U MAP

DESIGN OF 0.5 HP INDUCTION MOTOR ROTOR BARS WITH 0.35 MM AND 0.50 MM THICKNESS OF STEEL SHEETS FOR ROTOR FABRICATION

by

YANAWATI BINTI YAHYA

(1340911079)

A thesis submitted
In fulfilment of the requirement for the degree of Doctor of Philosophy (Electrical Systems Engineering)

School of Electrical Systems Engineering UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS

THESIS DECLARATION

DECLARATION OF THESIS

Author's full name: YANAWATI BINTI YAHYA
Date of birth : 8 JULY 1979
Title : Design of 0.5 Hp Induction Motor Rotor Bars with 0.35 mm and 0.50 mm Thickness of Steel Sheets for Rotor Fabrication.

Academic Session : 2013-2016
I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as:

\{Contains confidential information under the Official Secret Act 1972\}

\{Contains restricted information as specified by the organization where research was done\}

I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)

I, the author, give permission to the UniMAP to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during a period of years, if so requested above).

Certified by:

SIGNATURE
Yanawati Binti Yahya
IC. NO: 790708-13-5090
Date:

SIGNATURE OF SUPERVISOR
Dr. Ir. Dina Maizana

[^0]
ACKNOWLEDGEMENT

Alhamdulillah, thankful to Allah for giving me strength and patience to complete my research and this research project would not have possible without the support of many people. Firstly, I wish to express my gratitude to my supervisor, Dr. Ir. Dina Maizana and my co-supervisor Dr. Muhammad Irwanto Misrun who was abundantly helpful and offered invaluable assistance, support and guidance. Deepest gratitude also to the members of the proofreading committee, Dr. Nurul Izza Binti Mohd Noor and Pn. Nor Ashbahani Binti Mohamad Kajaan, without whose knowledge and assistance this study would not have been successful

Special thanks to all my graduate friends, especially machine group members and technician team for sharing the literature and invaluable assistance. Not forgetting to my best friends who always been there. I would also like to conyey thanks to the Ministry and School of Electrical Systems Engineering for providing the financial means and laboratory facilities.

Last but not least, my outmost gratitude and apologies I convey to my family for they have sacrificed their life and happiness in enduring many months of separation in my absence. I thank them again for being the pillar of strength and a constant source of encouragement in my quest to pursue mýpeculiar endeavors'. For all those whom I may not mention here I apologies and thank everyone who has been a part of my success.

TABLE OF CONTENTS

PAGE
THESIS DECLARATION i
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iii
LIST OF TABLES viii
LIST OF FIGURES xi
LIST ABBREVIATIONS xvi
LIST OF SYMBOLS xvii
ABSTRAK xviii
ABSTRACT xix
CHAPTER 1 INTRODUCTION
1.1 Background of Rotating Electrical Machine 1
1.2 The Aim and Objectives 5
1.3 The Scope of Project 5
1.4 The Problem Statement 6
1.5 The Thesis Synopsis 7
CHAPTER 2 LITERATURE REVIEW
2.1 The Application of Squirrel Cage Induction Motor in Industry 9
2.2 The Operation System of Squirrel Cage Induction Motor 13
2.2.1 The Starting Control Method 13
2.2.2 The Speed Control Method 14
2.2.3 The Torque Control Method 15
2.3 The Introduction of 3 Phase Squirrel Cage Induction Motor 16
2.3.1 The Basic Operation 16
2.3.2 The Structure 21
2.4 The Construction of Three Phase Squirrel Cage Induction Motor 23
2.5 The Design of Induction Motor for Stator Part 25
2.5.1 The Construction of Induction Motor for Stator Part 25
2.5.2 The Induction Motor Magnetic Properties for Stator Part 26
2.5.3 The Induction Motor Manufacturer Type, Loss and Specification for Stator Frame 28
2.6 The Design of Induction Motor for Rotor Part 30
2.6.1 The Construction of Induction Motor for Rotor Part 30
2.6.2 The Material for Rotor Frame 31
2.6.3 The Rotor Bars Design for Induction Motor 36
2.6.4 The Number of Rotor Bars Slot for Squirrel Cage Induction Motor. 39
2.6.5 The Bars Material for Squirrel Cage Rotor of Induction Motor 40
2.7 A Classify of NEMA Design for Squirrel Cage Induction Motors Rotor. 43
2.8 The Characteristics of Squirrel Cage Rotor for Induetion Motor 44
2.9 The Introduction of Non-Oriented Electrical Steel Sheet 46
2.9.1 The Manufacturing of Non-Oriented Electrical Steel Sheet 48
2.9.2 The Characteristic in the Efficiency Improvement of Magnetic Material 50
2.9.3 The Properties of Material 52
2.10 The Squirrel Cage Induction Motor Performances 55
2.10.1 The Relationship among Efficiency, Core Losses and Thickness of Steel Sheet 57
2.10.2 The Relationship between Stator and Rotor Core Frame Material Flux Density and Thickness of Steel Sheet 59
2.10.3 The Relationship between Torque and Thickness Lamination of Steel Sheet 61
2.11 The Economical and Energy Saving Aspect on AC Induction Motor 63
CHAPTER 3 METHODOLOGY
3.1 Introduction 66
3.2 The MotorSolve IM Software 69
3.2.1 The Specify of Model's General Characteristic 70
3.2.2 The Specify of Rotor Characteristic's 72
3.2.3 The Specify of Stator Characteristic's 73
3.2.4 The Specify of coil winding characteristic's 74
3.2.5 The Generate Results 75
3.3 The Opera 2D Software 76
3.3.1 The Theoretical Calculations for Stator and Rotor of Induction Motor Design 78
3.3.2 The AutoCAD Drawing for Stator and Rotor of Induction Motor Design 79
3.3.3 Opera 2D Software for Stator and Rotor of Induction Motor Design 79
3.4 The MATLAB Software 82
3.5 The Experimental On Test Performance for Rotor Fabrication 85
3.5.1 The Measurement on Induced Voltage and Nominal Loss by using the Single Sheet Tester (SST) 85
3.5.2 The Measurement of Power Loss by using the Epstein Test 87
3.5.3 The Experimental of No-Load Test for Rotor Fabrication 89
3.5.4 The Separating of No-Load Losses 92
3.5.5 The Experimental of Blocked-Rotor Test (Locked-Rotor) for Rotor Fabrication 93
3.5.6 The Experimental of DC Rèsistance Test (DC Test) for Rotor Fabrication 95
CHAPTER 4 RESULT AND DISCUSSION
4.1 Introduction 98
4.2 The Comparison between Different Thickness Rotor Frame Lamination ($0.35 \mathrm{~mm} \& 0.50 \mathrm{~mm}$) Using MotorSolve (IM) Software 99
4.2.1 The Performance Table on Nameplate and Equivalent Circuit 99
4.2.2 The Performance Charts 100
4.2.3 The Induction Motor Efficiency 101
4.2.4 The Induction Motor Losses 103
4.2.5 The Instantaneous Field (Flux Density) 104
4.2.6 The Eddy Current Loss 106
4.3 The Comparison of Different Thickness Rotor Frame Lamination (0.35 $\mathrm{mm} \& 0.50 \mathrm{~mm}$) Using OPERA 2D Software. 109
4.3.1 Flux Distribution 109
4.3.2 The Magnetic Flux Density (Bmod) 110
4.3.3 The Steady-state AC Analysis 112
4.3.4 The Induction Motor Efficiency 113
4.3.5 The Induction Motor Losses 114
4.3.6 The Induction Motor Torque 115
4.4 The Comparison of Different Thickness Rotor Frame Lamination (0.35 $\mathrm{mm} \& 0.50 \mathrm{~mm}$) Using MATLAB 116
4.4.1 The Equivalent Circuit Parameter at Rated Conditions 117
4.4.2 Induction Motor Performances Curves Analysis 118
4.4.3 The Induction Motor Efficiency 119
4.4.4 The Total Losses 120
4.4.5 The Induction Motor Torque 121
4.4.6 The Flux Density 122
4.5 The Power Loss 123
4.5.1 The Measurement of Power Loss for Non Oriented Electrical Steel Sheet Using Epstein Test 123
4.5.2 The Measurement on Induced Voltage and Nominal Loss by using the Single Sheet Tester (SST) 133
4.6 The Laboratory Experiments 137
4.6.1 The No Load Test Data Analysis 137
4.6.2 Separating between Friction and Windage Losses 138
4.6.3 The DC Resistance Tèst D ata Analysis 140
4.6.4 The Blocked Rotor or Locked Rotor Test Data Analysis 141
4.6.5 The Comparison of Losses for Both Thickness Lamination Rotor Frame 143
4.7 Analyze on 0.5 Hp Three Phase Squirrel Cage Induction Motor Rotor Frame for Both Thickness Lamination 145
4.7.1 . The Energy Conversation 0.5 Hp Three Phase Squirrel Cage Induction Motor 145
4.7.2 The Flux Transfer Mechanism on the Rotor Core Lamination 150
4.7.3 The Localised of Eddy Current Loss at the Rotor Core Lamination 157
4.8 The Economical and Energy Saving Aspect Based on Experiments Data Analysis 161
4.9 The Performance of 0.5 Hp Three Phase Squirrel Cage Induction Motor 164
4.10 The Future Recommendation 166

CHAPTER 5 CONCLUSION

5.1 Conclusion 167
REFERENCES 172
APPENDIX A 178
APPENDIX B 180
APPENDIX C 197
APPENDIX D 205
APPENDIX E 209
APPENDIX F 213
APPENDIX G 217
APPENDIX H 219
LIST OF PUBLICATIONS 220
LIST OF AWARDS 221

LIST OF TABLES

NO.
PAGE
2.1 The technical data for 4 Pole 0.5 Hp Three Phase Squirrel Cage Induction Motor at 50 Hz 24
2.2 The Various Type of Rotor Bars Slot with Descriptions 36
2.3 The Design of Rotor Bars Slot with Descriptions 37
2.4 The Specific Properties of Copper and Aluminium Material for Rotor Bars Slot 42
2.5 NEMA Design for Classification and Performance Characteristics 43
2.6 Selection of electrical steel grades produced by EuropeanElectrical Steels - typical properties 54
3.1 The Value of Parameters in Specifying the Môdel's General Characteristic for 0.5 Hp 3 Phase Squirrel Cage Induction Motor 71
3.2 The Value of Parameters in Specifying the Rotor Characteristic for 0.5 Hp 3 Phase Squirrel Cage Induction Motor 72
3.3 The Value of Parameters in Specifying the Stator Characteristic for 0.5 Hp 3 Phase Squirrel Cage Induction Motor 74
3.4 The Generate Results for 0.5 Hp 3 Phase Squirrel Cage Induction Motor 76
3.5 NEMA Quick Reference Chart (in) for Stator and Rotor of Induction Motor Design 78
3.6 The Assigning Conductor to the Phase Winding 81
4.1 The 0.5 Hp Three Phase Induction Motor Nameplate and Equivalent Circuit for Both Thickness Lamination of Rotor Frame 100
4.2 Data for both thickness lamination of rotor frame ($0.35 \mathrm{~mm} \& 0.50 \mathrm{~mm}$) from AC Analysis 101
4.3 Flux Density Checks for Both Thickness Laminations 105
4.4 The Eddy Current Loss for Both Thickness Laminations 108
4.5 Magnetic Flux Density (Bmod) for Both Thickness Laminations 111
4.6 Data for both thickness lamination of rotor frame ($0.35 \mathrm{~mm} \& 0.50 \mathrm{~mm}$) from Steady-state AC Analysis 113
4.7 The 0.5 Hp Three Phase Induction Motor on Rated Conditions and Equivalent Circuit Parameter for Both Thickness Lamination of Rotor Frame 117
4.8 Data for both thickness lamination of rotor frame ($0.35 \mathrm{~mm} \& 0.50 \mathrm{~mm}$) from Induction Motor Performance Curve Analysis 118
4.9 Flux Density Checks for Both Thickness Laminations 122
4.1 The Data of Flux Leakage at Corner during Operation Mode in 1.5 T for Both Thickness Laminations at 50 Hz 125
4.11 The Data of Flux Leakage at Limb during Operation Mode in 1.5 T for Both Thickness Laminations at 50 Hz 126
4.12 The $3^{\text {rd }}$ Order Harmonic Factor vs. Flux Density (1.6 T) for Both Thicknesses 3\% SiFe (NG) at Different Frequency 130
4.13 Power Loss (W/kg) vs. Flux Density (T) for Both Thicknesses at Different Frequency using Epstein Test 132
4.14 The Data for 0.35 mm Thickness Eamination of Rotor Frame from No Load Test Data Analysis 137
4.15 The Data for 0.50 mm Thickness Lamination of Rotor Frame from No-Load Test Data Analysis 138
4.16 The Data of DC Kesistance Test for Both Thicknesses Lamination Steel Sheet 140
4.17 The Measurement Value of No Load Losses for Both Thicknesses Lamination Steel Sheet 141
4.18 The Data of Blocked Rotor Test for Both Thicknesses Lamination Steel Sheet 142
4.19 The Measurement Value of Rotor Loss for Both Thicknesses Lamination Steel Sheet 142
4.20 The Comparison on Measurement Value of Losses for Both Thickness Lamination Steel Sheet 143
4.21 The Comparison of Data using Software Simulation and Hardware Experiment 144
4.22 The Comparison of Energy and Money Saving for Both Thicknesses Material of Steel Sheet 163
4.23 The Performance and Relationship of 0.5 Hp Three Phase Squirrel Cage Induction Motor for Both Thickness Lamination of Steel Sheets 164

LIST OF FIGURES

NO.
PAGE
2.1 Complete cycles of three-phase alternating current 11
2.2 The Common types of electric motor 12
2.3 The Principle of Three Phase Squirrel Cage Induction Motor on Stator Part 18
2.4 The Principle of Three Phase Squirrel Cage Induction Motor on Rotor Part 20
2.5 The Manufacture of (a) the Stator and (b) Rotor Lamination 25
2.6 The Flux (B) Vs. Magnetic Field Strength (H) for BH Curve 28
2.7 The Iron Loss (W/kg) Vs. Flux (Tesla) for Iron Loss Cuves 29
2.8 Phase transformer field lines (No Load, Phase 30 32
2.9 Pole induction motor field lines 32
2.10 The Graph of Losses vs. flux density (a) in the longitudinal (L) sense, and
(b) in the transverse direction (T)
2.11 Map of Non Grain Orientation spread of sample strained 8% and annealed at
$800^{\circ} \mathrm{C}$ during 1800 s
2.12 Torque-Speed Characteristics of Basic NEMA-Design Squirrel Cage Induction Motors Rotor45

2.13 A torque-speed characteristic curve combining high-resistance affects at
low speeds (high slip) with low- resistance effects at high speed (low slip) 46
2.14 Magnetisability of materials by moderate applied field 47
2.15 Steel Casting and Slabbing Process 48
2.16 The Schematic of Cold Rolling Mill Process 49
3.1 The Flow Chart for the Research Project in Designing the 0.5 Hp 3 Phase Squirrel Cage Induction Motor Rotor 68
3.2 The View of Stator \& Stator Slots, Rotor \& Rotor Bars, Shaft and Air Gap for 0.5 Hp 3 Phase Squirrel Cage Induction Motor using MotorSolve IM Software 69
3.3 The Specify of Model's General Characteristic for 0.5 Hp 3 Phase Squirrel Cage Induction Motor 71
3.4 The Specify of Rotor Characteristic for 0.5 Hp 3 Phase Squirrel Cage Induction Motor 73
3.5 The Specify of Stator Characteristic for 0.5 Hp 3 Phase Squirrel Cage Induction Motor 74
3.6 The Specifying the coil winding Characteristic for 0.5 Hp 3 Phase Squirrel Cage Induction Motor 75
3.7 The Flowchart for Designing 0.5 Hp 3 Phase Squirrel Cage Induction Motor by AutoCAD \& Opera 2D Software 77
3.8 The Designing of Half Stator Teeth and Rotor Bar with Dimension Specification using AutoCAD Drawing 79
3.9 The Opera 2D Construction Lines for Induction Motor Design 80
3.10 The Complete Model of Induction Motor 81
3.11 The Flowchart for Designing 0.5 Hp 3 Phase Squirrel Cage Induction Motor by MATLAB Software 84
3.12 Experimental Setup for Single Sheet Tester (SST) 85
3.13 The Single Sheet Tester with York 86
3.14 Experimental Setup for Epstein Test 87
3.15 A Diagram of Epstein Test 88
3.16 The Lamination of Steel Sheets Strip with Dimension 89
3.17 Experimental Setup for No-Load Test 90
3.18 Basic Circuit for No-Load Test and Blocked-Rotor Test 90
3.19 The Test Circuit for No-Load Test of Induction Motor 91
3.20 The Graph of Separating Friction and Windage Loss 93
3.21 Experimental Setup for Blocked-Rotor Test / Locked-Rotor Test 93
3.22 The Test Circuit for Locked-Rotor Test of Induction Motor 95
3.23 The Experimental Setup for DC Resistance Test / DC Test 95
3.24 Circuit for DC Test 96
3.25 The Test Circuit for a DC Resistance Test 97
4.1 The Round Bars for Rotor Bar Slot Type and Parallel Round for Stator Slot Type 99
4.2 The Efficiency (\%) vs. Speed for Both Thickness Lamination of Rotor Frame 102
4.3 Loss (Watts) vs. Speed for Both Thickness Lamination of Rotor Frame 103
4.4 Flux Density for 0.35 mm Thickness Lamination of Steel Sheet 104
4.5 Flux Density for 0.50 mm Thickness Lamination of Steel Sheet 105
4.6 The Eddy Current Loss for 0.35 mm Thickness Lamination of Rotor Frame 107
4.7 The Eddy Current Loss for 0.50 mm Thickness Lamination of Rotor Frame 107
4.8 The Magnetic Line Potential based at 50 Hz for Both Thickness Lamination of Rotor Frame 110
4.9 The Magnetic Flux Density 50 Hz for 0.35 mm Thickness Lamination of Steel Sheet 110
4.10 The Magnetic Flux Density 50 Hz for 0.50 mm Thickness Lamination of Steel Sheet 111
4.11 The Induction Motor Efficiency (\%) vs. Speed for Both Thickness Lamination of Rotor Frame 114
4.12 The Loss (Watts) vs. Speed for Both Thickness Lamination of Rotor Frame 115
4.13 The Torque (Nm) vs. Speed for Both Thickness Lamination of Rotor Frame 116
4.14 The Induction Motor Efficiency (\%) vs. Speed for Both Thickness Lamination of Rotor Frame 119
4.15 The Total Loss (Watts) vs. Speed for Both Thickness Lamination of Rotor Frame 120
4.16 The Torque (Nm) vs. Speed for Both Thickness Lamination of Rotor Frame 121
4.17 The Flux Leakage ($\mu \mathrm{T}$) at Corner vs. Flux Density (T) for Both Thicknesses at 50 Hz 124
4.18 The Flux Leakage ($\mu \mathrm{T}$) at Limb vs. Flux Density (T) for Both Thicknesses at 50 Hz 125
4.19 The Flux Leakage $(\mu \mathrm{T})$ at Corner 1 vs. Flux Density (1.6 T) for Both Thicknesses at Different Frequency 127
4.20 The Flux Leakage ($\boldsymbol{\mu} \mathrm{T}$) at Limb 1 vs. Flux Density (1.6 T) for Both Thicknesses at Different Frequency 128
4.21 The Graph of the $3^{\text {rd }}$ Order Harmonic Factor vs. Flux Density (T).for Both Thicknesses at 50 Hz 129
4.22 The Graph of the $3^{\text {rd }}$ Order Harmonic Factor vs. Flux Density (1.6 T) for Both Thicknesses at Different Frequency 130
4.23 The Power Loss (W/kg) versus Flux Density (T) for Both Thicknesses at 50 Hz 131
4.24 The Power Loss (W/kg) vs. Flux Density (T) for Both Thicknesses at Different Frequency 132
4.25 The Search Coil Voltage (L1N1 \&L2N2) at two positions vs. Flux Density for Both Thicknesses at 50 Hz 133
4.26 The Search Coil Voltage (MN1 \& L2N2) at two positions vs. Flux Density $(0.6 \mathrm{~T})$ for Both Thicknesses at Different Frequency 134
4.27 The Graph of 3rd order Harmonic Factor vs. Flux Density (T) for Both Thicknesses at 50 Hz 135
4.28 The Graph of 3rd order Harmonic Factor vs. Flux Density (0.6T) for Both Thicknesses at Different Frequency 136
4.29 The Graph of Separating Friction and Windage Loss for 0.35 mm Thickness lamination 139
4.30 The Graph of Separating Friction and Windage Loss for 0.50 mm Thickness lamination 140
4.31 The Graph of Segregated Losses for Both Thickness Lamination Steel Sheet of Material 144
4.32 The Cross Section and the Flux Density Distribution for Three Phase Squirrel Cage Induction Motor 146
4.33 The Interaction of Magnetic Fields Current - Carrying Conductors for 0.5 Hp Three Phase Induction Motor 148
4.34 The Action and Movement of Induction Motor Rotor 149
4.35 The Direction of the Flux Transfer between the Rotor Lamination with Rotor Bars and End Rings 152
4.36 (a) The Contour and (b) The Mesh Graph of the Flux Density for 0.35 mm Thickness Lamination of Rotor Frame 154
4.37 (a) The Contour and (b) The Mesh Graph of the Flux Density for 0.50 mm Thickness Lamination of Rotor Frame 155
4.38 The Flux Transfer for Both Thicknesses Lamination of Rotor Frame 156
4.39 (a) The Contour and (b) The Mesh Graph of the Eddy Current Loss for 0.35 mm Thickness Lamination of Rotor Frame 158
4.40 (a) The Contour and (b) The Mesh Graph of the Eddy Current Loss for 0.50 mm Thickness Lamination of Rotor Frame 159
4.41 The Eddy Current Loss in $1 / 4$ Part of Rotor Lamination Steel Sheet for (a) 0.35 mm Thickness and (b) 0.50 mm Thickness 160

LIST ABBREVIATIONS

AC	Alternating Current
IM	Induction Motor
mm	millimeter
MMF	Magneto Motive Force
N	Number of Winding Turns
NEMA	National Electrical Manufacturers Association
RPM	Revolution per Minute
HP	Horse Power
IEEE	Institute Electric and Electronic Engineering
FEM	Finite Element Method
NEMA	National Electrical Manufacturers Association
TNB	Tenaga Nasional Berhad
SESCO	Sarawak Electricity Supply Corporation
SESB	Sabah Electricity Supply Sendirian Berhad
SEU	Energa Consumed per unit physical product
AES	Annual Energy Saving
TCS	Total Cost Saving

LIST OF SYMBOLS

Φ	Magnetic Flux
Ω	Ohm
${ }^{\circ} \mathrm{C}$	Celsius
μ	Magnetic Permeability
A	Ampere
A	Cross Sectional on the Surface of Yoke
B	Magnetic Flux Density
emf	Electromotive Force
f	Frequency
H	Magnetic Field Strength
s	Tlip
T	Thickness of Yoke Lamination
t	Volt
V	Voltage Supply
Vs	Wagnetic Flux Density
W	Magnetic Field Intensity
w	Watth of Yoke Lamination
H	

Reka Bentuk pada 0.5 Kuasa Kuda Bar Pemutar Motor Aruhan dengan Ketebalan 0.35 mm dan 0.50 mm pada Lembaran Steel untuk Pembikinan Pemutar

Abstract

ABSTRAK

Dalam projek ini, 0.5 kuasa kuda tiga fasa motor aruhan telah dikaji dengan teliti dan dianalisis pada aspek parameter, tork, kecekapan, faktor kuasa, pengurangan kerugian, mekanisme pemindahan dan aspek ekonomi. Sepanjang projek ini, prestasi dan pembangunan motor aruhan tiga fasa apabila di reka bentuk dan dimodelkan dengan menggunakan 0.35 mm dan 0.50 mm ketebalan kepingan keluli telah dibuat dan dibandingkan. Fasa pertama adalah dengan melakukan analisis matematik (pengiraan teori) motor aruhan arus ulang alik dilakukan untuk mengira semua kerugian dan parameter litar setara bagi 0.5 kuasa kuda tiga fasa motor aruhan. Ini adalah untuk menunjukkan kecekapan dan jumlah tenaga yang digunakan dalam motor aruhan. Fasa kedua, kajian ini melibatkan bentuk dan simulasi 0.5 kuasa kuda 3 fasa motor aruhan menggunakan perisian MotorSolve IM, perisian AutoCAD, perisian Opera 2D dan perisian MATLAB. Dari simulasi, analisis seperti kehilangan kuasa, ketumpatan fluks magnet, ketumpatan arus pusar, tork terhadap kelajuan, kehilangan kuasa terhadap kelajuan, kecekapan terhadap kelajuan, dan faktor kuasa terhadap kelajuan telah siap dijalankan. Satu kajian perbandingan juga dilakukan antara kegunaan 0.35 mm dan 0.50 mm ketebalan bahan dalam pemutar motor aruhan. Fasa ketiga melibatkan pembikinan dan kajian dengan teliti ke atas bahagian pemutar dengan ketebalan lembaran steel yang berbeza pada motor aruhan pada aspek peningkatan kecekapan, peningkatan faktor kuasa, pengedaran fluks dan pengurangan kehilangannya. Fasa keempat melibatkan prosedur eksperimen yang dijalankan ke atas 0.5 kuasa kuda 3 fasa motor aruhan jenis sangkar tupai boleh dibahagikan dua eksperimen yang utama antaranya ujian ke atas bahan (seperti nominal, inplane dan thermister untuk kaedah carian gegelung), dan prestasi ujian pada penghasilan pembikinan pemutar motor aruhan (seperti No-Load Test, DC rintangan ujian dan Blok Rotor Test) yang dilakukan untuk membuktikan data kecekapan yang diperolehi daripada simulasi. Ini telah siap dilakukan bagi menentukan kerugian, mekanisme pengagihan dan untuk menyiasat kecekapan 0.5 kuasa kuda 3 fasa motor aruhan dengan 0.35 mm dan 0.50 mm tebal kepingan keluli. Berdasarkan pada keseluruhan eksperimen, keputusan hasil uji kaji menunjukkan bahawa pemutar dengan ketebalan 0.35 mm mampu menaikkan kecekapan motor sebanyak 4%, faktor kuasa sebanyak 5.5% dan tork sebanyak 1.6% dan dapat mengurangkan kehilangkan arus pusar sebanyak 50.1%, kehilangan tembaga pemegun sebanyak 8.98%, kehilangan teras sebanyak 25.25%, dan kehilangan tembaga pemutar sebanyak 12.37% berbanding dengan penggunaan 0.50 mm pemutar. Satu perhitungan ekonomi telah disediakan dan dibentangkan untuk menunjukkan bahawa kos penjimatan dengan menggantikan motor aruhan yang sedia ada dengan motor aruhan baru dengan ketebalan 0.35 mm yang telah direka bentuk boleh mengurangkan bil utiliti dengan RM 2.46 juta (89%) berbanding dengan motor aruhan yang sedia ada.

Design of 0.5 Hp Induction Motor Rotor Bars with 0.35 mm and 0.50 mm Thickness of Steel Sheets for Rotor Fabrication

Abstract

In this project, the 0.5 Hp three phase induction motor have been thoroughly investigated and analyzed in terms of the induction motor parameter, torque, efficiency, power factor, losses reduction, transfer mechanism and economic aspects. Throughout this project, the performance and the development of the three phase induction motor when it design and modelling by using 0.35 mm and 0.50 mm thickness of steel sheets was fabricated and compared it. First, the mathematical analysis of alternating current (AC) induction motor is done to calculate all the loss and equivalent eircuit parameters for 0.5 Hp 3 phase induction motor. This is to show the efficiency and the amount of energy that is consumed in an induction motor. Second, the research involves designing and simulating the 0.5 Hp 3 phase induction motor using MotorSolve IM software, AutoCAD software, Opera 2D software and MATLAB software. From the simulation, analysis such as power loss, magnetic flux density, eddy current density, torque vs. speed, power loss vs. speed, efficiency vs. speed, and power factor vs. speed is done. A comparative study is done between the uses of 0.35 mm and 0.50 mm thickness of material in the rotor of induction motor. Third, the rotor part of an induction motor for different thicknesses are fabricated andinvestigated in terms of its efficiency increment, power factor improvement, flux distribution and loss reduction capabilities. Fourthly, experimental procedures are performed on the 0.5 Hp 3 phase induction motor can divide by two main focuses such as test on material (like nominal, in plane and thermister for search coil method), and test performance on rotor fabrication of induction motor (like No-Load Test, DC Resistance Test and Block Rotor Test) are performed in order to prove the efficiency data obtained from simulation. This is done, in order to determine the losses, transfer mechanism and to investigate the efficiency of 0.5 Hp 3 phase induction motor with 0.35 mm and 0.50 mm thickness of steel sheet. From the overall experiment of software and hardware, the results show that the 0.35 mm thickness has an increment 4% of the efficiency, 5.5% of the power factor, and 1.6% of torque and has an decrement 50.1% of eddy current loss, 8.98% of stator copper loss, 25.25% of core loss, and 12.37% of the rotor copper loss compared to 0.50 mm . An economical aspect was presented to shows that the saving cost by replacing the existing of induction motor with the new design of induction motor can reduce the utility billing by RM 2.46 million (89\%) compared to existing of induction motor.

©

CHAPTER 1

INTRODUCTION

1.1 Background of Rotating Electrical Machine

The design of a rotating electric machine can be started with the basic features of a particular such as internal operation, external construction, and controlling performance of machine. Type of machine, construction, rated power, rated rotational speed, number of pole pairs, rated frequency and rated voltage of the machine are important parameters to be considered in machine design. Other important parameters are number of phases, intended duty cycle, standard applied in the machine design, economic boundary conditions, manufacturability, enclosure class and structure of the machine. Besides that, in machine design there is a considerable number of free parameter sueh as slot width, slot teeth, air gap, rotor bar slot, stack length, inner diameter and outer diameter. When aiming for an optimal solution, the task becomes extremely complicated unless the number of these free parameters is limited. Therefore, many free parameters vary only slightly, and the task will be simplified hence can be assumed constant (Juha Pyrhonen, 2008).

The induction motor is a significant category in electric machines. It is widely applied as a motor in industry as well as working independently in some domestic
applications. Today, more than 85% of industrial motor is using induction motors. It is substantially a constant speed motor with an internal characteristic; a few per cent speed drop from no-load to full-load. It is a singly-fed motor (stator-fed), unlike the synchronous motor which requires alternating current (AC) supply on the stator side and direct current (DC) excitation on the rotor. The torque developed in the motor has its origin in the induction rotor current can only be done at the speed of asynchronous machines. On the other hand, torque in asynchronous machine is developed only at asynchronous speed when the "locking" of the two fields takes place. Therefore, the induction motor is not plagued by the stability problem inherent in the asynchronous motor (Kothari, D. P., \& Nagrath, 2010).

Selecting the best induction motor for a specific application requires consideration of many factors and often presents a complex problem that requires sound judgment and considerable experiences. To optimum the performance of driven machine, the motor must be selected to match as closely as possible to the operating characteristic of the load. In order to assist the purchaser in selecting and obtaining the proper motor for the particular application, the National Electrical Manufacturer Association (NEMA) has developed the product standards. The motor standard includes the frame dimensions, voltage and frequency, power ratings, service factors, temperature rises, and performance characteristics. The benefits derived from these standards are greater availability of motors, a sounder basis for accurate comparison of machines, prompter repair service, and shorter delivery time. The NEMA data stamped on motor nameplates provide a wealth of information on motor operation, characteristics, and applications (Hubert, 2002).

The stator of an induction motor consists of a frame with a magnetically active, annular cylindrical structure as known as stator lamination stack punched from nongrain oriented electrical steel sheet and has a three phase winding set embedded in evenly spaced inside internal slots. The individual coils of this electrical winding are random-wound for smaller motors and form-wound for larger motors. The rotor of an induction motor is made up of a shaft-mounted in term of magnetically active and cylindrical structure as known as rotor lamination stack also constructed from non-grain oriented electrical steel sheet punching with evenly spaced slots located around the outer periphery to accept the conductors of the rotor winding The rotor part can be divided by two types which are squirrel cage and wound rotor (Cathey, 2001).

The lamination thickness of steel sheet is a vital property of electrical steels. The reducing lamination thickness of steel sheet will restrain eddy current loss, but decreasing of lamination thickness of Steel sheet will cause the price more expensive and will be tended to deteriorate of the iron space. The power loss of lamination steel sheet is assessed at specified peak operation inductions, e.g. 1.5 Tesla, therefore the quantity at the active cross-sectional area of metal is required. Width and length of lamination steel sheet is comparatively easy to measure. Loss is unit of watts/kg and the mass is available from the multiplication of width, length, density and thickness. Generally, loss is the unit of watts $/ \mathrm{kg}$ hence the mass is determined directly from a weighting machine. Then, the lamination thickness of steel sheet was calculated by using a conventional method of density. On other occasions, the lamination thickness of steel sheet may be determined and the mass of lamination steel sheet will be calculated from width, length and conventional method of density. However, the entrench of

[^0]: Date:

