

Electronic Nose Based Bacteria Species Detection in Diabetic Foot Infection

by

Nurlisa Binti Yusuf @ Idris (1331311015)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Biomedical Electronic Engineering

School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

THESIS DECLARATION

UNIVERSITI MALAYSIA PERLIS

	DECLARATION OF THESIS
Author's full name :	
Date of birth :	
Title :	
Academic Session ::	COPY
I hereby declare that the thes to be placed at the library of	sis becomes the property of Universiti Malaysia Perlis (UniMAP) and UniMAP. This thesis is classified as
CONFIDENTIAL	
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
I, the author, give permission of research or academic excl	to the UniMAP to reproduce this thesis in whole or in part for the purpose nange only (except during a period of years, if so requested above).
OTHIS	Certified by:
SIGNATURE	SIGNATURE OF SUPERVISOR
(NEW IC NO. / PASS	Program Kejuruserean Eisktronik Bioperubatan

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the Most Gracious, the Most Merciful.

Alhamdulillah, all praises be to Him the creator of all creation that finally I have completed my research on titled of "Early Diagnosis of Bacteria Species Extracted on Diabetic Foot Infection using Electronic Nose Technique". This thesis could not be written and complete without the blessing of the Almighty.

My dearest thanks and deepest respect to my supervisor; Assoc. Prof. Dr. Mohammad Iqbal Omar who have stimulate great idea and motivate me with unlimited support which leads me to the right direction during the making of this research.

Special thanks to my co-supervisors Dr. Ammar Zakaria, Prof. Ali Yeon Md Shakaff for their genuine support, valuable advice and sincere comments which helped me to complete this study. I am very pleased and feel glad that I were given a chance to do this research based project as it gives me an experience on how to develop my critical thinking based on the biomedical electronic engineering fields.

My heartiest gratitude to my fellow friends, staffs and lecturers for their advice; whether directly or indirectly for lending me their help during research and writing of this thesis. Also, special thanks to the Centre of Excellence and Advanced Sensor Technology (CEASTech) and Hospital Tuanku Fauziah (HTF) committees who have provided laboratory help support, friendship and useful discussion. Their kind support and guidance have been great of great value in this study.

Special thanks to my beloved husband, son, parents and family members for giving me the inspirations and motivations along the way of my study. May this project inspire new ideas and research so that it can benefit the Ummah and Society.

TABLE OF CONTENTS

	PAGE
THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES LIST OF ABBREVIATIONS ABSTRAK ABSTRACT CHAPTER 1 INTRODUCTION 1.1 Background 1.2 Problem Statement	ix
LIST OF ABBREVIATIONS	xii
ABSTRAK	xiv
ABSTRACT	XV
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	2
1.3 Research Objectives	3
1.4 Research Scopes	4
1.5 Contributions of study	5
1.6 Chapter Outline	6
CHAPTER 2 LITERATURE REVIEW	8
2.1 Diabetes Mellitus Disease	8
2.1.1 Complication of diabetes disease	10
2.2 Diabetic Foot Infection	10
2.2.1 Clinical presentation of infection	11

2.2.2 Microbiology of diabetic foot	11
2.2.2.1 Single bacteria species infection	13
2.2.2.2 Poly microbial species infection	18
2.2.3 Treatment of infection	22
2.3 E-nose	24
2.3.1 Cyranose320	32
 2.4 Gas Chromatography Mass Spectrometry (GCMS) 2.4.1 Solid – Phase Micro Extraction (SPME) 2.5 Feature Extraction 	34
2.4.1 Solid – Phase Micro Extraction (SPME)	35
2.5 Feature Extraction	36
2.5.1 Principal Component Analysis (PCA)	36
2.5.2 Linear Discriminant Analysis (LDA)	37
2.6 Classification algorithms	38
2.6.1 K Nearest Neighbors (KNN)	39
2.6.2 Probabilistic Neural Network (PNN)	39
2.6.3 Support Vector Machine (SVM)	40
2.7 Summary	40
CHAPTER 3 METHODOLOGY	41
3.1 Overview of Methodology	41
3.2 Conventional methods versus proposed method	41
3.3 Bacteria sample preparation	46
3.3.1 Culture media preparation	56
3.3.2 Bacteria culturing technique	57
3.4 Data collection using Cyranose 320 e-nose	58

	3.4.1	Cyranose320 Sampling parameters	58
	3.5 Data o	collection using GCMS	61
	3.5.1	Solid – Phase Micro Extraction (SPME) Technique	62
	3.5.2 S	PME-GC Setting	63
	3.5.3 G	CMS Setting	63
	3.6 Data	Processing using SPSS and MATLAB	64
	3.7 Data	analysis and odour recognition	65
C	CHAPTER	4 RESULTS & DISCUSSIONS	67
	4.1 Introd	analysis and odour recognition 4 RESULTS & DISCUSSIONS uction	67
	4.2 GCM	S analysis for validation of VOC produced from bacteria	67
	4.3 Norm	ality test	73
	4.4 Featur	res Extraction	78
	4.4.1	Linear Discriminant Analysis (LDA)	78
	4.5 Identi	fying different bacteria species in different media such as blood agar,	
	Muel	ler Hinton and MacConkey using Cyranose320.	81
	4.5.1 P	arameter Optimisation	81
	4.5.1	.1 K Nearest Neighbor (KNN)	82
	4.5.1	.2 Probabilistic Neural Network (PNN)	82
	4.5.1	.3 Support Vector Machine (SVM)	83
	4.5.2 E	valuation and Classification performance	85
	4.6 Early	detection of bacteria in less than 24 hours	88
	4.6.1 P	arameter Optimisation	89
	4.6.1	.1 K nearest Neighbor (KNN)	89

4.6.1.2 Probabilistic Neural Networks (PNN)	90
4.6.1.3 Support Vector Machine (SVM)	91
4.6.2 Evaluation and Classification performance	93
4.7 In-vitro diagnosis of single and poly microbial species targeted for	diabetic foot
infection using e-nose.	97
4.7.1 E-nose results	99
4.7.2 Evaluation and classification performance	102
CHAPTER 5 CONCLUSION AND FUTURE WORK	107
5.1 Conclusion	107
5.2 Future works	108
REFERENCES	111
APPENDICES	119
LIST OF PUBLICATIONS	127
LIST OF AWARDS	129
4.7.2 Evaluation and classification performance CHAPTER 5 CONCLUSION AND FUTURE WORK 5.1 Conclusion 5.2 Future works REFERENCES APPENDICES LIST OF PUBLICATIONS LIST OF AWARDS	
.5	

LIST OF FIGURES

NO.	PAC	GE
2.1	Comparison between human olfactory systems with e-nose system	25
2.2	Inside Cyranose320 instruments (adapted from C320 datasheet)	32
2.3	Schematic diagram for GC-MS instruments	34
2.4	Schematic diagram for SPME technique	35
3.1	Simplified view of conventional testing procedures used for identification of	
	bacteria (top). Proposed method (bottom)	44
3.2	Flowchart of the overall process	45
3.3	Isolation of bacteria for repeated measurements (smellprint) for bacteria	
	identification.	47
3.4	Isolation of bacteria for repeated measurements (smellprint) for early detection	of
	bacteria	51
3.5	Isolation of bacteria for repeated measurements (smellprint) for poly bacteria	
	identification.	54
3.6	Blood agar (red), MacConkey (pink), Mueller Hinton (colorless)	57
3.7	(a) Streak plate technique and (b) Growth of bacteria	58
3.8	Experimental setup for data collections	59
3.9	Sensor responses through the (A) baseline purge, (B) sample exposure and (C)	
	sensor refresh	60
3.10	GCMS machines with SPME injection technique.	62
3.11	Injection of sample using SPME fibre coated technique	63
3.12	(a) SPSS software and (b) MATLAB software	65
3.13	Signal responses for odor recognition using a Cyranose320 system for <i>E.coli</i> in	
	blood agar media	66

4.1	Chromatograms of <i>E.coli, S.aureus</i> and <i>P.aeruginosa</i> in a blood agar medium	70
4.2	Chromatograms of S. pyogenes, K. pneumoniae and P.mirabilis in a blood agar	
	medium	71
4.3	Chromatograms of mix bacteria species in a blood agar medium	72
4.4	Linear Discriminant Analysis (LDA) works	80
4.5	LDA plot for classification of bacteria in a blood agar medium	86
4.6	LDA plot for classification of bacteria in a Mueller Hinton medium	86
4.7	LDA plot for classification of bacteria in a MacConkey medium	87
4.8	LDA plot for 6 hours of bacteria growth	94
4.9	LDA plot for 6 hours of bacteria growth LDA plot for 12 th hours of bacteria growth	94
4.10	LDA plot for 18 th hours of bacteria growth	95
4.11	LDA plot for 24 th hours of bacteria growth	95
4.12	LDA plot for ATCC standard and wild bacteria in blood agar.	99
4.13	LDA plot of single bacteria species in three different mediums	100
4.14	LDA plot of single and poly bacteria species in three different media.	101
5.0	Component of the e-nose	109
5.1	Finalized product (BacteSens)	109

LIST OF TABLES

NO.		PAGE
2.1	Classification of diabetes mellitus disease (adapted from Robert G. Frykbe	erg,
	Thomas Zgonis, 2006)	8
2.2	Stage of clinical presentation of infection	11
2.3	Volatile organic compounds (VOCs) produced by bacteria	12
2.4	Common causative bacteria species (single bacteria) on wound infection	13
2.5	Common single bacteria detections using an e-nose.	15
2.6	Summarized of poly microbial species infection	19
2.7	Summarized of antibiotic resistance of Gram positive bacteria (adapted from	om
	Raja, 2007)	23
2.8	Summarized of antibiotic resistance of Gram negative bacteria (adapted fr	om
	Raja, 2007)	23
2.9	Common diseases which diagnosis using e-nose technology	27
3.1	List of single bacteria strain	46
3.2	List of poly microbial strain	46
3.3	Summarized of bacteria culture for the 1 st objective	49
3.4	Summarized of bacteria culture for the 2 nd objective	52
3.5	Summarized of bacteria culture for the 3 rd objective	55
3.6	The Cyranose320 parameter setting for bacteria assessment cycle	58
3.7	The SPME-GC setting for identification of VOC	63
4.1	Normality test with Kolmogorov Smirnov (KS) with Lilliefors (LF) Signi-	ficance
	Correction and Shapiro Wilk (SW) test	74
4.2	Normality test with Skewness and Kurtosis	76
4.3	Summary of normality test for all dataset in each case study	77

4.4	Standardized Canonical Discriminant Function Coefficients	79
4.5	Summary of the total number of useful discriminant scores	81
4.6	List of parameters and tested value	82
4.7	Summary on selected value for each parameter	82
4.8	Summary on selected parameters for each data case	83
4.9	List of parameters and test values	83
4.10	Results for identification of bacteria in blood agar medium	84
4.11	Results for identification of bacteria in Mueller Hinton medium	84
4.12	Results for identification of bacteria in MacConkey medium	84
4.13	Summary on selected value for each parameter	85
4.14	Classification accuracy for different mediums using different classifier	88
4.15	List of gram positive and gram negative bacteria	89
4.16	List of parameters and tested value	90
4.17	Summary on selected value for each parameter	90
4.18	Summary on selected parameters for each dataset	91
4.19	List of parameters and test values	91
4.20	Results for identification of bacteria at 6 th hour	91
4.21	Results for identification of bacteria at 12 th hour	92
4.22 (Results for identification of bacteria at 18 th hour	92
4.23	Results for identification of bacteria at 24 th hour	92
4.24	Summary on selected value for each parameter	93
4.25	Classification accuracy for different time using different classifier	96
4.26	Single and poly microbial species culture on different medium	98
4.27	The statistical significance classifiers using Wilks' Lambda	102

- 4.28 Classification accuracy of both single and poly microbial species in threedifferent mediums using different classifier.
- 4.29 Sensitivity and specificity of both single and poly microbial species in all mediausing different classifier.

This item is protected by original copyright

LIST OF ABBREVIATIONS

ANN Artificial Neural Networks

ATCC American Type Culture Collection

cfu colony forming unit

DF Discriminant Function

GC Gas Chromatography

GCMS Gas Chromatography Mass Spectrometry

GDM Gestational Diabetes Mellitus

H_a The distribution is not normal

H_o The distribution is normal

IDDM Insulin-Dependent Diabetes Mellitus

KNN K Nearest Neighbor

KS Kolmogorov Smirnov

LDA Linear Discriminant Analysis

LF Lilliefors

LS Least Square

MATLAB Matrix Laboratory

MLP Multilayer perceptron

MPN Most probable number

MS Mass Spectrometry

MSE Mean Square Error

NaCl Sodium Chloride

NIDDM Non-Insulin Dependent Diabetes Mellitus

NIST National Institute of Standards and Technology

PCA Principal Component Analysis

PNN Probabilistic Neural Network

RBF **Radial Basic Function**

Sequential Minimal Optimization SMO

Solid Phase Micro Extraction **SPME**

Machine

Lapiro Wilk

Total Ion Chromatogram

Time of flight

Tolatile **SPSS**

spp.

SVM

SW

TIC

TOF

Volatile Organic Compound VOC of his item is pri

Hidung Elektronik Berdasarkan Pengesanan Spesies Bakteria pada Jangkitan Kaki Pesakit Diabetes

ABSTRAK

Tesis ini membincangkan kajian asas pengesanan awal bakteria menggunakan hidung elektronik. Pengesanan awal jangkitan bakteria sangat perlu untuk memberikan rawatan yang berkesan untuk jangkitan kaki pesakit diabetes. Sehingga kini,kaedah klinikal berdasarkan kultur sampel adalah kaedah standard yang digunakan oleh ahli mikrobiologi untuk mengesan dan mengelaskan bakteria spesies. Pengkulturan sampel yang diambil daripada cebisan luka kaki pesakit diabetes boleh mengambil masa sehingga dua hingga tiga hari. Sebagai alternatif, hidung elektronik diperkenalkan untuk memberi diagnosis awal dan cepat kepada pesakit supaya rawatan yang sesuai dapat dijalankan. Projek penyelidikan ini menggunakan teknologi sensor sedia ada dalam bentuk hidung elektronik menggunakan kaedah pemprosesan data untuk mengenalpasti enam jenis spesies bakteria yang menjadi punca kepada jangkitan melalui bau yang terhasil. Kajian ini mempunyai tiga objektif utama iaitu untuk mengenal pasti spesies bakteria menggunakan medium pengkulturan yang berlainan, menyiasat keupayaan hidung elektronik untuk mengesan spesies bakteria kurang dalam medium "blood agar" dalam masa kurang dari 24 jam dan mengkaji secara in-vitro diagnosis spesies mikrob tunggal dan poli penyebab kepada jangkitan luka pada kaki pesakit diabetes. Hidung elektronik iaitu Cyranose320 mempunyai 32 susunan sensor gas digunakan dengan mengukur perubahan rintangan setiap sensor kimia yang boleh mengesan dan mengenalpasti bakteria mengikut sebatian organik meruap (VOC) yang terhasil. Bacaan Cyranose320 direkodkan dengan menghidu bau bakteria pada permukaan atas sampel yang dimasukkam dalam bekas khas yang telah ditutup rapi. Seterusnya, data yang dikumpul akan disimpan dalam fail data di dalam sistem komputer untuk diekstrak. Setelah data diekstrak, pelbagai eksperimen pengkelasan telah dijalankan. Perbandingan telah dibuat dan kesimpulan telah disediakan untuk melaksanakan pelbagai analisis data dan kaedah pengkelasan. Antara teknik pengkelasan digunakan di dalam kajian ini termasuklah "Support Vector Machine (SVM)", "K Nearest Neighbor (KNN)", "Linear Discriminant Analysis (LDA)" dan "Probability Neural Network (PNN)". 100% ketepatan dicapai menggunakan klasifier yang telah dipilih untuk mengenalpasti spesies bakteria yang dikultur di dalam tiga medium yang berlainan. Keputusan menunjukkan bahawa spesies bakteria yang berbeza dapat dikenalpasti oleh Cyranose320 walaupun menggunakan medium kultur yang berbeza untuk menghidupkan bakteria. Bagi pengesanan awal enam spesies bakteria, ketepatan terbaik ialah 96 %. Ini diperoleh menggunakan KNN dengan nilai k iaitu 2 dan 6 menggunakan jarak Euclidan dan Cityblock. Manakala untuk mengkaji secara in-vitro diagnosis spesies mikrob tunggal dan poli, ketepatan yang terbaik adalah di atas 90 % untuk kesemua klasifier yang digunakan. Oleh itu, kajian asas ini dapat dijadikan aplikasi dunia sebenar sekiranya teknologi ini berjaya dibangunkan. Kaedah dan teknik yang dibincangkan di sini adalah satu langkah ke arah matlamat untuk memperkenalkan sistem multi kelas sensor dalam kehidupan seharian. Kesimpulan tesis ini menunjukkan bahawa hidung elektronik berkebolehan mengesan dan mengelaskan spesies bakteria yang berbeza pada jangkitan luka kaki pesakit diabetes dengan keputusan yang meyakinkan yang boleh dibandingkan dengan prosedur standard yang sedia ada.

Electronic Nose Based Bacteria Species Detection in Diabetic Foot Infection

ABSTRACT

This thesis presents a fundamental study of early bacteria detection using electronic nose. There is a need for early detection of bacterial infection in order to give effective treatment for diabetic foot infection. To date, the clinical method based on sample culture is a standard practise used by microbiologist to detect and classify bacteria species. The cultured samples were taken from debridement of diabetic foot wound can take up to two to three days. Alternatively, identification of causative bacteria from their odours could provide an early and rapid diagnosis and therefore allow initiating appropriate treatment. This research project used an existing sensor technology in the form of an e-nose in conjunction with data processing and classification methods to classify six types of bacteria, common causal organism of diabetic foot infection from their odours. There were three main aims in this research study namely, to identify different bacteria species in different culture media using e-nose, investigate the ability of the e-nose to detect cultured bacteria species in blood agar medium in less than 24 hours and study in-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose. Cyranose 320 e-nose device which consist of 32 gas sensor array, measures the changes in resistance of each chemical sensor which can detect and classify bacteria according to their volatile organic compound (VOC). The sniffing process or e-nose measurements were performed immediately after placing the petri dish of bacteria suspension in a special stainless steel container. The odour data were collected and stored as numerical values within data files in the computer system. Once the dataset extracted, various classification experiments were performed. Comparisons were made and conclusions were drawn from the performance of various data analysis and classification methods. The classification methods used in this work include Support Vector Machine (SVM), K Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA) and Probability Neural Network (PNN). 100% accuracy was achieved using all classifiers for identification of bacteria species in three different culture media. The results confirmed that possible to discriminate different bacterial groups on diabetic foot infection regardless of different culture media used for bacteria growth. For early detection of six bacterial species, the best accuracy was 96 %. This was achieved using KNN with k value of 2 and 6 using Euclidean and City block distance. For study in-vitro diagnosis of single and poly microbial species, the best accuracy was up to 90 % for all classifiers. Thus, this fundamental work on the classification of bacteria odours using e-nose can be a 'real world' application if this technology is successfully developed. The methods and techniques discussed here are one step towards the goal of introducing multi class sensor systems into everyday use. The conclusion of this thesis is that an e-nose can detect and classify different types of bacteria on diabetic foot infection with convincing results which are comparable to the existing standard procedure.

CHAPTER 1

INTRODUCTION

1.1 Background

According to the statistics in Malaysia, the diabetes disease is about 1.5 million in 2006 and this figure is predicted to increase to 2.3 million (Vithyatheri, Balakrishnan, & Loo, 2012); (Letchuman *et al.*, 2010) (Wild *et al.*, 2004) due to life expectancy much longer and change in dietary habits. Therefore, government is estimated to spend about MYR 14.5 (USD 4.75) billion for helping 60,000 diabetes patients, each year. According to Ministry of Health, the healthcare for diabetes patients is far more expensive compared to one without diabetes (Vithyatheri *et al.*, 2012).

Normally, bacterial infection is the most common problem leading on to the diabetic foot complication and play main role in development of high risk gangrene and lower extremity amputation if not treated promptly (Zubair, Malik, & Ahmad, 2011). Diabetic foot infection is the foot of a diabetic patient that has the potential risk of pathologic consequences including infection, ulceration or destruction of deep tissues associated with neurologic abnormalities, various degrees of peripheral vascular disease and metabolic complications of diabetes in the lower limb (Zaini, 2000). There are three distinct stages of diabetic foot infections which were localized infection, spreading infection and severe infection (Edmonds, 2009). Usually, when signs of those clinical infections are present, osteomyelitis may take place which refers as bone infection caused by bacteria (Lipsky et al., 2012). Hence, early diagnosis of bacterial infections

and selection of appropriate antibiotics treatment based on its culture and antimicrobial susceptibility are very important. Immediate actions and appropriate antibiotic therapy can improve the treatment outcome of foot infection of the diabetic patient.

Currently, the conventional techniques used in the clinical laboratory to identify bacterial infection were ulcer swabs, curettage of the ulcer base, and needle aspiration after normal saline injection (Tascini et al., 2011). However, those techniques are often time consuming and may delay in getting diagnostic results (Fend et al., 2006). Another technique such as deep tissue biopsy immediately after surgery, is rather invasive and costly. Therefore, the use of an e-nose to identify a bacteria species is expected to provide the methods a faster diagnosis and non-invasive accurate result.

1.2 Problem Statement

To date, diagnostic system in Malaysia to diagnose bacteria species on diabetic foot infections take 2 to 3 days or more. The present techniques such as swabbed, aspiration, curettage, and tissue biopsy normally require a significant amount of time for culturing and identifying the causal pathogens before finalize the laboratory test results and pass to medical practitioner to start medications. Even when the most advanced microbiology was used, there is still a significant time lag between a culture specimen is taken and when the results are known to assist health care practitioners. Since many of these events occurs and keep on increasingly, therefore the result of diagnosing bacteria needs to get faster than usual (Ritaban Dutta, Das, Stocks, & Morgan, 2006).

Besides, selecting appropriate antibiotics for the treatment of diabetic foot infection is crucial. Identifying the optimal antibiotic choice requires careful consideration in terms of severity of infection, duration of wounds and previous antibiotic exposure. Previous issue on broad spectrum antibiotics has been discussed a

lot by previous researcher (refer Section 2.2.3). Basically, there were yet no data to suggest that a speeding the microbiologist diagnosis of diabetic foot infections by 2 to 3 days will improve patient outcomes. However, this e-nose study would improve patient care by improving or reduce drug resistance to infection and economical by using narrow spectrum antibiotics. More information on the patient's outcome can be study later with the availability of this technique or alternative method which is able to prescribe appropriate antibiotics at their first attempt.

Although there exists a number of studies investigating the use of e-nose in identifying the presence of bacteria in vitro, food safety, and clinical infections (refer Section 2.3, page 24-25), however this study is different with the other study because it involve with the poly microbial species rather than single bacterial species. Although this is preliminary experiment, hopefully this can contribute to further work to study the poly microbial infection. Besides that, the e-nose technique requires less than 24 hours to obtain the result.

Furthermore, this study involve with the multi-class technique were applied including recent classification approaches such as Support Vector Machine (SVM), k Nearest Neighbor (kNN), Linear Discriminant Analysis (LDA) as well as classical neural networks called Probability Neural Network (PNN). Thus, it is believe that this research is a novel since C320 can be as one of the options for rapid and accurate diagnosis of bacteria species detection of diabetic foot infection.

1.3 Research Objectives

The main objectives of this research are given as below:

a) To identify and classify different bacteria species in blood agar, Mueller Hinton and MacConkey media using Cyranose320.

- b) To investigate the ability of the e-nose to detect cultured bacteria species in blood agar media as early as 24 hours.
- c) To study the performance of e-nose in providing accurate classification for invitro diagnosis of single and poly microbial infection targeted for diabetic foot patients.

1.4 Research Scopes

The different bacteria species present on diabetic foot infections were diagnosed using an e-nose technology. The e-nose technology is designed for automated detection and classification of odours, volatile compounds and gases produced by bacteria. Thus, the scopes of this study are as follows:

1) Culturing bacteria in different media agar.

For initial study, preparation and isolation of bacteria culture were carried out in the pathology laboratory at Hospital Tuanku Fauziah (HTF) from debridement of diabetic foot wound samples. Three different media agar which were blood agar, Mueller Hinton and MacConkey were chosed inthis study because media to detect three different types of bacteria species such as *E. coli*, *S. aureus* and *P. aeruginosa* which are usually a common cause of diabetic foot infection. Then, the samples were incubated for 24 hours in the incubator at 37 °C which is the optimum growth of bacteria.

2) Bacteria headspace analysis bacteria using e-nose.

After 24 hour incubation time, the odour produced by the bacteria (headspace) was subjected to Cyranose320 for odour measurement. All the collected data from the Cyranose320 were analysed using various classifier algorithms. Later experiment the incubation time was reduced to less than 24 hours.

3) Statistical Analysis, Pattern Recognition and Artificial Intelligent using e-nose.

In order to obtain the accurate result, data pre-processing and dimension reduction technique such as LDA were performed prior to further analysis. Besides that, several Artificial Neural Networks (ANN) methods also applied such as SVM, PNN and KNN and compared to existing technique. At the end of the study, the result then were compared with standard culture methods and validated with Gas Chromatography Mass Spectrometry (GCMS).

1.5 Contributions of study

The first contribution in this study is to focus on study different culturing media to culture bacteria in bacteria plates. This study involves culturing wild-type bacteria and American Type Culture Collection (ATCC) standard bacteria strain in diabetic foot infection using e-nose. ATCC bacteria are a commercially available bacterium that is used as a standard reference in research. Although there were several reported findings (refer Section 2.3, page 23-24) on the ability of an e-nose to identify bacteria using the e-nose, however, it focused on other diseases rather than diabetic foot infection itself. Also, this study is attempting to investigate which method of neural network classifying the most suitable to be used in e-nose.

The second contribution in this study is to find early detection of bacteria species at 6 hours compared to current diagnostic techniques that would require at least 2 or 3 days to detect the bacteria species (Mazlina, Shamsul, & Jeffery, 2011). From the literature review (refer section 2.2.2.1, page 14-16) also stated that at least 24 hours of incubation time of bacteria. Therefore, this study takes at 6th hour incubation time as the minimum observation of bacteria growth. Hopefully, this finding will be used by others to continue with repeated measurement.

The third contribution to this study investigates not limited on single bacterial species, but also on poly microbial infection due to multiple bacterial species represents in the real infection in diabetic feet (refer to Section 2.2.2.2). However, this is the first reported work study on mix bacteria species using Cyranose320 e-nose. The selection of bacteria used in this study is based on the established clinical data which is the predominant bacteria found on diabetic wound infections.

The final contribution of this study is developing the novel method for identifying bacteria species in diabetic foot infection. The techniques applied in this study (refer Section 3.3) is a non-invasive which is directly sniffing the sample in the sample container. It same goes as directly sniffing toward foot infection. If this method was successful may provide contactless on diabetic wound. This technique might bring one stage closer to the clinical measurement practice.

1.6 Chapter Outline

Chapter 1

This chapter covered the introduction, problem statement, objective of the study, brief explanation of the research scope and the contribution of this research.

Chapter 2

This chapter covered the literature review from the previous journal and articles, studies and the review about the diabetes mellitus disease and its complications, overview of foot infections including the clinical stage of infection and the microbiology of diabetic foot. Besides, the e-nose application, GCMS and other classification algorithm are also described in this chapter.

Chapter 3

The methodology and the design of the experiments are explained in this chapter.

Chapter 4

In this chapter, all findings of the experiments were identified based on the each research objectives mentioned in the Chapter 1. The discussion was begun with the GCMS analyses for validation of VOC released from bacteria. The purpose of this study is to confirm the results obtained from the e-nose analyses.

Secondly, the study involves the whole analysis, including the normality test, features extraction and classification evaluation in order to achieve the first and second objective of this study, which is to identify different bacteria species in three different media culture and early detection and classification causative bacteria on foot infected.

Finally, the rest of the analyses were focusing on study the performance of enose in providing accurate classification for *in-vitro* diagnosis of single and poly microbial infection were discussed in detailed.

Chapter 5

The conclusion of the experiment will be covered in this chapter together with the future works to enhance this research in related medical field.

CHAPTER 2

LITERATURE REVIEW

2.1 Diabetes Mellitus Disease

Diabetes mellitus is the lifetime disease which contributes the highest cause of death in some countries in the world (Beaglehole & Han, 2004; P. Wang, Tan, Xie, & Shen, 1997). Usually, it occurs when the pancreas (small organ that sits behind the stomach) produces very little insulin or does not efficiently produce insulin into the body (Al-Qazaz et. al., 2011). Insulin is a hormone made by the pancreas that allows body to turn blood glucose into a kind of energy to the cells. If the insulin hormone cannot be produced by the body, the sugar cannot pass from the blood into the cells to form energy (Pedersen & Cobelli, 2014). The classification of diabetes mellitus is summarized in Table 2.1.

Table 2.1: Classification of diabetes mellitus disease (adapted from Robert G. Frykberg, Thomas Zgonis, 2006)

Type of diabetes	Classification of diabetes
I	The pancreas produced little or no insulin (insulin deficiency).
II	The pancreas still produced insulin, but the body develops resistance to insulin.
Gestational	High blood glucose level during pregnancy

Type I diabetes known as insulin-dependent diabetes mellitus (IDDM) is an autoimmune process in which the body's immune system itself attacks and destroys the insulin in the pancreas from producing cells. When sugar cannot pass into the cells, it just keeps circulating and building in the blood and the body's cells literally starve to