived pathway in metabolizing enzyme activities for nitrogen stress treatment of *O. stamineus* leaf. 176
 - 4.4.8.1 Phenylalanine Ammonia-Lyase (PAL) Activity 177
 - 4.4.8.2 Cinnamic acid 4-hydroxylase (C4H) Activity 178
 - 4.4.8.3 Hydrocinnamic acid: CoA ligase (4CL) Activity 179
 - 4.4.8.4 Tyrosine Aminotransferase (TAT) Activity 180
- 4.5 Experiment 4: Effects of water and nitrogen stresses interaction on plant biomass yield, bioactive compounds concentration, antioxidant capacity and rosmarinic acid (RA) biosynthethic enzyme activity of leaf, stem and root of *O. stamineus* 145
 - 4.5.1 Effects of different water and N stresses on biomass yield of *O. stamineus* plant 182
 - 4.5.2 Effects of water and nitrogen stresses on Total Chlorophyll Content (TCC) in *O. stamineus* plant 187
 - 4.5.3 Effects of different water and N stresses on Total Nitrogen Content (TNC) of *O. stamineus* soil and leaf. 193
 - **4.5.4** Effects of different water and nitrogen stresses levels on Total Phenolic Content (TPC) of *O. stamineus* plant 197
 - 4.5.5 Effects of different water and nitrogen stresses levels on Total Flavonoid Content (TFC) of *O. stamineus* plant 202
 - 4.5.6 Effects of different water and nitrogen stresses levels on Antioxidant Capacity (AC) of *O. stamineus* plant 208
 - 4.5.7 Effects of water and nitrogen stresses at different levels on the bioactive compounds of *O. stamineus* leaf, stem and root. 213

4.5.7.1 Rosmarinic acid	213
4.5.7.1 Rosmarinic acid	213

4.5.7.2 3'-hydroxy-5, 6, 7, 4 '-tetramethoxyflavone (TMF)	217
4.5.7.3 Sinensetin (SEN)	221
4.5.7.4 Eupatorin (EUP)	225
4.5.8 Effects in phenylpropanoid pathway and tyrosine derived pat metabolizing enzyme activities for water and nitrogen stresses to of <i>O. stamineus</i> leaf.	•
4.5.8.1 Phenylalanine Ammonia-Lyase (PAL) Activity	230
4.5.8.2 Cinnamic acid 4-hydroxylase (C4H) Activity	232
4.5.8.3 Hydrocinnamic acid: CoA ligase (4CL) Activity	234
4.5.8.4 Tyrosine Aminotransferase (TAT) Activity	235
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS	238
5.1 Conclusions	238
5.2 Recommendations	242
5.1 Conclusions 5.2 Recommendations REFERENCES	244
APPENDIX-A INSTRUMENTATION AND APPARATUS	261
APPENDIX-B METHODS AND APPLICATION	264
APPENDIX-C STATISTIC	268
APPENDIX-D CHROMATOGRAPH AND CALIBRATION CURVE	269
\bigcirc	

LIST OF FIGURE

NO.	I	PAGE
2.1:	Phenol - the simplest of the phenols or polyphenol-Quercetin, a typical flavonoid	91
2.2:	Chemical structure of the terpenoid (isopentenyl pyrophosphate).	13
2.3:	An example of an alkaloid is bufotenin from some toads, containing and indole core and is produced in living organisms from the amino acid tryptophan.	14
2.4:	The Primary and Secondary Metabolites Interface (Lee et al., 2013).	16
2.5:	The biosynthethic pathways leading to formation of main groups of phenolic compounds (Michalak, 2006).	17
2.6:	Biosynthethic pathway for rosmarinic acid.	18
2.7:	The biosynthesis pathway of isoprenoids in plant cell.	20
2.8:	The biosynthesis of alkaloids in plant (Kutchan, 1995).	22
2.9:	Various abiotic stress signals creating stress in plants (Ramakrishna & Ravishankar, 2011).	27
2.10:	The Orthosiphon stamineus (misai kucing) in Malaysia.	37
2.11:	The chemical structures of bioactive compounds in O. stamineus plant.	38
2.12:	Structures of rosmarinic acid and some derivatives (Maike Petersen & Simmonds, 2003).	39
2.13:	The chemical structure of 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF) 40
2.14:	The chemical structure of Sinensetin (SEN).	41
2.15:	The chemical structure of eupatorin (EUP).	41
3.1:	The water stress parameter.	69
3.2:	Digestion process by using manual heating from Bunsen Bunner.	271
4.1:	The total phenolic content (TPC) concentration of the <i>O. stamineus</i> leaf extracted with different concentration of methanolic solvent at different duration (hours)	82

4.2:	The total phenolic content (TPC) concentration of the <i>O. stamineus</i> stem extracted with different concentration of methanolic solvent at different duration (hours).	835
4.3:	The Antioxidant Capacity (AC) of the <i>O. stamineus</i> leaf extracted with different concentration of methanolic solvent at different duration (hours)	88
4.4:	The Antioxidant Capacity (AC) of the <i>O. stamineus</i> stem extracted with different concentration of methanolic solvent at different duration (hours).	89
4.5:	The effects of different levels and duration of water stress on the biomass yield of <i>O. stamineus</i> leaf. The letters indicate significant differences at $P<0.05$ between the stress duration and stress levels.	105
4.6 :	The effects of different levels and duration of water stress on the biomass yield of <i>O. stamineus</i> stem. The letters indicate significant differences at $P<0.05$ between the stress duration and stress levels.	106
4.7:	The effects of water stress at different levels and time duration on the biomass yield of <i>O. stamineus</i> root. The letters indicate significant differences at $P<0.05$ between the stress duration and stress levels.	107
4.8:	The effects of different levels of water stress and duration on total phenolic content (TPC) of <i>O. stamineus</i> leaf. Values with different letters are significantly different at $p < 0.05$.	109
4.9:	The effects of water stress at different levels and time duration on TPC for <i>O. stamineus</i> stem. Values with different letters are significantly different at $p < 0.05$.	111
4.10:	The effects of water stress at different levels and time duration on TPC for <i>O. stamineus</i> roots. Values with different letters are significantly different at $p < 0.05$.	112
4.11:	The effects of water stress at different levels and time duration on TFC for <i>O. stamineus</i> leaf. Values with different letters are significantly different at $p < 0.05$.	114
4.12:	The effects of water stress at different levels and time duration on TFC for <i>O. stamineus</i> stem. Values with different letters are significantly different at $p < 0.05$.	116
4.13:	The effects of water stress at different levels and time duration on TFC for <i>O. stamineus</i> roots. Values with different letters are significantly different at $p < 0.05$.	117

4.14:	The effects of water stress at different levels and time duration on the antioxidant capacity of <i>O. stamineus</i> leaf. Values with different letters are significantly different at $p < 0.05$.	119
4.15:	The effects of water stress at different levels and time duration on the antioxidant capacity of <i>O. stamineus</i> stem. Values with different letters are significantly different at $p < 0.05$.	120
4.16:	The effects of water stress at different levels and time duration on the antioxidant capacity of <i>O. stamineus</i> root.Values with different letters are significantly different at $p < 0.05$.	121
4.17:	Effects of water stress at different levels and time duration on PAL activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	141
4.18:	Effects of water stress at different levels and time duration on C4H activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	142
4.19:	Effects of water stress at different levels and time duration on 4CL activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	144
4.20:	Effects of water stress at different levels and time duration on TAT activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	145
4.21:	The effects of different N stress on chlorophyll a content of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels	148
4.22:	The effects of different N stress on chlorophyll b content of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels	149
4.23:	The effects of different N stress on chlorophyll a+b content of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	150
4.24:	The effects of different N stress on SPAD meter reading of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	151
4.25:	Total Nitrogen availability in the soil for different nitrogen stress levels. The letters indicate significant differences at P<0.05 between stress levels.	152
4.26:	Total Nitrogen uptake in <i>O. stamineus</i> leaf for different nitrogen stress levels. The letters indicate significant differences at P<0.05 between stress levels.	153

4.27:	The effects of different N stress levels on total dry weight of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	155
4.28:	The effects of different N stress levels on total dry weight of <i>O. stamineus</i> stem. The letters indicate significant differences at P<0.05 between stress levels.	156
4.29:	The effects of different N stress levels on total dry weight of <i>O. stamineus</i> root. The letters indicate significant differences at P<0.05 between stress levels.	157
4.30:	The effects of difference N stress levels on total phenolic content (TPC) of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	158
4.31:	The effects of difference N stress levels on total phenolic content (TPC) of <i>O. stamineus</i> stem. The letters indicate significant differences at P<0.05 between stress levels.	159
4.32:	The effects of difference N stress levels on total phenolic content (TPC) of <i>O. stamineus</i> root. The letters indicate significant differences at P<0.05 between stress levels.	160
4.33:	The effects of difference N stress levels on total flavonoid content (TFC) of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	162
4.34:	The effects of difference N stress levels on total flavonoid content (TFC) of <i>O. stamineus</i> stem. The letters indicate significant differences at P<0.05 between stress levels.	163
4.35:	The effects of difference N stress levels on total flavonoid content (TFC) of <i>O. stamineus</i> root. The letters indicate significant differences at P<0.05 between stress levels.	164
4.36:	The effects of difference N stress levels on Antioxidant Capacity (AC) of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	165
4.37:	The effects of difference N stress levels on Antioxidant Capacity (AC) of <i>O. stamineus</i> stem. The letters indicate significant differences at P<0.05 between stress levels.	166
4.38:	The effects of difference N stress levels on Antioxidant Capacity (AC) of <i>O. stamineus</i> root. The letters indicate significant differences at P<0.05 between stress levels.	167

4.39:	The effect of nitrogen stress levels on PAL activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	179
4.40:	The effect of nitrogen stress levels on C4H activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	180
4.41:	The effect of nitrogen stress levels on 4CL activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	181
4.42:	The effect of water stress levels on TAT activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	182
4.43:	The effects of different water and N stresses levels on total dry weight of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	185
4.44:	The effects of different water and N stresses levels on total dry weight of <i>O. stamineus</i> stem. The letters indicate significant differences at P<0.05 between stress levels.	186
4.45:	The effects of different water and N stresses levels on total dry weight of <i>O. stamineus</i> root. The letters indicate significant differences at P<0.05 between stress levels.	187
4.46:	The effects of different water and N stresses on chlorophyll a content of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	190
4.47:	The effects of different water and N stresses on chlorophyll b content of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	191
4.48:	The effects of different water and N stresses on chlorophyll a+b content of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	192
4.49:	The effects of different water and N stresses on SPAD meter reading of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	193
4.50:	The effects of different water and N stresses on total nitrogen content in the soil. The letters indicate significant differences at P<0.05 between stress levels.	196

4.51:	The effects of different water and N stresses on total nitrogen content in <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	197
4.52:	The effects of difference water and N stresses levels on total phenolic content (TPC) of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	200
4.53:	The effects of difference level of water and N stresses levels on total phenolic content (TPC) in <i>O. stamineus</i> stem. The letters indicate significant differences at P<0.05 between stress levels.	201
4.54:	The effects of differences level of water and N stresses levels on total phenolic content (TPC) in <i>O. stamineus</i> root. The letters indicate significant differences at P<0.05 between stress levels.	203
4.55:	The effects of difference water and N stresses levels on total flavonoid content (TFC) of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	205
4.56:	The effects of differencewater and N stresses levels on total flavonoid content (TFC) of <i>O. stamineus</i> stem. The letters indicate significant differences at P<0.05 between stress levels.	207
4.57:	The effects of difference N stress levels on total flavonoid content (TFC) of <i>O. stamineus</i> root. The letters indicate significant differences at P<0.05 between stress levels.	208
4.58:	The effects of differences water and N stresses levels on Antioxidant Capacity (AC) of <i>O. stamineus</i> leaf. The letters indicate significant differences at P<0.05 between stress levels.	211
4.59:	The effects difference water and N stresses levels on Antioxidant Capacity (AC) of <i>O. stamineus</i> stem. The letters indicate significant differences at $P<0.05$ between stress levels.	212
4.60:	The effects of difference water and N stresses levels on Antioxidant Capacity (AC) of <i>O. stamineus</i> root. The letters indicate significant differences at P<0.05 between stress levels.	213
4.61:	The effect of nitrogen stress levels on PAL activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	233
4.62:	The effect of water and nitrogen stresses levels on C4H activity in <i>O. stamineus</i> leaf. Different letters in rows for each extract indicate significantly different values of means ($P < 0.05$).	235

- 4.63: The effect of water and nitrogen stresses levels on 4CL activity in *O. stamineus* leaf. Different letters in rows for each extract indicate significantly different values of means (P < 0.05).
- 4.64: The effect of water stress levels on TAT activity in *O. stamineus* leaf. Different letters in rows for each extract indicate significantly different values of means (P < 0.05).

238

236

othis tern is protected by original copyright

LIST OF TABLES

NO	PA	GE
2.1:	Classes of phenolic compounds in plants	10
3.1:	The list of instruments and their application.	55
3.2:	Nitrogen fertilization levels of O. stamineus plant during the experiment.	71
3.3:	Phosphate (P) and potassium (K) fertilization levels of O. stamineus plant	72
3.4:	Nitrogen fertilization levels of O. stamineus plant during the experiment.	79
3.5:	Phosphate (P) and Kalium (K) fertilization levels of O. stamineus plant	79
3.6:	The leaf water potential (MPa) for water and nitrogen stresses treatment	80
4.1:	The Rosmarinic Acid (RA) concentrations of the <i>O. stamineus</i> leaf and stem extracted with different concentration of methanolic solvent at different duration (hours).	92
4.2:	The TMF concentrations of the <i>O. stamineus</i> leaf and stem extracted with different concentration of methanolic solvent at different duration (hours).	95
4.3:	The effects of extraction methanol compositions and times on Sinensetin (SEN) compounds <i>O. stamineus</i> leaf and stem.	98
4.4:	Effects of extraction differences concentration solvent of <i>O. stamineus</i> leaf and stem on Eupatorin (EUP) compounds.	101
4.5:	The optimum compositions in leaf and stem of <i>O. stamineus</i> plant extr with different methanol concentration and times.	acted 103
4.6: (Effects of water stress at different levels and time duration on RA concentration of <i>O. stamineus</i> leaf, stem and root.	124
4.7:	Effects of different levels water stress and time duration at on TMF concentration of <i>O. stamineus</i> leaf, stem and root.	128
4.8:	Effects of water stress at different levels and time duration on SEN concentration of <i>O. stamineus</i> leaf, stem and root.	132
4.9:	Effects of water stress at different levels and time duration on EUP concentration of <i>O. stamineus</i> leaf, stem and root.	135
4.10:	The optimum compositions of bioactive compounds in leaf, stem and root samples under different water stress levels.	138

4.11:	The optimum compositions of bioactive compounds in leaf, stem and root samples with different duration time (weeks).	139
4.12:	The optimum enzyme activities in <i>O. stamineus</i> with different water stress levels and duration time (weeks).	146
4.13:	Effects of nitrogen stress at different levels on the Rosmarinic acid (RA) compounds of <i>O. stamineus</i> leaf, stem and root.	169
4.14:	Effects of nitrogen stress at different levels on the 3'-hydroxy-5, 6, 7, 4 '-tetramethoxyflavone (TMF) compounds of <i>O. stamineus</i> leaf, stem and root.	171
4.15:	Effects of nitrogen stress at different levels on the Sinensetin (SEN) compounds of <i>O. stamineus</i> leaf, stem and root.	174
4.16:	Effects of nitrogen stress at different levels on the Eupatorin (EUP) compounds of <i>O. stamineus</i> leaf, stem and root.	176
4.17:	Summary of <i>O. stamineus</i> bioactive compositions under different nitrogen stress levels	177
4.18:	Effects of nitrogen stress at different levels on the Rosmarinic acid (RA) compounds of <i>O. stamineus</i> leaf.	216
4.19:	Effects of water and nitrogen stresses at different levels on the 3'-hydroxy-5, 6, 7, 4 '-tetramethoxyflavone (TMF) compounds of <i>O. stamineus</i> leaf, stem and root.	220
4.20:	Effects of nitrogen stress at different levels on the Sinensetin (SEN) compounds of <i>O. stamineus</i> leaf, stem and root.	225
4.21:	Effects of water and nitrogen stresess at different levels on the Eupatorin (EUP) compounds of <i>O. stamineus</i> leaf, stem and root.	228
4.22:	Summary of <i>O. stamineus</i> bioactive compositions under different water and nitrogen stresses at different levels	230

LIST OF ABREVIATIONS

%	Percentage
ANOVA	Analysis of variance
CAE	Caffiec acid equivalent
dw	Dry weight
FC	Field capacity
LWP	Leaf water potential
NPK	Field capacity Leaf water potential Nitrogen: Phosphate: Kalium Nitrogen Triple super phosphate Muriate of potash Phenylalanine amine lyase
Ν	Nitrogen
TSP	Triple super phosphate
MOP	Muriate of potash
PAL	Phenylalanine amine lyase
TAT	Tyrosine amine transferase
C4H	Cinnamic acid 4-hydroxylase
4CL	Hydrocinnamic acid: CoA ligase
m •	metre
m ²	meter square
ml 🔘	mililitre
O. stamineus	Orthosiphon stamineus
0C	Degree of celcius
ppm	part per million
Р	Value Probability
r	Coefficient of correlation
ROS	Reactive oxygen species

RP	Reverse phase
RA	Rosmarinic acid
SEN	Sinensetin
TMF	3'hydroxy-5,6,7,4'tetramethoxyflavone
EUP	Eupatorin
Т	Temperature
TDR	Time domain reflectrometer
TPC	Total phenolic content
TNC	Total nitrogen content
TCC	Total chlorophyl content
TFC	Total flavonoid content
AC	Antioxidant capacity
UV	Time domain reflectrometer Total phenolic content Total nitrogen content Total chlorophyl content Total flavonoid content Antioxidant capacity Ultraviolet volume per volume watt
\mathbf{V}/\mathbf{V}	volume per volume
vis	visible of the second
W	watt
μg	microgram
othis	watt