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Simulasi Berangka bagi Konfigurasi Inovatif Satah-Bumi dan 

Get-Berkembar dalam SOI MOSFETs Badan dan –Oksida 

Tertanam Nipis 

ABSTRAK 

Penskalaan transistor membolehkan peningkatan dalam ketumpatan transistor, kelajuan 

pensuisan dan kekompleksan dengan tiada peningkatan dalam penggunaan kuasa. 

Walaubagaimanapun, penskalaan transistor MOS yang lazim nampak menuju ke arah 

akhir pelan tindakan teknologi disebabkan oleh kebolehubahan prestasi yang semakin 

buruk dan kesan saluran-pendek (SCEs). Salah satu pesaing yang dijangka 

menggantikan seni bina transistor semasa adalah SOI MOSFETs planar badan dan 

oksida tertanam nipis (UTBB). Kelebihan struktur SOI badan-nipis terletak pada proses 

planarnya yang mudah yang serasi sepenuhnya dengan aliran CMOS silikon pukal. 

Dalam kerja kajian ini, perhatian khusus diberikan terhadap prestasi UTBB SOI 

MOSFETs dengan BOX yang nipis dalam meningkatkan tingkah laku elektrostatik oleh 

badan-nipis dibandingkan dengan transistor SOI dengan BOX yang tebal (UTB) untuk 

melanjutkan kebolehskalaan CMOS. Selanjutnya, UTBB dengan seni bina satah bumi 

(GP) dan konfigurasi get yang berbeza (i.e. get-tunggal (SG) dan get-ganda (DG)) 

dikaji secara menyeluruh melalui simulasi berangka sebagai calon yang mungkin untuk 

meneruskan Hukum Moore. Kajian mendalam mengenai angka merit (FoM) digital dan 

analog/RF dijalankan dalam julat frekuensi yang lebar (dari 0.01 Hz sehingga 100 GHz) 

dalam hubungan dengan mekanisme operasi peranti. Didapati bahawa pembentukan GP 

inovatif yang terdiri daripada GP setempat jenis –p dalam substrat di bawah saluran (di 

sini dirujuk sebagai GP-B dalam tesis) menekan kesan susutan substrat secara efektif 

dan menunjukkan imuniti yang lebih baik terhadap SCEs daripada pandangan analisis 

digital. Peningkatan selanjutnya dalam imuniti terhadap SCEs dapat dicapai dengan  

konfigurasi DG di mana kesan seni bina GP yang berbeza digandakan dibandingkan 

dengan SG. Walaupun penggunaan konfigurasi DG memberikan prestasi digital yang 

unggul, nilai frekuensi potongan gandaan intrinsik (ft)  adalah rendah dalam domain 

analog berbanding SG disebabkan oleh peningkatan kemuatan berparasit get-ke-get 

(Cgg). Oleh itu, pemilihan yang cermat dan keseimbangan diperlukan apabila memilih 

struktur peranti tertentu di mana hasil yang diperolehi daripada penyelidikan ini 

menyumbang kepada pengenalpastian seni bina GP dan konfigurasi get (SG atau DG) 

yang boleh dipakai dalam rekabentuk peranti untuk disesuaikan dengan aplikasi spesifik 

sama ada digital atau RF.  
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Numerical Simulations of Innovative Ground Plane (GP) and 

Double-gate (DG) Configurations in Thin-body and –buried Oxide 

of SOI MOSFETs 

ABSTRACT 

The downscaling of transistors enables an increased in transistor density, faster 

switching speeds and greater complexity with no increase in power consumption. 

However, the scaling of the conventional planar MOS transistors appears to be reaching 

the end of the technology roadmap due to worsening performance variability and short-

channel effects (SCEs). One of the contenders anticipated to replace the current 

transistor architecture is planar ultra-thin body and BOX (UTBB) SOI MOSFET. The 

advantage of the thin-body SOI structure lies in its simple planar process which is fully 

compatible with the bulk silicon CMOS flow. In this research work, a particular 

attention is being given to the performance of UTBB SOI MOSFETs with its thin BOX 

in improving electrostatics behaviour namely of drain-induced barrier lowering (DIBL) 

of the thin-body as compared to thick BOX (UTB) SOI transistors for extending CMOS 

scalability. Subsequently, UTBB with different ground plane (GP) architectures and 

gate configurations (i.e. single-gate (SG) vs double-gate (DG)) are extensively studied 

through numerical simulations as possible candidates for the continuation of Moore‟s 

Law. In-depth study of the digital and analog/RF figure-of-merit (FoM) are carried out 

in a wide range of frequency (from 0.01 Hz to 100 GHz) in correlation with device 

operation mechanisms. It is discovered that an innovative GP formation made of 

localized GP of p-type in the substrate underneath the channel (referred herein 

throughout the thesis as GP-B) effectively suppress substrate depletion effects and 

shows better immunity against SCEs from the digital analysis viewpoint. Further 

improvements in the immunity against SCEs can be achieved in DG configurations 

where the impact of different GP architectures is amplified as compared to SG. Even 

though the use of DG configurations provides superior digital performance, lower 

current gain cut-off frequency (ft) values are produced than SG in the analog domain 

due to an increase of gate-to-gate capacitances (Cgg). Therefore, careful selections and 

trade-offs are needed when selecting a particular device structure where the results 

obtained in this research work contribute to the identifications of GP architectures and 

gate configurations (SG or DG) that can be adopted in device design to suit specific 

applications of either digital or RF. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 General review of CMOS Technology 

1.1.1 Scaling of CMOS Technology to Their Limits  

 

The integrated circuit (IC) technology has followed Moore‟s Law since 1965 

which states that the number of devices integrated double every 18 months. This 

progression is made possible by continuous miniaturization in feature size of 

components devices which are integrated - a concept known as device scaling.  In 

detailed, device scaling refers to scaling of various structural parameters of a MOSFET 

to ensure the device continue to function properly. These include lateral as well as 

vertical dimensions such as the channel length, the width, the source/drain junction 

depth (xj) and the gate oxide thickness (Tox). For proper device scaling, power supply 

voltages should also be reduced to keep the internal field constant. The first complete 

scaling scheme known as constant-field scaling was introduced by Dennard et al. 

(1974) as shown in Table 1.1 and is regarded as the seminal reference in scaling theory 

for MOSFET integrated circuits. Depending on the variable, the parameter could be 

multiplied, or divided by α which is a unitless scaling factor. However, as voltage is not 

usually scaled as fast as the linear dimensions due to subthreshold leakage constraint, 

additional scaling factor for the electric field () is introduced to account for the 

increased of  and is summarized as „generalized scaling factor‟ as shown in Table 1.1. 
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The scaling of the transistor‟s feature size leads to an increased speed and improved 

density (smaller areas for devices and circuits).  

 

Figure 1.1: Principles of MOSFET constant-field scaling (Davari, Dennard, & 

Shahidi, 1995) 

Table 1.1: The classical scaling trends 

Parameters Constant-field scaling 

(Dennard et al., 1974) 

Generalized scaling factor 

 (Baccarani, Wordeman, & Dennard, 

1984) 

Physical dimensions 

(Lg,W, Tox, xj ) 
1/ 1/  

Electric field () 1  

Body doping 

concentration (NA) 
 / 

Supply voltage (Vdd) 1/ / 

Transistor current (I) 1/ / 

Capacitance 

(C= oxA/ Tox) 

1/ 1/ 

Area (A) 1/ 2
 1/ 2

 

Gate delay 

(  ~ C Vdd /I) 

1/ / 

Power dissipation 

(P ~ IVdd) 

1/ 2
 

 

2
/2

 

Power density (P/A) 1 2
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1.1.2 Scaling Challenges 

 

The classical scaling technique of MOSFET was followed successfully until 90 

nm transistor generation (M. Bohr, 2008, 2009; Kuhn, 2009) (The last CMOS 

generation where the downscaling of transistor to make it smaller is adequate to 

improve the transistor‟s performance is of the 130 nm transistor generation). In the 

following generation, it is then recognized that simple scaling of bulk MOSFETs i.e. 

increasing the doping in the channel and reducing the silicon thickness is no longer 

valid as a result of rapidly increasing random variability and poor short channel 

immunity. With the shrinking of the transistor gate length (Lg), the lateral electric fields 

at the source and drain can penetrate into the channel, causing reduction in barrier 

height of source/body junction. This will lead to an increase in short-channel effects 

(SCEs).  

 

SCEs arise when the close proximity between the source and the drain causes 

the gate to lose control of the potential distribution and the flow of current in the 

channel region. With shorter Lg, the depletion regions of high electric fields associated 

with the source and drain regions started to interact with each other, causing direct 

carrier transport between the source and drain. This reduces control of the gate over the 

channel and in turn, rise in off-state current (Ioff) and lower threshold voltage (Vth) are 

observed. In conventional MOSFET, decreasing Lg has been accompanied by the 

decreased in gate oxide thickness (Tox) and the source/drain junction depth (xj). 

However, an increased in gate leakage current caused by tunnelling through the very 

thin oxide (~2 nm) has put the limit to oxide scaling. It is then proposed that higher 
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