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KAJIAN MENGENAI PENUMPATAN DAN MEKANISMA TUMBESARAN 

IRA BAGI SERAMIK POLIHABLUR BERDASARKAN LaYO3 

 

ABSTRAK 

 

LaYO3 adalah seramik polihabluran dengan struktur jenis oksida perovskit. LaYO3 

disintesis menggunakan kaedah sintesis keadaan pepejal. Pada mulanya, sampel 

dipanaskan antara 1200 °C hingga 1500 °C selama 10 jam dan perlahan-lahan 

disejukkan dalam udara. Kehadiran fasa kedua iaitu otorombik menunjukkan sifat 

polimorfisme LaYO3. Fasa struktur monoklinik tulen telah berjaya disintesis selepas 

dipanaskan pada 1500 °C selama 10 jam dan lindap-kejut dalam cecair nitrogen. 

Selepas itu, serbuk LaYO3 monoklinik tulen telah dipelet menggunakan penekanan 

sestatik dan telah difabrikasi oleh kaedah pensinteran dua langkah. Bagi pensinteran 

langkah pertama (T1), pelet telah dipanaskan pada 1300 °C selama 1 minit dan 

kemudian dilindap-kejut ke dalam cecair nitrogen. Pelet kemudiannya dipanaskan pada 

suhu yang agak rendah antara 1000 °C hingga 1250 °C dan ditandakan sebagai T2 

selama 15 jam masa pegangan. Dengan meningkatkan T2, ketumpatan relatif meningkat 

daripada ~87% kepada ~95%. Peratusan pengecutan juga meningkat secara linear. 

Mikrostruktur menunjukkan keseragaman. Saiz butiran adalah berkadar terus dengan 

ketumpatan relatif. Cole-cole plot daripada impedans menunjukkan satu separuh bulatan 

menyumbang kepada fenomena pukal sampel LaYO3 yang telah disinter. Kekonduksian 

sampel yang disinter antara 1000 °C hingga 1200 °C berada dalam lingkungan 2 hingga 

3 × 10
-5

 S/cm dan tenaga pengaktifan adalah kira-kira ~0.4 eV. Sementara itu, sampel 

yang disinter pada 1250 °C menunjukkan kekonduksian yang tinggi iaitu 8.41 × 10
-3

 

S/cm dengan 1.4 eV kerana mempunyai kesan sempadan ira di dalam sampel. Oleh itu, 

peningkatan suhu T2 menunjukkan pengalir ionik yang tinggi dengan tingkah laku 

elektrik yang insulatif menyumbang kepada pembentukan pertumbuhan ira yang lebih 

besar. 
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STUDIES ON THE DENSIFICATION AND GRAIN GROWTH MECHANISMS 

OF POLYCRYSTALLINE CERAMIC BASED ON LaYO3 

 

ABSTRACT 

 

LaYO3 is a polycrystalline ceramic with the perovskite type oxide structure. LaYO3 was 

prepared using solid state synthesis method. Initially, the sample was heated between 

1200 °C to 1500 °C for 10 hours and slowly cooled in air. The existence of secondary 

phases that belongs to orthorhombic shows the polymorphism properties of LaYO3. 

Pure phase monoclinic structure was successfully synthesized after heated at 1500 °C 

for 10 hours and rapidly cooled in liquid nitrogen. Then, the pure monoclinic LaYO3 

powder was pelletized using cold isostatic pressing and been fabricated by two-step 

sintering method. For the first-step sintering (T1), pellets were heated at 1300 °C for      

1 minute and then quenched into liquid nitrogen. The pellets were then reheated at the 

relatively lower temperature between 1000 °C to 1250 °C and denoted as T2 for 15 

hours holding time. By increasing T2, the relative density increased from ~87 % to    

~95 %. Percentage of shrinkage also linearly increased within error. Microstructural 

analysis shows homogenous microstructure. The grain size was directly proportional to 

the relative density. Cole-cole plot from complex impedance of sintered LaYO3 shows 

one semicircle contribute to the bulk phenomenon responsible. The conductivity for 

samples sintered between 1000 °C to 1200 °C were in the range of 2 to 3 × 10
-5

 S/cm 

and the activation energy is about ~0.4 eV. Meanwhile, sample sintered at 1250 °C 

shows high conductivity that is 8.41 × 10
-3

 S/cm with 1.4 eV because phenomenon 

responsible in the sample have grain boundary effect. Therefore, increasing T2 

temperature shows high ionic conductor with electrically insulative behaviour that 

contribute by larger formation of grain growth. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

The ever-increasing energy demand triggered by the deficiency of fossil fuels 

has led us to seek alternative power sources. These fossil fuels were formed by natural 

processes of buried organisms, which are non-renewable resources, and it raises serious 

environmental concerns and economic effects (Abas et al., 2015). Fuel cell is the most 

attractive alternative power source because it can produce clean and efficient electricity 

to meet the future challenges (Afif et al., 2016; Kirubakaran et al., 2009; Radenahmad 

et al., 2016).  

Fuel cells are considered an excellent alternative energy resource from the 

environmental point of view because fuel cells are quiet and produce negligible 

emissions of pollutants. Furthermore, the efficiency ranges from 40 to 60% depending 

on the type and design of fuel cells because different types of fuel cells have varied 

efficiencies. Moreover, the primary fuel source for the fuel cell is hydrogen that can be 
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obtained from natural gas, coal gas, methanol, and other fuels containing hydrocarbons 

(Stambouli & Traversa, 2002). 

Initially, fuel cells were used in closed environments such as space technology 

and submarines, where cost is not an issue. NASA began using fuel cells in the late 

1950s and continues to do so today. Fuel cells were used in the Apollo and Gemini 

spacecrafts, and now in space shuttles. Currently, there are many uses for fuel cells, 

including: 

I. Transportation: All the major automakers are working to commercialize a fuel-

cell car. Fuel cells are powering buses, boats, trains, planes, and scooters, even 

bicycles. 

II. Stationary: More than 2500 fuel cell systems have been installed all over the 

world — in hospitals, nursing homes, hotels, office buildings, schools, utility 

power plants, and an airport terminal, providing primary power or backup. 

III. Residential: Fuel cells are ideal for power generation, either connected to the 

electric grid to provide supplemental power and backup assurance for critical 

areas, or installed as a grid-independent generator for on-site service in areas 

that are inaccessible by power lines. The waste heat from a fuel cell can be used 

to provide hot water or space heating for a home. 

IV. Portable Power: Miniature fuel cells for cellular phones, laptop computers and 

lightweight electronics are on their way to market. These small fuel cells 

generally run on methanol, an inexpensive wood alcohol also used in windshield 

wiper fluid. 

V. Landfill/Wastewater Treatment: Wastewater treatment plants and landfills are 

using fuel cells to convert the methane gas they produce into electricity. 

(Garche, 2013; Giddey et al., 2012; Gong, 2005; Laosiripojana et al., 2009; Liu 

et al., 2016; Minh, 2004; Serincan, 2016). 
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Fuel cell is a device that converts chemical energy into electrical energy similar 

to battery but slightly differs in its electrochemical process. The output from a fuel cell 

is a stable direct current (DC) of about one-volt. Fuel such as natural gas (CH4) or 

methanol (CH3OH) and oxygen (from air) are required to operate fuel cell.  

The fuel gas is fed into the fuel electrode (porous anode in a solid state) where 

the hydrogen is oxidized (H2 → 2H
+
 + 2e

-
). Oxygen in air is fed into the oxidant 

electrode (porous cathode in a solid form) where it is reduced (O2 + 2e
-
 → O

2-
). Ions of 

hydrogen or oxygen are conducted by an electrolyte layer (liquid or dense solid) which 

is sandwiched between the two electrodes. From proton (hydrogen ion, H
+
) conducting 

electrolyte fuel cells, water is formed at the cathode/electrolyte side according to the 

equation; 

2H
+
 + ½O2 + 2e

-
 → H2O         (1.1) 

For oxygen ion (O
2-

) conducting electrolyte fuel cells, water is formed at the 

anode/electrolyte side; 

H2 + O
2-

 → H2O + 2e
-
         (1.2) 

The overall reaction in the fuel cell is; 

H2 + ½O2 → H2O         (1.3) 

 Fuel cells have five different types which are Alkaline Fuel Cell (AFC), Solid 

Polymer Fuel Cell (SPFC) and Phosphoric Acid Fuel Cell (PAFC) that are operated at 

relatively low temperatures (< 200 °C). Furthermore, Molten Carbonate Fuel Cell 

(MCFC) is performed at about 650 °C and Solid Oxide Fuel Cell (SOFC) operates 

between 650 and 1000 °C. Table 1.1 shows the main characteristics and applications of 
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each fuel cell, in terms of operating temperature. For a particular fuel cell, the 

application fields are based on its properties and performance. Based on this 

comparison, clearly the overall properties of SOFC can be superior to other types of fuel 

cell if their high operating temperature can be reduced (Stambouli & Traversa, 2002). 

To realize this possibility, the new electrolyte materials with higher ionic conduction 

than the conventional YSZ are required (Jacobson, 2010). 

Table 1.1: Type of fuel cell and their characteristics and applications (Steele & Heinzel, 

2001) 

Type Top (°C) Characteristics Applications 

AFC 50 ~ 100 

 High power density (A/m
2
) 

 High Pt loadings 

 Pure O2, no CO2, no CO 

 Very expensive 

 Space vehicles 

 Automobile 

SPFC 50 ~ 100 

 Easy design 

 High Pt loading 

 Pure H2 (>99.99%), no CO 

 Moderate current density 

 Space and military 

 Automobile 

PAFC ~ 200 

 Commercially successful 

 Available in a few to 300 

kW 

 Tolerant to CO2 but low 

CO 

 High reliability 

 High cost ($2000 to $3000 

per kW) 

 Electricity-heat 

cogeneration 

 Power in remote areas (near 

natural gas supply lines) 

 Automobile 

MCFC 600 ~ 700 

 Corrosive 

 Internal natural gas-

reforming 

 Need CO2 for cathode 

 CO is usable fuel 

 No Pt but Ni catalyst 

 High-grade heat available 

 Medium to large (2 kW ~ 2 

MW) cogeneration power 

systems 

 Load levellers in electric 

utilities 

 Not suitable for small 

power plants or for 

transportation use 

SOFC ~ 1000 

 Very high temperature 

 Simple in design 

 Internal natural gas-

reforming 

 No catalyst needed 

 CO is usable fuel 

 Cell are difficult to produce 

 High-grade heat available 

 Cogeneration plant 

 Potential use in 

transportation sector if the 

operating temperature can 

be reduced 
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1.1.1 Solid Oxide Fuel Cell (SOFC) 

Solid oxide fuel cell (SOFC) is an all-solid device that operated between 600 ~ 

1000 °C. In contrast to other types of fuel cells, where the electrochemical reactions 

occur at the gas-liquid-solid three-phase-zone, reactions in SOFC occur at the gas-solid 

two-phase contact. The corrosive electrolyte is no longer a problem in SOFC, as two 

porous ceramic electrodes are separated by a dense oxide-ion conducting ceramic 

electrolyte. Fuel (H2 or CO) is fed to the anode and reacts with oxygen ions to form 

water (or CO2) while releasing electrons to the external circuits. On the other hand, 

oxygen is fed to the cathode and accepts electrons from the external circuit to form 

oxygen ions. Electrons flow from the anode through the external circuit to the cathode 

(Badwal et al., 2014; Mahato et al., 2015; Timurkutluk et al., 2016). 

Figure 1.1 shows the operating principles of SOFC with flow directions for each 

species and with captions for each cell component. The focus of this research study is 

on electrolyte materials and hence only oxygen-ion conducting SOFC will be reviewed 

in the next chapter. 

 
Figure 1.1: Operating principle of SOFC and its components (Kawamoto, 2008). 
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1.1.2 Basic components of SOFCs 

 There are specific material requirements and criteria that need to be satisfied 

before they can be considered as cathode, anode or electrolyte for SOFC application. 

These requirements are necessary to ensure the electrochemical reactions that occur at 

high temperatures will be at the most optimum condition, efficient and safe. These are 

criteria for cathode, anode and electrolyte (Badwal et al., 2014; Stambouli & Traversa, 

2002; Yokokawa et al., 2001; Yamamoto, 2000) 

i. Cathode  

The criteria for the cathode material are: 

(1) High electrocatalytic activity for oxygen reduction 

(2) High electronic conductivity 

(3) Stability in the oxidizing atmosphere and at high-temperature 

(4) Thermal expansion compatible with other cell components 

(5) Porous for efficient oxygen transport 

ii. Anode  

For the anode material, the criteria are: 

(1) Effective oxidation catalysis 

(2) High electronic conductivity 

(3) Stability in the reducing anodic environment and at high-temperature 

(4) Thermal expansion compatible with other cell components 

(5) Porous for easy fuel transport 

(6) Tolerance to sulphur contaminants and hydrocarbon fuels  
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iii. Electrolyte  

Criteria for electrolyte materials are: 

(1) High oxygen ion conductivity and negligible electronic conductivity 

(2) High stability under both oxidizing and reducing atmospheres 

(3) Stability at high-temperature 

(4) Thermal expansion compatibility with electrode materials 

(5) High density to prevent fuel transport to the cathode 

Table 2.1 summarizes the most important material requirements for each component of 

SOFC in terms of electrical conductivity, stability, compatibility, and porosity (Minh & 

Takahashi, 1995).  

 

Table 2.1: Requirements for SOFC components (Minh & Takahashi, 1995) 

Component 

Requirements 

Conductivity Stability Compatibility Porosity 
Thermal 

expansion 

Anode  
High electrical 

conductivity 

Chemical, phase, 

morphological, 

and dimensional 

stability in fuel 

environment 

No undesirable 

chemical 

interactions or 

interdiffusion 

with adjoining 

cell components 

Porous 

Thermal 

expansion 

match with 

adjoining 

components 

Electrolyte  

High ionic 

conductivity. 

Negligible 

electrical 

conductivity 

Chemical, phase, 

morphological, 

and dimensional 

stability in fuel 

and oxidant 

environment 

No damaging 

chemical 

interactions or 

interdiffusion 

with adjoining 

cell components 

Fully 

dense 

Thermal 

expansion 

match with 

adjoining 

components 

Cathode 
High electrical 

conductivity 

Chemical, phase, 

morphological, 

and dimensional 

stability in 

oxidant 

environment 

No damaging 

chemical 

interactions or 

interdiffusion 

with adjoining 

cell components 

Porous 

Thermal 

expansion 

match with 

adjoining 

components 

Interconnect 

High ionic 

conductivity. 

Negligible 

electrical 

conductivity 

Chemical, phase, 

morphological, 

and dimensional 

stability in fuel 

and oxidant 

environment 

No damaging 

chemical 

interactions or 

interdiffusion 

with adjoining 

cell components 

Fully 

dense 

Thermal 

expansion 

match with 

adjoining 

components 
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1.2 Problem Statement 

Nowadays, fuel cell is attracting much interest as power generation system with 

high energy conversion efficiency and almost no emission of air pollutant. Among the 

various types of fuel cell, SOFCs have many advantages such as variety of fuel, long 

life and environmental friendly system. Therefore, the development of SOFC is highly 

important. The conventional SOFCs are operated at high temperature about ~1000 °C 

and special alloy required for encapsulation. The drawbacks using high temperature are 

high operation cost, costly maintenance, phase stability of the materials and its 

compatibility was affected. So, the development of SOFCs at relatively lower operating 

temperature (< 1000 °C) require suitable electrolytes materials with reasonable high 

conductivity as an alternative for YSZ. 

Conventional solid electrolyte, yttria stabilized zirconia (YSZ) have very low 

conductivity about 4.52 × 10
-6 

S/cm and it formed resistive layers between electrodes. 

Strontium magnesium doped lanthanum gallate (LSGM) was used as typical electrolyte  

has high ionic conductivity 1.7 × 10
-1

 S/cm but the limitation of LSGM is to get phase 

pure because existence of secondary phases. LaYO3 has been proposed as a potential 

electrolyte because it shows ion conduction with oxide ion transport number is unity 

with conductivity is 5.8 × 10
-4

 S/cm at 1000 °C and activation energy are 1.22 eV 

(calculated) and 1.3 eV (experimental). Therefore, further improvements are required to 

enable LaYO3 to become suitable electrolyte at < 1000 °C operation temperature.  
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