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Ra   Average Arithmetic Surface Roughness 

σ
St

    Specific Strength  

σ
t 
    Ultimate Tensile Strength  

SS    Sum of Square  

f    feed rate in mm/min 

V    Spindle Speed in RPM 

ῆ    Total Mean of S/N Ratio 

ηj    Means S/N Ratio at Optimum Level 

K   Stress Concentration Factor  

 𝛽𝑖    Coefficient of Main Factors 

𝛽𝑖𝑖    Square or Interaction Coefficients 

δW    Virtual External Work 

δU   Virtual Strain Energy 

δQ   Virtual Surface Energy  

Dij   Bending Stiffness 
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Eksperimen dan Analisis Terhadap Penggerudian Gentian Hibrid Komposit Polimer 

 

 

ABSTRAK 

 

Pada masa kini, komposit hibrid telah menjadi semakin menarik dalam sektor penyelidikan 

dan pembangunan disebabkan mempunyai ciri-ciri mekanikal yang boleh difabrikasi 

berdasarkan spesifikasi yang dikehendaki. Kajian tentang pemprosesan, pembangunan dan 

pengujian komposit hibrid yang dibuat daripada matriks logam, sintetik atau bahan semula jadi 

telah diadakan. Namun begitu, beberapa masalah masih timbul dalam proses pembuatan, 

terutamanya dalam pemesinan seperti penggerudian bahan-bahan berlamina. Hakikatnya, 

gentian adalah bersifat anisotropic, kekurangan deformasi plastik dan kasar, merupakan 

cabaran yang besar dalam pemesinan komposit hibrid. Berdasarkan kajian sebelum ini, 

kerosakkan dalam penggerudian akan menyebabkan penolakan yang tinggi (60 %) dalam 

proses pemasangan. Oleh sebab itu, kajian penyelidikan ini melanjutkan pengetahuan asas 

dalam penggerudian gentian hibrid komposit (FRP) dengan kaedah eksperimen dan analitikal. 

Sebelum ujian penggerudian eksperimen, penilaian prestasi mekanikal hibrid FRP komposit 

telah dijalankan. Secara khususnya, kesan hibrid terhadap komposit karbon dan gentian kaca 

dalam matriks polimer epoxy telah dinilai dengan kaedah eksperimen. Kesimpulannya, sifat-

sifat fizikal dan mekanikal monolitik komposit telah dipertingkatkan 48 % dengan campuran 

karbon FRP dalam komposit kaca FRP. Di samping itu, analisis secara teori melalui Rule of 

Mixture menunjukkan bahawa komposit hibrid FRP mempunyai kesan positif dari segi 

tegangan dan lenturan. Walaupun teknologi fabrikasi bagi komposit hibrid FRP semakin maju 

dalam proses pengeluaran komponen hampir bentuk sempurna, akan tetapi, pemesinan 

sekundar masih diperlukan untuk mencapai ukuran yang ditetapkan. Oleh itu, parametrik yang 

optimum untuk mengurangkan kesan delamination dan kekasaran permukaan telah ditentukan 

dengan kaedah Taguchi dan analisis statistik. Keputusan eksperimen menunjukkan bahawa 

prestasi penggerudian lebih banyak dipengaruhi oleh suapan dan geometri mata gerudi yang 

direka khas (67 %), berbanding dengan kelajuan putaran mata gerudi (18 %). Perubahan dalam 

suapan disebabkan faktor peningkatan daya tujah semasa proses penggerudian. Oleh yang 

demikian, untuk mencapai penggerudian yang berkualiti tanpa menjejaskan prestasi mata 

gerudi dan kadar pengeluaran, parametrik penggerudian pada kelajuan putaran mata gerudi 

7500 RPM, 0.08 mm/rev suapan dan Step drill telah dicadangkan dalam kajian ini. Walaupun 

hasil kajian parametrik menunjukkan bahawa parametrik penggerudian yang diingini boleh 

mengurangkan delamination; perubahan dalam daya tujah diketahui memainkan peranan yang 

penting dalam mempengaruhi saiz delamination. Justeru, kajian seterusnya adalah untuk 

memahami mekanisme penggerudian yang menyebabkan kesan delamination melalui kaedah 

analisis. Tujuan utama model ini adalah untuk mengira daya tujah kritikal pada permulaan 

delamination semasa proses penggerudian. Hasil kajian analisis ini menunjukkan bahawa 

kerosakkan delamination boleh dielakkan jika daya tujahan dalam penggerudian adalah lebih 

rendah daripada nilai kritikal daya tujah, 47.64 N. Anggaran daya tujah kritikal didapati selari 

dengan daya tujah yang didapati dalam kajian ini. Oleh itu, model ini boleh menjadi penanda 

aras atau rujukan kepada industri untuk mengurangkan kerosakkan delamination dan 

meningkatkan prestasi komposit hibrid FRP yang digerudi dalam proses pemasangan.  
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Experimental and Analytical Study of Drilling Hybrid Fibre Reinforced Polymer 

Matrix Composite 

 

 

ABSTRACT 

 

Hybrid composites have become increasingly attractive in research and development activities 

in recent times due to the capabilities to tailor their mechanical performance or characteristics 

to specific needs. Current research and innovation in the field of hybrid composites include 

processing, development and testing of metal matrix hybrid composites as well as the synthetic 

and natural fibre hybrid composites. Nonetheless, a number of complications arise in the 

manufacturing processes, particularly in machining such as drilling, of these multiphase 

laminated materials. The fact is that machining of composites or hybrid composites presents a 

great challenge due to anisotropic nature of the material, lack of plastic deformation and 

abrasiveness of the fibre reinforcements. According to the previous statistic studies, 

unqualified holes leads to approximately 60 % part rejections during the final assembly process. 

Therefore, this research study pursues an experimental and analytical approaches to extend the 

fundamental knowledge in drilling hybrid fibre reinforced polymer (FRP) composites. Prior to 

the drilling tests, the evaluations of the mechanical performance of hybrid FRP composite have 

been attempted. Specifically, the hybrid effect of the plain woven carbon and E-glass fibres 

hybrid composites within an epoxy polymer matrix was experimentally evaluated. It was 

evident that the physical properties and mechanical strength of monolithic fibres composite 

were enhanced 48 % by hybridising carbon fibres into the glass FRP composites. In addition, 

theoretical analysis through the rule of mixture reveals that the hybrid FRP composites have 

exhibited a positive hybrid effect in term of tensile and flexural behaviors. Even though 

fabrication technology for the hybrid FRP composites has well advanced in the production of 

near-net shape components, the secondary machining process is vital for completing the post-

manufactured of these materials. Thus, the desired setting for minimising the delamination 

damage and surface roughness were determined using the Taguchi methodology and statistical 

analyses. The results reveal that these drilling responses were strongly influenced by the feed 

and the specially designed tool geometries (67 %) rather than the spindle rotational speed 

(below 18 %). Changes in the feed are likely to attribute to the increase of the thrust force and 

strain rate during the drilling process. Therefore, for achieving high-quality holes without 

compromising the tool life and production rate, the optimum parameters suggested were at the 

middle range spindle speed (7500 RPM ), low feed (0.08 mm/rev) and low point angle (Step 

drill). While results of the parametric study showed that the desired drilling parameters are 

feasible for minimization of delamination damage; the changing in the thrust force is known 

to play a critical role in influencing the size of delamination zone. Thus, further work on 

understanding the mechanism of drilling-induced delamination through analytical approach is 

inevitable. The main purpose of the model is to compute the critical thrust force at the onset of 

delamination during the drilling process. Results of this analytical study indicate that the 

delamination damage can be prevented or avoided if the applied thrust force is lower than the 

thrust force critical value, 47.64 N. A good agreement between the estimated critical thrust 

force and the measured thrust force was evident in this particular study. It is important to note 

that this model can be an attractive benchmark or reference for industrial practice in reducing 

delamination damage for better assembly performance of the drilled hybrid FRP composites.  
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