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TEKNIK PENGESAN DAN LOKASI PELEPASAN CAS SEPARA 

BERDASARKAN ALGORITMA KORELASI BERSEGMEN POTONGAN 

PURATA UNTUK KABEL KUASA 

ABSTRAK 

Kabel kuasa mungkin mengalami kelemahan pada penebat selepas tempoh masa tertentu 

kerana faktor persekitaran, mekanikal dan elektrik. Pelepasan cas separa pada 

kekosongan atau rongga penebat kabel kuasa akan membawa kepada gangguan sistem 

kuasa dalam masa terdekat. Pada masa ini, banyak peranti lokasi pelepasan cas separa 

telah dicipta untuk menganggarkan lokasi pelepasan cas separa pada kabel kuasa. 

Teknologi baru telah membolehkan anggaran pelepasan cas separa dilaksanakan dari 

anggaran pelepasan cas separa talian mati ke anggaran pelepasan cas separa talian hidup. 

Teknik pemprosesan isyarat maju boleh diaplikasikan ke dalam peranti tersebut untuk 

menganggarkan lokasi pelepasan cas separa dengan lebih tepat. Di dalam tesis ini, 

algoritma korelasi bersegmen potongan purata dicadangkan untuk menganggarkan lokasi 

pelepasan cas separa pada kabel kuasa voltan sederhana. Algoritma ini menggunakan 

teknik korelasi bersegmen dan teknik penapisan data potongan purata untuk 

meningkatkan ketepatan lokasi anggaran pelepasan cas separa. Dua eksperimen telah 

dilakukan untuk menguji masa pelaksanaan program dan ketepatan algoritma terhadap 

gangguan. Algoritma telah diuji dalam persekitaran MATLAB yang terdiri daripada 

isyarat pelepasan cas separa yang dimodelkan dan pelbagai tahap gangguan Gaussian 

putih dan gangguan spektrum diskret. Teknik transformasi wavelet diskret telah 

digunakan untuk penapisan gangguan. Eksperimen pertama dilakukan dengan 

meningkatkan bilangan pensampelan yang diukur sementara mencatat masa pelaksanaan 

program algoritma. Eksperimen kedua dilakukan dengan meningkatkan tahap gangguan 

Gaussian putih dan gangguan spektrum diskret sementara mencatat ralat peratusan 

maksimum anggaran lokasi pelepasan cas separa. Hasil dari kedua-dua eksperimen ini 

dibandingkan dengan algoritma korelasi pelbagai hujung yang sedia ada. Hasilnya 

menunjukkan bahawa algoritma korelasi bersegmen potongan purata memerlukan 

program perlaksanaan masa yang lebih panjang tetapi ralat peratusan maksimum 

anggaran lokasi pelepasan cas separa yang lebih rendah daripada algoritma korelasi 

pelbagai hujung. Kesimpulannya, algoritma korelasi bersegmen potongan purata lebih 

sesuai digunakan dalam sistem anggaran lokasi pelepasan cas separa kerana ia 

mempunyai ralat peratusan maksimum anggaran lokasi pelepasan cas separa yang lebih 

rendah. 
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PARTIAL DISCHARGE DETECTION AND LOCATION TECHNIQUE BASED 

ON SEGMENTED CORRELATION TRIMMED MEAN ALGORITHM FOR 

POWER CABLE 

ABSTRACT 

Power cable may suffer from insulation degradation after a certain period of time because 

of environment, mechanical and electrical factors. Partial discharge (PD) at void or cavity 

of power cable’s insulation will lead to the power system breakdown in the near future. 

Nowadays, many PD location devices had been invented to estimate PD location on 

power cable. New technology has enabled PD estimation to evolve from offline PD 

estimation to online PD estimation. Advanced signal processing technique can be 

implemented in those devices in order to estimate PD location accurately. In this thesis, 

segmented correlation trimmed mean (SCTM) algorithm is proposed to estimate PD 

location on medium voltage (MV) power cable. The algorithm uses segmented correlation 

technique and trimmed mean data filtering technique to enhance the accuracy of the 

estimated PD location. Two experiments have been performed to test the program 

execution time and accuracy against noise of the algorithm. The algorithm had been tested 

in Matrix Laboratory (MATLAB) environment which consists modelled PD signals and 

different levels of white Gaussian noise (WGN) and discrete spectral interference (DSI). 

Discrete wavelet transform (DWT) de-nosing technique has been used for noise 

suppression. The first experiment is performed by increasing the sampling number of 

measured signal while recording the program execution time of the algorithm. The second 

experiment is performed by increasing the level of WGN and DSI while recording the 

maximum percentage error of the estimated PD location. The results from both 

experiments are compared with the existing multi-end correlation (MEC) algorithm. The 

results shown that the SCTM algorithm has longer time but lower maximum percentage 

error of the estimated PD location than MEC algorithm. In conclusion, SCTM algorithm 

is more suitable to apply in PD location estimation system for power cable due to its lower 

maximum percentage error. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Cross-linked polyethylene (XLPE) insulated power cable has been widely used in 

medium voltage (MV) distribution line because of its good insulating properties such as 

high electrical resistance and mechanical strength, high-aging and environmental stress 

resistance, higher operating time under long term temperature as well as being anti-

corrosive in nature (Yuan et al., 2013; Permal, Chakrabarty, A.R, Marie, & Abd Halim, 

2016). However insulation degradation of power cable will be boosted due to electric 

field, thermal effect, mechanical stress, chemical corrosion, environment condition and 

manufacturing defects (Densley, 2001). The possible aging mechanisms of cable 

insulation system is listed in Table 1.1.  

According to the report of performance and statistical information electricity 

supply industry in Malaysia 2014 as shown in Table 1.2, cable and joint fault was the 

main cause of the unscheduled supply interruption, which had gone up to a significant 

74.14% (Energy Commission of Malaysia, 2015). Insulation degradation of power cable 

is one of the factor contributes to the fault occurs at cable and joint. Unscheduled supply 

interruptions have catastrophic impact to industries and hospitals because these fields 

require high reliability of electrical energy supply to prevent damage on expensive 

machines and interruptions in surgical operations. Besides that, electrical energy suppliers 

will lose millions of Ringgit Malaysia due to unscheduled supply interruptions to the 
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power system. Therefore, unscheduled supply interruption problem of cable and joint 

ought to be overcome in order to increase the reliability of electrical energy supply. 

 

Table 1.1: Possible aging mechanisms of cable insulation system (Densley, 2001). 

Ageing Factor Ageing Mechanisms Effects 

Thermal 

-High temperature 

-Temperature 

cycling 

-Chemical reaction 

-Incompatibility of 

materials 

-Thermal expansion (radial 

and axial) 

-Diffusion  

-Anneal locked-in 

mechanical stresses 

-Melting/flow of insulation 

-Hardening, softening, loss of 

mechanical strength, embattlement 

-Increase tan delta 

-Shrinkage, loss of adhesion, 

separation, delamination at interfaces 

-Swelling  

-Loss of liquids, gases 

-Conductor  penetration 

-Rotation of cable 

-Formation of soft spots, wrinkles 

-Increase migration of components 

-Low temperature -Cracking 

-Thermal contraction 

-Shrinkage, loss of adhesion, 

separation, delamination at interfaces 

-Loss/ingress of liquids, gases 

-Movement of joints, terminations 

Electrical 

-Voltage, ac, dc. 

-Impulse 

-PD 

-Electrical treeing (ET) 

-Water treeing (WT) 

-Dielectric losses and 

capacitance 

-Charge injection 

-Intrinsic breakdown 

-Erosion of insulation        ET 

-PD 

-Increased losses and ET 

-Increased temperature, thermal ageing, 

thermal runaway 

-Immediate failure 

-Current -Overheating -Increased temperature, thermal ageing, 

thermal runway 

Mechanical 

-Tebsile, 

compressive, shear 

stresses 

-Fatigue, cycle 

bending, vibration 

-Yielding of materials 

-Cracking 

-Rupture 

-Mechanical rupture 

- Loss of adhesion, separation, 

delamination at interfaces 

-Loss/ingress of liquids, gases 

Environmental 

-Water/humidity 

-Liquids/gases 

-Contamination 

-Dielectric losses and 

capacitance 

-Electrical tracking 

-Water treeing 

-Corrosion 

-Increased temperature, thermal ageing, 

thermal runaway 

-Increased losses and ET 

-Flashover 

Radiation -Increase chemical reaction 

rate 

-Hardening, softening, loss of 

mechanical strength, embattlement 

*The failure mechanism is usually electrical. eg., by PD, ET or tracking 
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Table 1.2: Percentage of unscheduled supply interruptions by type of interruptions for 

MV distribution line (Energy Commission of Malaysia, 2015). 

Category Total Percentage (%) 

Cable & Joint 6348 74.14 

Third party 841 9.82 

Natural disaster 355 4.15 

Faulty equipment 325 3.80 

Others 693 8.09 

 

Partial discharge (PD) diagnosis on power cable is proven to reduce the 

unscheduled supply interruptions and it is a routine test performed by the electric energy 

supplier. PD is a localized dielectric breakdown of a small portion of cable’s insulation, 

which causes repetitive small amplitude signal to travel along the cable’s conductor. In 

other words, PD resembles cancer in insulated cable before fault happens (Cselkó & 

Berta, 2013). Before this, the PD diagnosis on power cable is done manually. The 

inspection is done once a year as PD diagnosis can cause an interruption to the inspected 

power cable. Thus, several smart power line systems were proposed by many previous 

researchers for on-line monitoring and estimating of the PD location on power lines (M. 

Tang, Li, Liu, & Liang, 2013).  

Figure 1.1 shows the schematic diagram of proposed on-line multi-end PD 

location estimation system for PD detection and location in MV distribution power cable. 

PD sensors are mounted 2.5 𝑚 apart at node A, B and C to measure PD arrival signals 

from a PD source in an power cable. The measured signals are synchronized by using 

Global Positioning System (GPS) time update system and transmitted to main unit at 

substation by using internet of things (IOT) for PD location.  

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 


