

School of Manufacturing Engineering UNIVERSITI MALAYSIA PERLIS

2016

DEDICATION

To My Lovely Parents and Sibling Tan Peng Teong, Father Chen Yoke Mooi, Mother Tan Chia Yong, Eldest Sister Tan Yan Ling, Younger Sister Tan Yong Sin, Brother Lim Wooi Eng, Fiancé

ACKNOWLEDGEMENTS

'The road is smooth or rough, always be grateful to the people who paved the way for us.' —

Master Cheng Yen.

This Ph.D journey has truly been the turning-point of my life, and it would not have been possible to do so without the guidance, support and inspiration from several people.

First of all, I would like to express deep gratitude and respect to my supervisor, Dr. Azwan Iskandar bin Azmi. It has indeed, been an honor to be his first Ph.D student. His helpful advice, enthusiastic guidance and persistent supervision have helped me to both, understand the research subject, as well as inspired me to become an independent researcher. Throughout the course of my doctoral study, he also demonstrated first-hand what a brilliant and hard-working scientist could accomplish. I appreciate all his contributions of time, patient guidance, and ideas that assisted me in completing my thesis and Ph.D study. I am also grateful to my co-supervisor, Dr. Noorhafiza binti Muhammad. Her sound knowledge on doctoral research and modeling have guided me to pass through the obstacles I faced in my Ph.D journey. Besides that, she also proved an excellent role-model for all of us, being a successful woman physicist and professor.

In addition, I wish to extend my gratitude to Mr. Leong Kean Wei and all the Technical Engineers (Mr. Mohd. Nazmi Mohammad Radzi, Mr. Suhelmi Wi @ Senawi, Mr. Mazlan Mohamad Husin and Mr. Mohd. Jasmin Shaari) within the School of Manufacturing for their invaluable assistance with the experimental works and fabrication processes. The useful opinions, discussions and motivation from the members of the Manufacturing postgraduate group, and all the friendly lecturers over the duration of this doctoral study are gratefully acknowledged.

On a personal note, I would like to take this opportunity to express profound gratitude from the depth of my heart to my family members, who provided their unflagging love and unconditional support throughout my academic life. Although it was hard for them to understand my research and difficulties, they were willing to support any decision I made, and without any complaint. I am indeed lucky to have had their constant encouragement to continue in this post-graduate study. They are the ones who inspired me to finish my Ph.D. I will continue loving them in my future as well. Thank you, Baba and Mani.

Finally, I would also like to acknowledge the financial support I received from the Universiti Malaysia Perlis (UniMAP) and Ministry of Higher Education Malaysia which uring of the steel where the s helped me concentrate in my studies and stay afloat during my study life.

Thank you

TABLE OF CONTENTS

PAGE	P	A	G	Е
------	---	---	---	---

THESIS DECLARATION	i
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	V
LIST OF FIGURES	X
LIST OF TABLES	xvi
LIST OF ABBREVIATIONS	xix
LIST OF SYMBOLS	xxi
ABSTRAK	xxiii
ABSTRACT	xxiv
CHAPTER 1: INTRODUCTION	
1.1 Background	1
1.2 Problem Statement	2
1.3 Research Objectives	3
1.4 Significance of Study	4
1.5 Thesis Organization	5

CHAPTER 2: LITERATURE REVIEW

2.1 Background Study	7
2.2 Hybrid Fibre-Reinforced Polymer (FRP) Composite	8

2.2.1 Type and Forms of Fibre Reinforcement	8
2.2.2 Polymer Matrix	14
2.2.2.1 Thermoplastic	15
2.2.2.2 Thermosetting	16
2.3 Fabrication Process of Hybrid or Monolithic FRP Composite Material	18
2.3.1 Hand Lay-Up Process	21
2.3.2 Resin Transfer Moulding	22
2.3.3 Vacuum Assisted Resin Transfer Moulding	23
2.4 Challenges in Machining of Hybrid FRP Composites	24
2.5 Machinability of FRP Composites	27
2.6 Review of the Experimental and Analytical Studies on Drilling of FRP Composites	29
2.6.1 Drilling-Induced Damage on FRP Composites	29
2.6.1.1 Effect of Thrust Force on Delamination (Analytical Study)	32
2.6.1.2 Effect of Process Parameter to the Thrust Force and Delamination (Experimental Study)	41
2.6.2 Tool Geometry and Material	50
2.7 Concluding Remarks	57
CHAPTER 3: RESEARCH APPROACH	
3.1 Introduction	58
3.2 Phase 1: Characterization of Hybrid and Monolithic FRP Composite Performance	60
3.2.1 Material Selection	60
3.2.2 Preparation of Hybrid Composites	61
3.2.3 Physical Properties of FRP Composites	64

3.2.3.1 Density and Thickness	64
3.2.3.2 Fibre Volume Fraction	66
3.2.4 Mechanical Properties	67
3.2.4.1 Tensile Test	67
3.2.4.2 Flexural Test	70
3.3 Phase 2: Machinability Performance for Hybrid FRP Composites	71
3.3.1 Design of Experiment	72
3.3.2 Drilling Experiment Setup	76
3.3.3 Data acquisition Equipment and Procedure	77
3.3.3.1 Delamination	78
3.3.3.2 Surface Roughness	78
3.3.4 Residual Tensile Strength after Drilling	79
3.4 Concluding Remarks	80
CHAPTER 4: EVALUATION OF MECHANICAL PERFORMANCE OF THE	
HYBRID COMPOSITES	
4.1 Introduction	81
4.2 Physical Properties for Hybrid FRP Composite	82
4.2.1 Density and Thickness	82
4.2.2 Fibres Volume Fraction Test	85
4.3 Performance under Tensile Loading	87
4.4 Performance under Flexural Loading	93
4.5 Prediction of Mechanical Performance for Hybrid Composite by Rule of Mixture	98
4.6 Comparison Specific Features of Engineering Materials	101
4.7 Concluding Remarks	105

CHAPTER 5: PARAMETRIC STUDY OF DRILLING CHARACTERISTICS OF HYBRID FRP COMPOSITES

5.1 Introduction	106
5.2 Delamination Damage	107
5.2.1 Discussion on the Effect of Control Factors on Delamination	116
5.3 Surface Roughness	126
5.3.1 Discussion on the Effect of Control Factors on Surface Roughness (Ra)	131
5.4 A Validation Test to Obtain a Desirable Setting for Drilling Responses	135
5.5 Mechanical Performance for Notched Hybrid FRP Composite under Tensile Test	139
5.6 Concluding Remarks	145
CHAPTER 6: EMPIRICAL AND ANALYTICAL MODELS FOR DRILLING PERFORMANCE OF HYBRID FRP COMPOSITES	
6.1 Empirical Model for Drilling Responses	147
6.1.1 Model Validation	156
6.2 Fundamental Analysis of Drilling-Induced Delamination	161
6.2.1 Application of Balance Energy Approach towards Mechanism of Delamination	164
$6.2.1.1$ The Virtual External Work of the Concentrated Force, $\delta W = F$ Dw	166
6.2.1.2 The Virtual Surface Energy Released from The Crack Surface, δQ	170
6.2.1.3 The Virtual Strain Energy, δU	170
6.3 Estimation of Critical Thrust Force for Hybrid FRP Composites	175

6.4 Concluding Remarks 186

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORKS

7.1 Conclusion	187
7.1.1 Mechanical Performance of Hybrid FRP Composites	187
7.1.2 Experimental Study of Drilling Characteristics of Hybrid FRP Composite	188
7.1.3 Empirical and Analytical Models for Drilling Performance of Hybrid FRP Composite	189
7.2 Recommendation for Future Works	191
REFERENCES	192
APPENDIES	206
LIST OF CONTRIBUTIONS AND PUBLICATIONS	217
othis item is protected by c	

LIST OF FIGURES

NO.		PAGE
2.1	Stress-strain relationships for hybrid composite material and its constituents (Harris, 1999)	9
2.2	Stress vs position graph, when fibre length l (a) is equal to critical length lc (b) is greater than the critical length and (c) is less than the critical length for a fibre-reinforced composite (Vas et al, 2009)	9
2.3	Schematic illustrations different forms of fibre reinforcements, (a) Unidirectional fibre (\pm 45 %), (b) Twist woven continuous fibre, (c) Chopped fibre.	10
2.4	Polymer chains (a) Linear, (b) Branched, (c) Cross-linked (Campbell, 2003)	16
2.5	P Polymerization of thermoset, (a) Epoxy and hardener prior to reaction, (b) Initial of polymerization with increasing the molecule size, (c) Full cured with cross-linked bonding. (Prime R.B, 1981)	18
2.6	Four types of FRP structures: (a) Unidirectional composites, (b) Multidirectional composites, (c) 2D woven FRP, and (d) 3D orthogonal woven FRP (Wen et al., 2011)	19
2.7	Hand lay-up process (Yuhazri & Phongsakorn, 2010)	21
2.8	RTM process (Bhat et al, 2009)	22
2.9	Vacuum assisted resin transfer moulding process (A.I. Azmi, 2013)	24
2.10	General machining system (Toenshoff, 2014)	27
2.11	Typical material damage mechanisms in FRP composites as a result of machining forces (a) In-plane damage and (b) Delamination (Enemuoh et al., 2001)	28
2.12	Typical defects at the cross section of circular hole of carbon/epoxy composite (Saleem et al., 2013)	28
2.13	Drilling defects on drilled FRP composite (Konig & Graa, 1989)	30
2.14	Classification of delamination during drilling of FRP composites (Hocheng & Tsao, 2005)	31

2.15	Circular plate model for delamination analysis (Hocheng & Dharan, 1990)	33
2.16	Crack deformation modes, (a) Mode I, (b) Mode II and (c) Mode III. (G.R.	34
2.17	Elliptical shape of delamination area (Jain & Yang, 1991)	36
2.18	Drill/ plate contact with (a) Uniform distributed force and (b) Concentration force(Lachaud et al., 2001)	37
2.19	The delamination model for FRP/metallic strip(Kim & Lee, 2005)	37
2.20	Drilling direction of metal-FRP stacks and FRP-metal stacks (Zhenchao Qi et al., 2014)	38
2.21	Summaries effect of input variables on delamination and thrust force	46
2.22	Schematic diagrams illustrates (a-c) woven braid that made by the interlacing of warp and fill fibre and (d) chopped composites with random angles (Khashaba, 2004)	48
2.23	Twist drill nomenclature (Astakhov, 2010)	50
2.24	Schematic of special drill bit geometries used for drilling of fibre reinforced composites: (a) standard twist drill; (b) step drill; (c) brand point drill; (d)straight –flute drill; (e) slot drill; (f) core drill. (Hocheng & Tsao, 2006)	53
2.25	Schematics of delamination mechanism and critical thrust force for various drill bits (Liu, Tang, & Cong, 2012)	54
2.26	Classification of various cutting tool materials (Klocke & Kuchle, 2011)	55
2.27	Cause- Effect diagram of drilling process	57
3.1	Flow chart of the study	59
3.2	(a) Plain woven carbon fibre and (b) Plain E-glass fibre	61
3.3	Stacking sequence of hybrid laminate, [CGCG]	62
3.4	VARTM set up, (a) ultrasonic leak detector, (b) electronic pressure gauge device, (c) resin infusion process	63
3.5	Measurement thickness by Vernier caliper	64
3.6	Densimeter to measure the density of FRP composite	65
3.7	Product from waterjet, (a) Before and after cutting, (b) Sample according to ASTM	66

3.8	Electronic balance meter	67
3.9	Nabertherm electrical furnace	67
3.10	Set up Universal Testing Machine and sample size for tensile test	68
3.11	Scanning Electron Microscopy	69
3.12	Auto-Fine coater machine	69
3.13	Set up Universal Testing Machine for flexural test	70
3.14	Set up specimen for flexural test	71
3.15	Type of tool Geometry, (a) Twist drill, (b) Step drill, (c) Brad & Spur used in the drilling experiments	73
3.16	Computer Numerical Control machine for drilling process	76
3.17	(a) Setup specimen for thrust force measurement on dynamometer, (b) Kistler amplifier and computer software	77
3.18	Delamination factor scheme	78
3.19	Surface roughness measurement setup	79
3.20	Calibration sample for Tokyo Seimitsu Handysurf (E-35A) instrument	79
3.21	Specimen for residual tensile strength	80
4.1	Comparison of the density of metal and FRP composite	84
4.2	Fibre volume fraction test (a) Sample before burning (b) After 2 hours burning (c) Completely burnt	85
4.3	Comparison of fibre volume fraction from different fabrication methods	86
4.4	Specimen failure at gripping parts in tensile test.	88
4.5	Failure mode for (a) Carbon FRP [C], (b) Glass FRP [G], (c) Hybrid FRP [CGCG] under the tensile test	90
4.6	Tensile performance for hybrid and monolithic FRP composite	90
4.7	Micro-cracking for hybrid [CGCG] in tensile testing process	91
4.8	Comparison tensile properties for the VARTM and wet hand-up method with different lamination sequences	92

4.9	Cross-section for the [CGCG] laminated composite by SEM and EDS	92
4.10	Flexural stress- strain curve for hybrid FRP and monolithic FRP composite	95
4.11	Three point bending test for hybrid FRP [CGCG] composite, (a) Initial load (b) First ply fail (c) Sample breaking and (d) Development of the micro- cracking when loading is applied to the specimen	96
4.12	Comparison of flexural properties between VARTM and the wet hand-up method with different lamination sequences	97
4.13	Hybridization effect on tensile strength	100
4.14	Hybridization effect on flexural strength	100
4.15	Comparison between the specific strength of engineering materials	103
4.16	Comparison cost and specific strength for different engineering materials	104
5.1	Trend of peel-up delamination factor for L27 experiments	108
5.2	Trend of push-out delamination factor for L27 experiments	108
5.3	Delamination diameters for peel-up and push-out at 0.24 mm/rev and 5000 RPM	110
5.4	Response table for peel-up delamination	113
5.5	Response table for push-out delamination	113
5.6	Peel-up and push-out mechanism in drilling process (Singh et al., 2013)	116
5.7	Effect of Twist drill at different feed rate and spindle speed on peel-up delamination	117
5.8	Effect of Step drill at various feed rate and spindle speed on peel-up delamination	117
5.9	Effect of Brad & Spur drill at various feed rate and spindle speed on peel- up delamination	118
5.10	Effect of different feed rate and tool geometry on push-out delamination at 5000 RPM	119
5.11	Effect of different feed rate and tool geometry on push-out delamination at 7500 RPM	119
5.12	Effect of different feed rate and tool geometry on push-out delamination at 10000 RPM	120

5.13	Important parameters in drilling process	120
5.14	Delamination damage at different feed rates, (a) 0.08 mm/rev (b) 0.24 mm/rev	121
5.15	Orthogonal cutting chip formation mechanism for (a) 0° or 180° and (b) 90° or 270 of FRP composite (Puw & Hocheng, 1993; Sheikh-ahmad, 2009)	122
5.16	Cutting operation in a Twist drill (Rahme, et al., 2015)	123
5.17	Cutting mechanism for Step drill in drilling process	124
5.18	Cutting mechanism for Brad & Spur drill in drilling process	125
5.19	Delamination damage of Brad & Spur drill at different spindle speeds (a) 5000 RPM, (b) 7500 RPM and (c) 10000 RPM	125
5.20	Location for measurement surface roughness	126
5.21	Hole surface roughness from the L27 DOE experiments	128
5.22	Response table for surface roughness	129
5.23	Scanning electron micrographs of the drilled surface, (a) Fibres pull-out, (b) Matrix burn-out	133
5.24	Drilling defect for hybrid FRP composite at different tool geometry, (a) Twist drill, (b) Step drill and (c) Brad & Spur drill and the defects are taken by SEM as pointed in red circle	134
5.25	SEM for machining defects at (a) 0.08mm/rev, 7500 RPM and Step drill, (b) 0.24mm/rev, 10000 RPM and Brad & Spur drill	134
5.26	Comparison Validation, Experimental, and prediction results at desired setting for drilling hybrid FRP composites	137
5.27	SEM and EDS for machining defects on hole surface at 7500 RPM, 0.08 mm/rev and Step drill in the drilling process	137
5.28	Comparison tool performance in peel-up delamination at 7500 RPM based on different feed rate	138
5.29	Schematic specimens for un-notched and notched hybrid FRP composite	140
5.30	Failure defects for the notched hybrid FRP composites under tensile test	141
5.31	Residual tensile strength and strain for un-notched and notched hybrid FRP composite	142

5.32	Distribution stress in notched hybrid FRP composite	142
5.33	Residual tensile strength at different delamination factors	143
5.34	Residual tensile strength to surface roughness at the hole surface	144
6.1	Illustration of parameters of regression model	149
6.2	Responses contours for (a) Peel-up delamination, (b) Push-out delamination, (c) Surface roughness	155
6.3	Comparison peel-up delamination between experimental and empirical model	157
6.4	Comparison push-out delamination between experimental and empirical model	158
6.5	Comparison surface roughness between experimental and full quadratic model	159
6.6	SEM for machining defect at 0.24mm/rev, 10000 RPM and Twist drill	160
6.7	(a) Delamination study filmed with high-frequency speed camera by (Rahme et al., 2015), (b) Schematics of the delamination analysis (Twist drill)	162
6.8	Schematic depiction of delamination when drilling for hybrid FRP composite	165
6.9	Symmetrical bending of circular plate	166
6.10	Equilibrium element for the diametral section in xz and xy plate	168
6.11	Thrust force profile for the (a) Step drill, (b) Twist drill and (c) Brad & Spur drill at 0.08mm/rev feed rate and 5000 RPM spindle speed condition	179
6.12	Thrust forces in drilling process at different parameters settings	180
6.13	Relationship between thrust force and feed rate of various tool geometry	180
6.14	Relationship between delamination and thrust force for various drill bits, (a) Twist drill, (b) Step drill, and (c) Brad & Spur drill	182
6.15	Comparison critical thrust force from different models toward drilling thrust force and delamination factor	185

LIST OF TABLES

NO.		PAGE
2.1	Characteristics for different type of FRP	11
2.2	Chemical composition and basic properties of glass fibre in wt% (Sathishkumar et al., 2014)	12
2.3	General properties of cured epoxy resin (Mallick, 2007; Sandjay, 2001)	17
2.4	Mechanical properties of fibre reinforcements and resin (Azrin Hani et al., 2015; Jawaid & Abdul Khalil, 2011; Suppakul & Bandyopadhyay, 2002)	25
2.5	Analytical model for drilling process of FRP composites	40
2.6	Summaries of reported literature on drilling of FRP composites	43
3.1	Specifications of fibre reinforcements	61
3.2	Thickness for different type of FRP composite	64
3.3	Experimental parameters and their level	72
3.4	Taguchi L27 orthogonal array for drilling process	73
4.1	Physical properties of different batch of hybrid [CGCG] and monolithic composites	82
4.2	Tensile properties of Different FRP composites	89
4.3	Flexural performance for different FRP composite	94
4.4	Comparison of theoretical and experimental results of hybrid [CGCG] composite.	98
5.1	Peel-up delamination factors in Taguchi L27 array	107
5.2	Push-out delamination factors in Taguchi L27 array	109
5.3	Preferred settings for lower delamination damage	111
5.4	Response table for peel-up based on S/N ratio	112

5.5	Response table for push-out based on S/N ratio	113
5.6	ANOVA results for peel-up delamination	115
5.7	ANOVA results for push-out delamination	115
5.8	Design matrix and surface roughness for drilled hybrid FRP composite	127
5.9	Response table for surface roughness based on S/N ratio	129
5.10	ANOVA results of surface roughness	130
5.11	Summaries of the desired setting for each drilling responses according to 'The lower, the better'	135
5.12	Results of confirmation experiments and predicted values of drilling responses	136
5.13	Tensile results for notched FRP composite at different drilling parameters	140
5.14	Residual tensile strength for glass FRP and hybrid FRP composite	144
6.1	ANOVA table for responses function of peel-up delamination	149
6.2	ANOVA table for responses function of push-out delamination	150
6.3	ANOVA table for responses function of surface roughness	150
6.4	Regression analysis or ANOVA output of refinement equation for peel-up delamination	153
6.5	Regression analysis for refinement equation of peel-up delamination	153
6.6	Validation tests parameters	156
6.7	Validation outputs for peel-up delamination	157
6.8	Validation outputs for push-out delamination	158
6.9	Validation outputs for surface roughness	158
6.10	Material properties for monolithic and hybrid FRP composite	175
6.11	Bending stiffness and critical thrust force value for hybrid FRP composite of bottom 5 plies	177
6.12	Thrust force and push-out delamination factor for drilling hybrid FRP composites	178

othis item is protected by original copyright

LIST OF ABBREVIATIONS

FRP	Fibre-Reinforced Polymer
VARTM	Vacuum Assisted Resin Transfer Molding
ROM	Rule of Mixture
ANOVA	Analysis of Variance
ROHM	Rule of Hybrid Mixture
RSM	Responses Surface Methodology
PAN	Poly-Acrylo-Nitrile
РМС	Polymer Matrix Composites
ММС	Metal Matrix Composites
СМС	Ceramic Matrix Composites
PEEK	Poly Ether-Ether Ketone
DGEBA	Diglycidyl Ether of Bisphenol A
RTM	Resin Transfer Moulding
WC	Tungsten Carbide
LEFM	Linear Elastic Fracture Mechanics
PCD	Polycrystalline Diamond
HSS	High-Speed Steel

Computer Numerical Control CNC

Titanium Carbide TiC

American Society for Testing and Materials ASTM

Scanning Electron Microscopy SEM

- Degree Of Freedom DOF
- MRR

MAPE

othis tern is protected by original copyright

LIST OF SYMBOLS

D		Drill Bit Diameter
Х		Tool Displacement
a		Crack Size
h		Uncut Thickness
Н		Workpiece Thickness
G		Critical Energy Release Rate
k _p		Peeling Factor
E		Young's Modulus
V		Poisson Ratio
ξ		Proportional Coefficient of Resultant Force to Drilling Thrust
		Force
M_{i}		Initial Mass of Specimen
M_{f}		Final Mass of Specimen
ρ_c		Density of Specimen
$\rho_{\rm f}$	This	Density of Fibre Reinforcement
σ_h	\bigcirc	Tensile/ Flexural Strength for Hybrid Composites
σ_{C}		Tensile/ Flexural Strength for Carbon Fibre Composites
σ_G		Tensile/Flexural Strength of Glass Fibre Composite
V		Volume Fraction.
λ_{c}		Hybrid Effect
F _x		Feed Force
Fy		Cutting Force

$\mathbf{F}_{\mathbf{z}}$	Thrust Force
S/N	Signal-to-Noise Ratio
F _d	Delamination Factor
D _{max}	Maximum Diameter of Damaged Hole
Do	Hole Actual Diameter
Ra	Average Arithmetic Surface Roughness
$\sigma_{_{St}}$	Specific Strength
σ_{t}	Ultimate Tensile Strength
SS	Sum of Square
f	feed rate in mm/min
V	Spindle Speed in RPM
ῆ	Total Mean of S/N Ratio
η_j	Means S/N Ratio at Optimum Level
Κ	Stress Concentration Factor
β_i	Coefficient of Main Factors
β_{ii}	Square or Interaction Coefficients
δW	Virtual External Work
δU	Virtual Strain Energy
δQ	Virtual Surface Energy
\mathbf{D}_{ij}	Bending Stiffness

Eksperimen dan Analisis Terhadap Penggerudian Gentian Hibrid Komposit Polimer

ABSTRAK

Pada masa kini, komposit hibrid telah menjadi semakin menarik dalam sektor penyelidikan dan pembangunan disebabkan mempunyai ciri-ciri mekanikal yang boleh difabrikasi berdasarkan spesifikasi yang dikehendaki. Kajian tentang pemprosesan, pembangunan dan pengujian komposit hibrid yang dibuat daripada matriks logam, sintetik atau bahan semula jadi telah diadakan. Namun begitu, beberapa masalah masih timbul dalam proses pembuatan, terutamanya dalam pemesinan seperti penggerudian bahan-bahan berlamina. Hakikatnya, gentian adalah bersifat anisotropic, kekurangan deformasi plastik dan kasar, merupakan cabaran yang besar dalam pemesinan komposit hibrid. Berdasarkan kajian sebelum ini, kerosakkan dalam penggerudian akan menyebabkan penolakan yang tinggi (60 %) dalam proses pemasangan. Oleh sebab itu, kajian penyelidikan ini melanjutkan pengetahuan asas dalam penggerudian gentian hibrid komposit (FRP) dengan kaedah eksperimen dan analitikal. Sebelum ujian penggerudian eksperimen, penilaian prestasi mekanikal hibrid FRP komposit telah dijalankan. Secara khususnya, kesan hibrid terhadap komposit karbon dan gentian kaca dalam matriks polimer epoxy telah dinilai dengan kaedah eksperimen. Kesimpulannya, sifatsifat fizikal dan mekanikal monolitik komposit telah dipertingkatkan 48 % dengan campuran karbon FRP dalam komposit kaca FRP. Di samping itu, analisis secara teori melalui Rule of Mixture menunjukkan bahawa komposit hibrid FRP mempunyai kesan positif dari segi tegangan dan lenturan. Walaupun teknologi fabrikasi bagi komposit hibrid FRP semakin maju dalam proses pengeluaran komponen hampir bentuk sempurna, akan tetapi, pemesinan sekundar masih diperlukan untuk mencapai ukuran yang ditetapkan. Oleh itu, parametrik yang optimum untuk mengurangkan kesan delamination dan kekasaran permukaan telah ditentukan dengan kaedah Taguchi dan analisis statistik. Keputusan eksperimen menunjukkan bahawa prestasi penggerudian lebih banyak dipengaruhi oleh suapan dan geometri mata gerudi yang direka khas (67 %), berbanding dengan kelajuan putaran mata gerudi (18 %). Perubahan dalam suapan disebabkan faktor peningkatan daya tujah semasa proses penggerudian. Oleh yang demikian, untuk mencapai penggerudian yang berkualiti tanpa menjejaskan prestasi mata gerudi dan kadar pengeluaran, parametrik penggerudian pada kelajuan putaran mata gerudi 7500 RPM, 0.08 mm/rev suapan dan Step drill telah dicadangkan dalam kajian ini. Walaupun hasil kajian parametrik menunjukkan bahawa parametrik penggerudian yang diingini boleh mengurangkan *delamination*; perubahan dalam daya tujah diketahui memainkan peranan yang penting dalam mempengaruhi saiz *delamination*. Justeru, kajian seterusnya adalah untuk memahami mekanisme penggerudian yang menyebabkan kesan delamination melalui kaedah analisis. Tujuan utama model ini adalah untuk mengira daya tujah kritikal pada permulaan delamination semasa proses penggerudian. Hasil kajian analisis ini menunjukkan bahawa kerosakkan delamination boleh dielakkan jika daya tujahan dalam penggerudian adalah lebih rendah daripada nilai kritikal daya tujah, 47.64 N. Anggaran daya tujah kritikal didapati selari dengan daya tujah yang didapati dalam kajian ini. Oleh itu, model ini boleh menjadi penanda aras atau rujukan kepada industri untuk mengurangkan kerosakkan delamination dan meningkatkan prestasi komposit hibrid FRP yang digerudi dalam proses pemasangan.

Experimental and Analytical Study of Drilling Hybrid Fibre Reinforced Polymer Matrix Composite

ABSTRACT

Hybrid composites have become increasingly attractive in research and development activities in recent times due to the capabilities to tailor their mechanical performance or characteristics to specific needs. Current research and innovation in the field of hybrid composites include processing, development and testing of metal matrix hybrid composites as well as the synthetic and natural fibre hybrid composites. Nonetheless, a number of complications arise in the manufacturing processes, particularly in machining such as drilling, of these multiphase laminated materials. The fact is that machining of composites or hybrid composites presents a great challenge due to anisotropic nature of the material, lack of plastic deformation and abrasiveness of the fibre reinforcements. According to the previous statistic studies, unqualified holes leads to approximately 60 % part rejections during the final assembly process. Therefore, this research study pursues an experimental and analytical approaches to extend the fundamental knowledge in drilling hybrid fibre reinforced polymer (FRP) composites. Prior to the drilling tests, the evaluations of the mechanical performance of hybrid FRP composite have been attempted. Specifically, the hybrid effect of the plain woven carbon and E-glass fibres hybrid composites within an epoxy polymer matrix was experimentally evaluated. It was evident that the physical properties and mechanical strength of monolithic fibres composite were enhanced 48 % by hybridising carbon fibres into the glass FRP composites. In addition, theoretical analysis through the rule of mixture reveals that the hybrid FRP composites have exhibited a positive hybrid effect in term of tensile and flexural behaviors. Even though fabrication technology for the hybrid FRP composites has well advanced in the production of near-net shape components, the secondary machining process is vital for completing the postmanufactured of these materials. Thus, the desired setting for minimising the delamination damage and surface roughness were determined using the Taguchi methodology and statistical analyses. The results reveal that these drilling responses were strongly influenced by the feed and the specially designed tool geometries (67 %) rather than the spindle rotational speed (below 18%). Changes in the feed are likely to attribute to the increase of the thrust force and strain rate during the drilling process. Therefore, for achieving high-quality holes without compromising the tool life and production rate, the optimum parameters suggested were at the middle range spindle speed (7500 RPM), low feed (0.08 mm/rev) and low point angle (Step drill). While results of the parametric study showed that the desired drilling parameters are feasible for minimization of delamination damage; the changing in the thrust force is known to play a critical role in influencing the size of delamination zone. Thus, further work on understanding the mechanism of drilling-induced delamination through analytical approach is inevitable. The main purpose of the model is to compute the critical thrust force at the onset of delamination during the drilling process. Results of this analytical study indicate that the delamination damage can be prevented or avoided if the applied thrust force is lower than the thrust force critical value, 47.64 N. A good agreement between the estimated critical thrust force and the measured thrust force was evident in this particular study. It is important to note that this model can be an attractive benchmark or reference for industrial practice in reducing delamination damage for better assembly performance of the drilled hybrid FRP composites.