

DEVELOPMENT OF NEW MODEL FOR MULTIWAVELET-BASED OFDM OVER WIRELESS CHANNEL AND ITS IMPLEMENTATION IN FPGA

By

SAMEER AKRAM DAWOOD (1340811128)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

2017

UNIVERSITI MALAYSIA PERLIS

	DECLARATION OF THESIS			
Author's full name : SAME	ER AKRAM DAWOOD			
Date of birth : 25 th Ju	ıly 1980			
Title : DEVE OVER	LOPMENT OF NEW MODEL FOR MULTIWAVELET-BASED OFDM WIRELESS CHANNEL AND ITS IMPLEMENTATION IN FPGA			
Academic Session : 2016 /	2017			
I hereby declare that the <u>thesis</u> placed at the library of UniMAF	becomes the property of Universiti Malaysia Perlis (UniMAP) and to be P. This <u>thesis</u> is classified as:			
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)			
RESTICTED	(Contains restricted information as specified by the organization where research was done)			
\checkmark OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)			
I, the author, give permission purpose of research or acaden above).	to the UniMAP to reproduce this <u>thesis</u> in whole or in part for the nic exchange only (except during a period of <u>years</u> , if so requested			
is item	Certified by:			
SIGNATURE	SIGNATURE OF SUPERVISOR			
A9996410 (PASSPORT NO.)	Assoc. Prof. Ir. Dr. ANUAR MAT SAFAR NAME OF SUPERVISOR			
Date:	Date:			

GRADUATE SCHOOL UNIVERSITI MALAYSIA PERLIS

PERMISSION TO USE

In presenting this thesis in fulfilment of a post graduate degree from the Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not allowed without any written permission. It is also understood that due recognition shall be given to me and to Universiti Malaysia Perlis for any scholarly use which may be made of any material from my thesis

Request for permission to copy or to make other use of material in this thesis whole or in part should be addressed to

Dean of Graduate School

Universiti Malaysia Perlis (UniMAP)

No. 112 & 114, Tingkat 1, Blok A, Taman Pertiwi Indah,

Jalan Kangar-Alor Setar,

Seriab, 01000 Kangar, Perlis.

ACKNOWLEDGEMENTS

Praise and thanks to Allah (SWT), who gave me the strength and courage to complete this project.

I would like to use this opportunity to express my sincere gratitude to my supervisor, Assoc. Prof. Ir. Dr. Anuar Mat Safar, for his continuous encouragement, advice, and motivation that enabled me to achieve all goals to complete this research to the best. His insight and knowledge makes him a significant person to me. It is my great honor to be his student. I would also like to thank my co-supervisor Dr. Phak Len Eh Kan for his kind support and suggestions. I would like to express my sincere gratitude to my previous supervisor Assoc. Prof. Dr. Mohd Fareq Abd Malek for his support and encouragement during the time of working together. My deep appreciation and special thanks goes to the Dean of the School, Prof. Dr. R. Badlishah Ahmad, and all staff of the School of Computer and Communication Engineering for their cooperation, support, and good treatment for foreign students.

I am also thankful to Prof. Othman Sidek and Dr. Hisham Ahmed Ali from the School of Electrical and Electronic Engineering / Universiti Sains Malaysia (USM) for supporting me in the FPGA tools.

(I) wish to thank my sponsor (Ministry of Science and Technology / Iraq) for offering me this great opportunity. I also would like to thank Iraqi Cultural Attache/ Malaysia for the support and help throughout my study.

My deep thanks and gratitude goes to my parents and my siblings, for their daily prayers, giving me the motivation and strength, and encouraging me to accomplish and achieve my goals. Last but not least, sincere thanks and gratitude to my precious wife and my children who inspired me by their, courage, support and patience throughout the period of my study.

othis tern is protected by original copyright

Sameer Akram Dawood School of Computer and Communication Engineering Universiti Malaysia Perlis (UniMAP)

TABLE OF CONTENTS

	PAGE
DECLARATION OF THESIS	i
PERMISSION TO USE	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF TABLES	xi xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xxi
ABSTRAK	XXV
ABSTRACT CHAPTER 1 INTRODUCTION	xxvii
1.1 Background	1
1.2 Problem Statement	3
1.3 Research Objectives	6
1.4 Scope of Research	7
1.5 Research Methodology	8
1.6 Research Contributions	9
1.7 Thesis Outlines	10

CHAPTER 2 LITERATURE REVIEW

2.1	Introdu	iction	12
2.2	Radio	Channel	13
	2.2.1	Attenuation	14
	2.2.2	Delay Spread and Coherence Bandwidth	14
	2.2.3	Doppler Shift, Doppler Spread, and Coherence Time	15
	2.2.4	Discrete Multipath Channel Model	17
2.3	Orthog	onal Frequency Division Multiplexing (OFDM)	19
	2.3.1	Cyclic Prefix in OFDM	23
	2.3.2	FFT-Based OFDM System	25
	2.3.3	OFDM Challenges	27
		2.3.3.1 High Peak-to-Average Power Ratio (PAPR)	27
		2.3.3.2 Inter-Carrier Interference (ICI)	27
2.4	Wavele	et Transform	29
	2.4.1	Continuous and Discrete Wavelet Transform	30
	2.4.2	Wavelet-Based OFDM System	37
2.5	Multiw	vavelet Transform	41
	2.5.1	Theory of Multiwavelet	41
	2)5.2	Motivation of Multiwavelet	45
	2.5.3	Multiwavelet-Based OFDM System	47
2.6	Channe	el Coding Techniques	48
	2.6.1	Turbo Codes (TCs)	50
	2.6.2	Low Density Parity-Check (LDPC) Codes	53
2.7	Summa	ary	55

CHAPTER 3 SYSTEMS DESIGN AND MODELING

3.1	Introdu	iction	57
3.2	Discret	te Multiwavelet Transform	58
	3.2.1	Pre-processing for DMWT	59
		3.2.1.1 First-Order Approximation Method	60
		3.2.1.2 Matrix Method	62
	3.2.2	Computation of DMWCST for 1D Signal	65
	3.2.3	Computation of Inverse DMWCST for 1D Signal	68
	3.2.4	Computational Complexity Analysis	71
3.3	OFDM	Based on DMWCST (Model 1)	74
	3.3.1	Analysis of the OFDM-DMWCST Model	75
3.4	OFDM	Based on DMWCST with Hybrid Technique (Model 2)	82
	3.4.1	Analysis of the SW-OFDM-DMWCST Model	84
		3.4.1.1 SW Algorithm Design	90
		3.4.1.2 The Signal Shape of the Transmitter Side	91
3.5	Coded	OFDM Based on DMWCST (Model 3)	92
	3.5.1	Analysis of the COFDM-DMWCST Model	93
	in the second se	3.5.1.1 Turbo Code Design	97
	O	3.5.1.2 LDPC Code Design	100
3.6	Perform	nance Metrics	104
	3.6.1	Signal-to-Noise Ratio (SNR)	104
	3.6.2	Bit-Error-Rate (BER)	104
	3.6.3	Peak-to-Average Power Ratio (PAPR)	105
3.7	Summa	ary	106

CHAPTER 4 SIMULATION RESULTS AND DISCUSSIONS

4.1	Introduc	ction	108
4.2	Simula	tion Results of OFDM-DMWCST Model (Model 1)	109
	4.2.1	BER Performance of OFDM-DMWCST over AWGN Channel	110
	4.2.2	BER Performance of OFDM-DMWCST over Flat Fading Channel	112
	4.2.3	BER Performance of OFDM-DMWCST over Frequency- Selective Fading Channel	115
		4.2.3.1 Effect of the Variation of Channel Parameters on the BER Performance of OFDM-DMWCST	118
	4.2.4	PAPR Performance of OFDM-DMWCST	121
4.3	Simula	tion Results of SW-OFDM-DMWCST Model (Model 2)	123
	4.3.1	BER Performance of SW-OFDM-DMWCST over AWGN Channel	124
	4.3.2	BER Performance of SW-OFDM-DMWCST over Flat Fading Channel	126
	4.3.3	BER Performance of SW-OFDM-DMWCST over Frequency- Selective Fading Channel	128
	•.0	4.3.3.1 Effect of the Variation of Channel Parameters on the BER Performance of SW-OFDM-DMWCST over Selective Fading Channel	130
	4.3.4	PAPR Performance of SW-OFDM-DMWCST	133
4.4	Simula	tion Results of COFDM-DMWCST Model (Model 3)	135
	4.4.1	BER Performance of COFDM-DMWCST over AWGN Channel	136
	4.4.2	BER Performance of COFDM-DMWCST over Flat Fading Channel	138
	4.4.3	BER Performance of COFDM-DMWCST over Frequency- Selective Fading Channel	140
	4.4.4	PAPR Performance for COFDM-DMWCST	142

CHAPTER 5 FPGA IMPLEMENTATION OF OFDM-DMWCST SYSTEM

5.1	Introdu	iction	146
5.2	Xilinx	Implementation of OFDM-DMWCST Transmitter	148
	5.2.1	Subsystem 1: S/P and Mapping	149
	5.2.2	Subsystem 2: Zero Padding and Control the Input Flow	150
	5.2.3	Subsystem 3: IDMWT	152
	5.2.4	Subsystem 4: Post-processing	153
	5.2.5	Subsystem 5: P/S Converter	154
5.3	Xilinx	Implementation of OFDM-DMWCST Receiver	155
	5.3.1	Subsystem 1: Control the Input Flow and S/P Converter	155
	5.3.2	Subsystem 2: Pre-processing	156
	5.3.3	Subsystem 3: DMWT	157
	5.3.4	Subsystem 4: Remove Zero Padding	158
	5.3.5	Subsystem 5: Demapping and P/S Converter	159
5.4	Simula Implen	tion Results, Hardware Co-simulation and Hardware nentation Results of Xilinx OFDM-DMWCST Model	160
	5.4.1	Simulation Results	160
	5.4.2	Hardware Co-simulation	162
	5.4.3	Hardware Implementation Results	163
5.5	Summa	ary	166

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.1	Conclusions	16	58
-----	-------------	----	----

	6.1.1	OFDM-DMWCST Model (Model 1)	169
	6.1.2	SW-OFDM-DMWCST Model (Model 2)	170
	6.1.3	COFDM-DMWCST Model (Model 3)	171
6.2	Achiev	rements of This Research	172

6.3 Future Works 174

REFERENCES

APPENDIX A

APPENDIX B

s eded by original copyright LIST OF PUBLICATIONS

185

188

176

LIST OF TABLES

NO.		PAGE
2.1	The Comparison of OFDM Systems	56
3.1	Comparison of computational complexity for the DMWCST, DMWOST, DWT, and FFT	74
4.1	Simulation Parameters	109
4.2	Comparison of BER performance of OFDM-DMWCST and OFDM- DMWOST over AWGN at 4-QAM	112
4.3	Comparison of BER performance of OFDM-DMWCST and OFDM-DMWOST over flat fading channel ($f_d = 5$ Hz) at 4-QAM	114
4.4	Comparison of BER performance of OFDM-DMWCST and OFDM-DMWOST over selective fading channel ($f_d = 5$ Hz) at 4-QAM	117
4.5	Simulation Parameters of LDPC codes and TCs	136
5.1	Architectural parameters of Zynq 7020 board	148
(

LIST OF FIGURES

NO.		PAGE
1.1	Block diagram of the research methodology	9
2.1	Radio propagation effects	14
2.2	A multipath fading channel model	17
2.3	The difference between FDM and OFDM	20
2.4	Examples of OFDM spectrum	21
2.5	Illustration of cyclic prefix extension	24
2.6	Block diagram of FFT-based OFDM system	26
2.7	A single-level forward and inverse DWT	36
2.8	Comparison between sinusoidal and wavelet basis function	38
2.9	Block diagram of wavelet-based OFDM system	39
2.10	Construction and reconstruction stages of 1D one-level multiwavelet transform	43
2.11	GHM pair of scaling and wavelet functions	43
2.12	Turbo code encoder	51
2.13	Iterative decoding of turbo code	52
2.14	An example of Factor Graph	54
3.1	Block diagram of the OFDM-DMWCST model (model 1)	75
3.2	Flowchart of simulation program for the OFDM-DMWCST model (model 1)	80
3.3	Block diagram of the SW-OFDM-DMWCST model (model 2)	83
3.4	Flowchart of simulation program for the SW-OFDM-DMWCST model (model 2)	88
3.5	Signal shape at the transmitter side	91

3.6	Block diagram of the COFDM-DMWCST model (model 3)	93
3.7	Flowchart of simulation program for the COFDM-DMWCST model (model 3)	95
3.8	Flowchart of simulation program for turbo code encoder	98
3.9	Flowchart of simulation program for turbo code decoder	99
3.10	Flowchart of simulation program for LDPC code encoder	102
3.11	Flowchart of simulation program for LDPC code decoder	103
4.1	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM- FFT at 4-QAM over AWGN channel	111
4.2	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM- FFT at 16-QAM over AWGN channel	111
4.3	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 4-QAM over flat fading channel, $f_d = 5$ Hz	113
4.4	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 16-QAM over flat fading channel, $f_d = 5$ Hz	114
4.5	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 4-QAM over selective fading channel, $f_d = 5$ Hz	116
4.6	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 16-QAM over selective fading channel, $f_d = 5$ Hz	117
4.7	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 4-QAM over selective fading channel, 2^{nd} path gain = -5 dB	119
4.8	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 16-QAM over selective fading channel, 2^{nd} path gain = -5 dB	119
4.9	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 4-QAM over selective fading channel, $f_d = 250$ Hz	120
4.10	BER performance for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 16-QAM over selective fading channel, $f_d = 250$ Hz	121
4.11	CCDF of the PAPR for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 4-QAM	122
4.12	CCDF of the PAPR for OFDM-DMWCST, OFDM-DWT, and OFDM-FFT at 16-QAM	123

4.13	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 4-QAM over AWGN channel	125
4.14	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 16-QAM over AWGN channel	125
4.15	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 4-QAM over flat fading channel, $f_d = 5$ Hz	127
4.16	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 16-QAM over flat fading channel, $f_d = 5$ Hz	127
4.17	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 4-QAM over selective fading channel, $f_d = 5$ Hz	129
4.18	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 16-QAM over selective fading channel, $f_d = 5$ Hz	129
4.19	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 4-QAM over selective fading channel, 2^{nd} path gain = -5 dB	131
4.20	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 16-QAM over selective fading channel, 2^{nd} path gain = -5 dB	131
4.21	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 4-QAM over selective fading channel, $f_d = 250$ Hz	132
4.22	BER performance for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 16-QAM over selective fading channel, $f_d = 250$ Hz	133
4.23	CCDF of the PAPR for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 4-QAM	134
4.24	CCDF of the PAPR for SW-OFDM-DMWCST, OFDM-DMWCST, SW-OFDM-FFT, and OFDM-FFT at 16-QAM	135
4.25	BER performance for uncoded OFDM-DMWCST, LDPC-COFDM- DMWCST, and T-COFDM-DMWCST at 4-QAM over AWGN	137
4.26	BER performance for uncoded OFDM-DMWCST, LDPC-COFDM- DMWCST, and T-COFDM-DMWCST at 16-QAM over AWGN	137

4.27	BER performance for uncoded OFDM-DMWCST, LDPC-COFDM- DMWCST, and T-COFDM-DMWCST at 4-QAM over flat fading channel	139
4.28	BER performance for uncoded OFDM-DMWCST, LDPC-COFDM- DMWCST, and T-COFDM-DMWCST at 16-QAM over flat fading channel	139
4.29	BER performance for uncoded OFDM-DMWCST, LDPC-COFDM- DMWCST, and T-COFDM-DMWCST at 4-QAM over selective fading channel	141
4.30	BER performance for uncoded OFDM-DMWCST, LDPC-COFDM- DMWCST, and T-COFDM-DMWCST at 16-QAM over selective fading channel	141
4.31	CCDF of the PAPR for COFDM-DMWCST, and Uncoded OFDM- DMWCST at 4-QAM	142
4.32	CCDF of the PAPR for COFDM-DMWCST, and Uncoded OFDM- DMWCST at 16-QAM	143
5.1	Basic blocks of the OFDM-DMWCST transceiver	147
5.2	XSG model of the OFDM-DMWCST transmitter	149
5.3	XSG model of the S/P and mapping subsystem	150
5.4	XSG model of the zero padding and control the input flow subsystem	151
5.5	XSG model of 16-piont IDMWT	152
5.6	XSG model of post-processing subsystem	153
5.7	XSG model of P/S converter subsystem	154
5.8	SG model of the OFDM-DMWCST receiver	155
5.9	XSG model of the control the input flow and S/P Converter subsystem	156
5.10	XSG model of pre-processing subsystem	157
5.11	XSG model of 16-piont DMWT	158
5.12	XSG model of the remove zero padding subsystem	159
5.13	XSG model of the Demapping and P/S converter subsystem	160
5.14	Implementation module of the complete Xilinx OFDM-DMWCST model	161

5.15	Comparison the input and output waveforms	162
5.16	Hardware co-simulation for the OFDM-DMWCST model	163
5.17	Area of utilization report for the transmitter	164
5.18	Area of utilization report for the receiver	164
5.19	Timing analysis report for the transmitter	165
5.20	Timing analysis report for the receiver	165
5.21	Power analysis report for the transmitter	165
5.22	Power analysis report for the receiver	166
A.1	Edge of a trellis section of a convolutional code	185
(othis item is protected by one	

xvi

LIST OF ABBREVIATIONS

1D	One dim	ension
----	---------	--------

- 3GPP **3rd Generation Partnership Project**
- 4th Generation 4G
- ADSL Asymmetric Digital Subscriber Line
- AWGN Additive White Gaussian Noise
- BER Bit Error Rate
- BPSK **Binary Phase Shift Keying**
- Global Buffer BUFG
- alcopyildh Complementary Cumulative Distribution Function CCDF
- CLB Configurable Logic Block
- CP Cyclic Prefix
- Continuous Wavelet Transform CWT
- **Digital Audio Broadcasting** DAB
- Decibel dB
- Discrete Fourier Transform DFT
- Discrete Multiwavelet Critical-Sampling Transform DMWCST
- DMWOST Discrete Multiwavelet Over-Sampling Transform
- DMWT **Discrete Multiwavelet Transform**
- DSP Digital Signal processing
- DVB **Digital Video Broadcasting**
- DWT Discrete Wavelet Transform
- FDM Frequency Division Multiplexing
- FEC Forward Error Correction

FF	Flip-Flop
FFT	Fast Fourier Transform
FPGA	Field Programmable Gate Array
GHM	Geronimo, Hardian, and Massopust
GI	Guard Interval
HDSL	High-bit-rate Digital Subscriber Line
HPA	High Power Amplifier
I/O	Input/Output
ICI	Inter-Carrier Interference
IC	Integrated Circuit
ICWT	Inverse Continuous Wavelet Transform
IDFT	Inverse Discrete Fourier Transform
IDMWCST	Inverse Discrete Multiwavelet Critical-Sampling Transform
IDMWOST	Inverse Discrete Multiwavelet Over-Sampling Transform
IDMWT	Inverse Discrete Multiwavelet Transform
IDWT	Inverse Discrete Wavelet Transform
IEEE	Institute of Electrical and Electronics Engineers
IFFT	Inverse Fast Fourier Transform
IOB O	Input Output Block
ISI	Inter-Symbol Interference
ISW	Inverse Sliding Window
JTAG	Joint Test Action Group
LCA	Logic Cell Array
LDPC	Low Density Parity-Check
LLR	Log-Likelihood Ratio

- LOS Line-Of-Sight
- LTE Long Term Evolution
- LUT Look-Up Table
- Maximum A Posteriori MAP
- MCM MultiCarrier Modulation
- MIMO Multiple-Input Multiple-Output
- MLE Maximum Likelihood Estimation
- M-PSK M-ary Phase Shift Keying
- M-QAM M-ary Quadrature Amplitude Modulation
- Multi-Resolution Analysis MRA
- alcopyright Orthogonal Frequency Division Multiplexing OFDM
- P/S Parallel-to-Serial
- Peak-to-Average Power Ratio PAPR
- Programmable Logic Device PLD
- QPSK Quadrature Phase Shift Keying
- Radio Frequency RF
- **Recursive Systematic Convolutional** RSC
- Register Transfer Level RTL
- S/P Serial-to-Parallel
- SISO Soft-Input Soft-Output
- **SNR** Signal-to-Noise Ratio
- SW **Sliding Window**
- TC Turbo code
- VDSL Very-high-speed Digital Subscriber Line
- Very high speed Hardware Description Language VHDL

- Wi-Fi Wireless Fidelity
- WiMAX Worldwide Interoperability for Microwave Access
- WLAN Wireless Local Area Network
- XSG Xilinx System Generator

othis tern is protected by original copyright

LIST OF SYMBOLS

T_m	Delay spread
T_s	Symbol time interval
B_c	Coherence bandwidth
f_c	Carrier frequency
v	Speed of the source
с	Speed of light
f_d	Doppler frequency
B_d	Doppler spread
T_c	Coherence time
α	Attenuation of different paths
и	Number of samples that the maximum channel delay spread
z(n)	AWGN
$N_{\rm ISI}$	Number of interfering symbols
N_{f}	Number of subcarrier
(.)*	Complex conjugate process
$A_c(t)$	Carrier amplitude
$\phi_c(t)$	Carrier phase
$g(kT_s)$	General inverse Fourier transform function
$S_c(t)$	Carrier signal
$S_s(t)$	Complex signal of OFDM signal
ω	Angular frequency
T_u	OFDM symbol duration
Δf	Subcarriers spacing

- N_g Number of guard interval
- Transmitted signal s(n)
- r(n)Received signal
- Wavelet function (mother wavelet) $\psi(t)$
- Scaling function $\varphi(t)$
- Scale parameter а
- b Translation parameter
- \mathbb{R} Set of real numbers
- \mathbb{Z} Set of all integers
- Scaling filter coefficient *h*(*k*)
- Wavelet filter coefficient g(k)
- by original copyright Low pass filter of the DWT h
- High pass filter of the DWT g
- Low pass filter of the IDWT \tilde{h}
- \tilde{g} High pass filter of the IDWT
- Wavelet (detailed) coefficients $D_f(j,k)$
- Scaling (approximation) coefficients $C_f(j,k)$
- $\Phi(t)$ Multiscaling function
- Multiwavelet function $\Psi(t)$
- Η Low pass filter of the DMWT
- G High pass filter of the DMWT
- \tilde{H} Low pass filter of the IDMWT
- \tilde{G} High pass filter of the IDMWT

H_k	Multiscaling filter coefficients
G_k	Multiwavelet filter coefficients
R_c	Code rate
L_c	Constraint length
m_c	Memory of convolutional encoder
d _{free}	Free distance of convolutional encoder
$\Lambda(.,I)$	Input port of SISO refer to the LLR
$\Lambda(.,O)$	Output port of SISO refer to the LLR
W_1	Transformation multiwavelet matrix
W_2	Reconstruction multiwavelet matrix
Р	Matrix of pre-filter coefficients
Q	Matrix of post-filter coefficients
Ι	Identity matrix
R_M	Number of real multiplications
R_A	Number of real additions
R_O	Total number of real operations
N_c	Number of useful subcarriers
M	Order of the modulation
Z_c	Null subcarriers
P_c	Pilot subcarriers
D_c	Data subcarriers
H_e	Channel frequency response
С	Codeword of the channel coding
d	Binary random input data
G_c	Generator matrix of the LDPC code