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Penyelidikan Bagi Modifikasi-Modifikasi Kimia Ke Atas          

Sifat-Sifat Filem-Filem Biokomposit Protin Soya Terasing 

(PST)/Sekam Kekabu (SK) Untuk Aplikasi Pertanian   

ABSTRAK 

Dalam kajian ini, penggunaan sekam kekabu (SK) sebagai pengisi dalam protin soya 

terasing (PST) telah dikaji untuk menggantikan plastik dan filem polimer bersumber 

petroleum untuk pembungkusan. Kesan daripada kandungan SK, agen-agen sambung 

silang seperti  ptalik anhidrida (PA), asid adipik (AA) dan formaldehid (FA), dan 

modifikasi kimia terhadap SK dengan 2-etilhexil akrilat (EA), metil metakrilat (MMA) 

dan sodium dodecyl sulfat (SDS) pada sifat-sifat tegangan, kajian morfologi, analisis 

thermogravimetri (TGA), kandungan kelembapan, jumlah bahan larut, pecahan gel dan 

sifat-sifat biodegradasi enzim filem-filem biokomposit PST/SK telah dikaji. Gliserol 

telah digunakan sebagai pemplastik untuk memberikan fleksibiliti kepada filem-filem 

biokomposit itu. Keputusan eksperimen menunjukkan bahawa peningkatan kandungan 

SK telah meningkatkan kekuatan tegangan, elastisiti modulus, dan pecahan gel daripada 

filem-filem biokomposit PST/SK kawalan, manakala pemanjangan pada takat putus, sisa 

arang, kandungan kelembapan, jumlah bahan larut dan berat biorosoton pengenziman 

menurun. Morfologi permukaan keretakan selepas pengajian kekuatan tegangan daripada 

filem-filem biokomposit PST/SK kawalan daripada kandungan SK yang lebih tinggi 

menunjukkan interaksi yang lebih baik antara SK pengisi dan SPI matrik. Penambahan 

agen-agen sambung silang yang berbeza seperti PA, AA dan FA telah meningkatkan 

kekuatan tegangan dan elastisiti modulus bagi filem-filem biokomposit tersambung 

silang. Pecahan gel daripada semua filem-filem biokomposit tersambung silang lebih 

tinggi daripada filem-filem biokomposit yang tidak tersambung silang. Walau 

bagaimanapun, biokomposit tersambung silang mununjukkan susutan dalam 

pemanjangan pada takat putus kecuali AA, sisa arang, kandungan kelembapan, jumlah 

bahan larut, dan pengurangan berat pada biorosotan di dalam pengenziman daripada 

filem-filem biokomposit yang tidak tersambung silang. Kajian pengimbasan mikroskop 

electron (PME) bagi filem-filem biokomposit PST/SK tersambung silang dengan PA, AA 

dan FA menunjukkan permukaan kasar, disebabkan tahap sambung silang 

dipertingkatkan. Spektra FTIR bagi  kesemua filem-filem biokomposit sambung silang 

mengilustrasikan perubahan-perubahan di dalam kumpulan berfungsi. SK terawat 

dengan EA, MMA, dan SDS filem-filem biokomposit mempunyai kekuatan tegangan 

yang lebih tinggi dan elastisiti modulus berbanding dengan yang tidak terawat PST/SK 

filem-filem biokomposit. Walau bagaimanapun pemanjangan pada takat putus, sisa arang 

dari TGA, kandungan kelembapan, jumlah bahan larut dan pengurangan berat pada 

biorosotan di dalam pengenziman telah menurun. Semua filem-filem biokomposit 

PST/SK yang terawat telah menunjukkan sedikit perubahan sahaja dalam pecahan gel 

apabila kandungan SK bertambah. SK terawat dengan EA, MMA dan SDS telah 

meningkatkan ikatan permukaan antara SK dan PST matrik dalam filem-filem 

biokomposit, yang telah dibuktikan dengan analisis PME. Ini boleh diringkaskan bahawa 

pencampuran SK dalam filem PST mempunyai keupayaan untuk meningkatkan sifat-

sifat filem-filem biokomposit PST/SK. Walau bagaimanapun dalam perbandingan, filem-

filem biokomposit PST/SK modifikasi dengan EA telah memberikan penambahbaikan 

tertinggi dalam semua pencirian. 
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The Study Of Chemical Modifications On The Properties Of Soy 

Protein Isolate (SPI)/Kapok Husk (KH) Biocomposite Films For 

Agriculture Applications 

ABSTRACT 

In this research, the utilization of kapok husk (KH) as a filler in soy protein isolate (SPI) 

was studied to replace the plastic and petroleum based polymer films for packaging. The 

effect of KH loading, crosslinking agents such as phthalic anhydride (PA), adipic acid 

(AA) and formaldehyde (FA), and chemical modification of KH with 2-ethylhexyl 

acrylate (EA), methyl methacrylate (MMA) and sodium dodecyl sulphate (SDS) on 

tensile properties, morphology, thermogravimetry analysis (TGA), moisture content, 

total soluble matter, gel fraction and enzymatic biodegradation properties of SPI/KH 

biocomposite films was studied. Glycerol was used as a plasticizer to give flexibility to 

the biocomposite films. The experimental results showed that the increases of KH loading 

have increased the tensile strength, modulus of elasticity, and gel fraction of control 

SPI/KH biocomposite films, whereas the elongation at break, char residue, moisture 

content, total soluble matter and weight loss of enzymatic biodegradation decreased. The 

morphology of tensile fracture surface of control SPI/KH biocomposite films at higher 

KH loading showed better interaction between KH filler and SPI matrix. The addition of 

different crosslinking agents such as PA, AA and FA had increased the tensile strength 

and modulus of elasticity of crosslinked biocomposite films. The gel fraction of all 

crosslinked biocomposites films higher than uncrosslinked biocomposite films. However, 

crosslinked biocomposites exhibited decrement in elongation at break except AA, char 

residue, moisture content, total soluble matter, and weight loss of enzymatic 

biodegradation than uncrosslinked biocomposite films. The SEM studies of crosslinked 

SPI/KH biocomposite films with PA, AA and FA indicated the rough surface, due to the 

enhanced crosslinking. The FTIR spectra of all crosslinked biocomposite films illustrated 

the changes in functional group. The treated KH with EA, MMA, and SDS biocomposite 

films have higher tensile strength and modulus of elasticity in comparison with untreated 

SPI/KH biocomposite films. Nevertheless the elongation at break, char residue from 

TGA, moisture content, total soluble matter and weight loss of enzymatic biodegradation 

reduced. All treated SPI/KH biocomposite films performed slight changes in gel fraction 

as KH loading increased. The treated KH with EA, MMA and SDS had enhanced the 

interfacial bonding between KH and SPI matrix in biocomposite films, which were 

proved by SEM analysis. It can be summarized that incorporation of KH in SPI film has 

the ability to improve the properties of SPI/KH biocomposite films. However in 

comparison, SPI/KH biocomposite films treated with EA could give the highest 

improvement in all characterization.  
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1 

CHAPTER 1 : INTRODUCTION 

1.1 Background 

In recent years, the increased of global awareness regarding sustainability issue 

leads researchers to replace various synthetic commercial applications with 

environmental friendly and biodegradable polymers and composites (Shivam, 2016; 

Averous & Pollet, 2012; Thompson et al., 2009). To solve the issues such as polluted 

marine water, overflowing landfills and plastics litter motivates researches the needs to 

widen polymers based material with manageable lifetimes by taking consideration into 

environmentally adequate to application, manufacturing, disposal and recycling methods 

(Sirvio et al., 2014). 

Nowadays biofilms based on agricultural materials gained much consideration as 

packaging materials. To overcome such environmental problems rather than synthetic 

polymer packaging, biofilms are accepted to be a promising solution (Koshy et al., 2015). 

Additionally, biofilms is suitable to commercialized into various products such as 

garbage bags, grocery bags, composting yard waste bags, agriculture mulches and agro 

bags (Ali et al., 2013). Soy protein is naturally occurring edible materials that have been 

broadly investigated due to their properties such as inexpensive, fully biodegradable and 

availability. From the comparisons between soy protein products, soy protein isolate 

(SPI) has higher protein content which gives superior ability to form films (Wihodo & 

Moraru, 2013). From the investigation, researchers have been reported that SPI films 

have high barrier properties on both vapour and oxygen at low relative humidity and good 
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