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SWCNT Single-walled carbon nanotube 

TMAH Tetramethylammonium hydroxide 

Tn Troponin 

UniProtKB Universal Protein Resources Knowledgebase 

XP X-ray photoelectron 

XPS X-ray photoelectron spectroscopy 

XRD X-ray diffraction 
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LIST OF SYMBOLS 

 

Al Aluminium 

Al2O3 Alumina 

Au Gold 

c Y-intercept 

C Carbon 

CH4 Methane 

HCl Hydrochloric acid 

HfO2 Hafnium (IV) oxide 

HNO3 Nitric acid 

I Current 

ID Drain current 

ID0 Immobilization drain current 

IgG Immunoglobulin G 

L Length 

m Slope 

µ Mean 

N Nitrogen 

Ni Nickel 

O Oxygen 

ρ Resistivity 

pI Isoelectric point 

Pt Platinum 
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QF Interface charge density 

R Electrical resistance 

Ra Average roughness  

Ret Electron transfer resistance 

∆Ret Difference in electron transfer resistance 

RMS Root mean square 

RSD Relative standard deviation 

Si Silicon 

SiO2 Silicon dioxide 

σ Standard deviation 

SnO2 Tin oxide 

t Thickness 

V Voltage 

VD Drain voltage 

VSG Substrate-gate voltage 

VT Threshold voltage 

W Width 

ZnO Zinc oxide 
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Pengesanan Elektrik tanpa Label untuk Penanda Biologi Troponin Jantung: 
Berasaskan Transistor Kesan Medan Disepadukan Gandingan Get-substratum 

 

ABSTRAK 

 

Infaksi myokardium akut (AMI) merupakan punca utama kematian di seluruh dunia 
walaupun dengan adanya kemajuan terapi. Oleh itu, kaedah diagnosis awal menggunakan 
biopenanda-biopenanda jantung adalah diperlukan supaya tindakan yang tepat dapat 
dilaksanakan. Troponin jantung I (cTnI) merupakan salah satu biopenanda jantung untuk 
diagnosis awal AMI dan dianggap sebagai “piawaian emas” untuk menentukan 
kecederaan otot jantung. Pengesanan cTnI melalui biopenderia berasaskan elektrikal 
membolehkan pengesanan tanpa label dengan menukarkan pengikatan biomolekul 
kepada isyarat elektrikal yang ketara melalui sebuah pemindaharuh semikonduktor. 
Biopenderia ini memanfaatkan keberaliran untuk menentukan kewujudan biomolekul. 
Salah sebuah biopenderia berasaskan elektrikal ini yang dikenali sebagai biopenderia 
berasaskan transistor kesan medan (FET) telah menarik banyak perhatian kerana 
memiliki konsep pemindaharuhan cas; di mana ia membolehkan diagnosis segera 
biopenanda jantung dengan kadar sensitiviti yang tinggi secara khusus pada kepekatan 
rendah di peringkat awal. Dalam kajian ini, biopenderia berasaskan FET-zink oksida 
(ZnO) digandingkan dengan get-substratum telah direka bentuk dan difabrikasi untuk 
pengesanan cTnI. Saput nipis ZnO sebagai bahan separa-pengalir jenis-n dan juga 
merupakan pemindaharuh serasi dengan biologi telah diendapkan menggunakan teknik-
teknik gel-sol dan penyalutan putar di antara terminal punca dan salir jenis-p, yang 
terletak di atas substratum silikon-atas-penebat (SOI) untuk menghasilkan simpang p-n-
p, sebuah peranti yang berupaya untuk aplikasi pengesanan biologi. Morfologi 
permukaan salut nipis ini telah dicirikan melalui mikroskop daya atom (AFM) dan 
mikroskop elektron imbasan pancaran medan (FESEM). Saput nipis ini memperlihatkan 
fasa wurzit heksagon seperti yang telah dipaparkan oleh analisa belauan sinar-X (XRD) 
adalah bersesuaian dengan interaksi biomolekul. Permukaan saput nipis ZnO ini telah 
ditetapkan dengan antibodi monoklonal cTnI (MAb-cTnI) melalui kaedah pengikatan 
kovalen untuk mengesan biopenanda cTnI. Proses ini telah dibuktikan melalui infra-
merah jelmaan fourier (FTIR) dan spektroskopi fotoelektron sinar-X (XPS). Struktur 
peranti ini telah diselakukan di dalam perisian penyelaku 2-dimensi Silvaco ATLAS 
bertujuan untuk menghuraikan ciri elektrikal peranti tersebut, secara khususnya 
kepekatan elektron di dalam terusan dan permukaan oksida tertanam/substratum. Peranti 
ini mempamerkan strategi baru melalui pencirian elektrikal, apabila digandingkan dengan 
get-substratum yang mempertingkatkan pembentukan lapisan pengaliran lubang pada 
saluran yang terletak di antara kawasan saliran dan punca. Akhirnya, biopenderia ini 
menunjukkan peningkatan pada perubahan nisbi aras arus saliran yang ketara dalam julat 
lelurus daripada 6.2 ke 16.5% dengan peningkatan kepekatan biopenanda cTnI yang 
bercas positif daripada 1 ng/ml ke 10 µg/ml. Sensitiviti pengesanan peranti ini adalah 
pada 2.51 %·(g/ml)-1 dengan had pengesanan (LOD) serendah 3.24 pg/ml.  
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Electrical Label-Free Sensing of Cardiac Troponin Biomarker: FET-based 
Integration with Substrate-gate Coupling 

 

ABSTRACT 

 

Acute myocardial infarction (AMI) is a leading cause of death worldwide despite the 
existence of therapy’s advances. Therefore, an early diagnosis method by using cardiac 
biomarkers is essential to enable correct countermeasures. Cardiac Troponin I (cTnI) is 
one of the cardiac biomarkers for early diagnosis of AMI and considered as ‘gold 
standard’ for cardiac muscle injury determination. The detection of cTnI through an 
electrical-based biosensor allows label-free detection by converting biomolecular binding 
event into a significant electrical signal via a semiconductor transducer. It utilizes 
conductivity to specify the existence of biomolecules. One of the electrical-based 
biosensors known as field-effect transistor (FET)-based biosensor has drawn much 
attention for owning the concept of charge transduction; thus, allows early, high 
sensitivity, high selectivity, and rapid diagnosis of the specific cardiac biomarker at low 
concentrations. In this work, the zinc oxide (ZnO)-FET biosensor coupled with substrate-
gate has been designed and fabricated for the detection of cTnI biomarker. ZnO thin film, 
as n-type biocompatible semiconductor material, and also as transducer was deposited via 
sol-gel and spin coating techniques between p-type source and drain terminal on SOI 
substrate, forming a p-n-p junction, a device capable of bio-sensing application. The 
surface morphology of the thin film was characterized by using atomic force microscopy 
(AFM) and field emission scanning electron microscopy (FESEM). The thin film, which 
demonstrated hexagonal wurtzite phase as shown by X-ray diffraction (XRD) analysis 
appropriate for biomolecules interaction. The surface of the ZnO thin film was 
immobilized with cTnI monoclonal antibody (MAb-cTnI) as biological receptor via 
covalent binding technique for capturing cTnI biomarker. The process was validated by 
Fourier transform-infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The 
device structure was simulated in Silvaco Atlas 2D-simulator, to elucidate its electrical 
characteristic, by means of hole and electron concentration in the channel and buried 
oxide/substrate interface, respectively. The device demonstrated a new strategy via 
electrical characterization with the introduction of substrate-gate coupling that enhanced 
the formation of hole conduction layer at the channel between drain and source region. 
Finally, the biosensor shown significant increment in relative changes of drain current 
level in a linear range of 6.2 to 16.5 % with the increase of positively charge cTnI 
biomarker concentrations from 1 ng/ml to 10 µg/ml. The device sensitivity of the 
detection is at 2.51 %·(g/ml)-1 with limit of detection (LOD) down to 3.24 pg/ml.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background  

 

Biosensors are frequently defined as integrated diagnostic devices comprising of 

three elements, which are bio-receptor, transducer, and a signal processing unit (Conroy, 

Hearty, Leonard, & O’Kennedy, 2009). Generally, a suitable transducer surface of 

biosensor is immobilized with a biological receptor material (i.e. antibody (Ab), 

deoxyribonucleic acid (DNA), or ribonucleic acid (RNA)). It produces a measureable 

signal upon bio-receptor interaction with the specific biomolecules (Goode, Rushworth, 

& Millner, 2015; Qureshi, Gurbuz, & Niazi, 2012). The generated signals is in the mode 

of either electrochemical (Gomes-Filho, Dias, Silva, Silva, & Dutra, 2013; Horak, Dincer, 

Qelibari, Bakirci, & Urban, 2015), optical (H.-Z. He et al., 2013; C.-H. Leung et al., 2013; 

K.-H. Leung et al., 2015; Lu et al., 2014), mass change (piezoelectric/acoustic wave) 

(Joonhyung Lee et al., 2013), or magnetic (J. Liu, Zhang, Wang, Zheng, & Sun, 2014). 

The development of biosensors for diversity of biomolecules detection has cover many 

field, including medicine (J. Wang, 2006), food testing (Huet et al., 2010), environmental 

(Weller, Schuetz, Winklmair, & Niessner, 1999), and process control monitoring 

(Venugopal, 2002). The developed biosensors that come with several advantages (i.e. 

portable, inexpensive tools for the rapid detection of pathogens, proteins and other 

biomolecules) are intended to provide as an alternative method to the conventional 

bioanalytical approaches (Fathil et al., 2016). Commonly, conventional bioanalytical 
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