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Penambahbaikan Penentuan Lokasi Sumber Gas Berdasarkan Robot Bergerak 

dengan Mengambil Kira Suhu dan Kelembapan serta Melalui SLAM dan 

Pemetaan Peredaran Gas 

 

ABSTRAK 

 

Kajian ini meliputi masalah menentukan lokasi sumber gas di persekitaran dalaman 

dengan menggunakan sebuah robot mudah alih. Masalah ini adalah hampir sama seperti 

situasi kebocoran gas berbahaya dalam bangunan. Memandangkan keadaan persekitaran 

tempat tersebut tidak diketahui oleh robot, operasi Penempatan dan Pemetaan Serentak 

(SLAM) diperlukan. Dua teknik SLAM (iaitu Gmapping dan Hector SLAM) telah 

digunakan untuk memberikan maklumat penting ini. Hasil eksperimen dan analisis 

menunjukkan bahawa Hector SLAM lebih sesuai untuk tugasan pemetaan peredaran gas 

(GDM) disebabkan oleh ketepatan yang lebih baik dari segi anggaran kedudukan robot, 

keperluan pengiraan yang lebih rendah dan hanya membaiki peta di kawasan 

berhampiran. Oleh itu, Hector SLAM digabungkan dengan algoritma Kernel DM+V 

untuk mencapai penyelesaian SLAM-GDM bagi meramal kedudukan punca gas. 

Beberapa eksperimen telah dijalankan untuk mengesahkan prestasi kaedah SLAM-

GDM dalam bangunan pejabat dan dengan kehadiran gas etanol. Keputusan eksperimen 

menunjukkan bahawa ramalan lokasi sumber gas sering tepat pada lingkungan 0.5 

hingga 2.0m. Di samping itu, algoritma Kernel DM+V berdasarkan Kernel 

Epanechnikov juga telah diperkenalkan untuk mengehadkan jarak ekstrapolasi dalam 

pengiraan GDM. Kelebihannya adalah keperluan pengiraan yang lebih rendah dan 

ramalan lokasi sumber gas yang lebih tepat. Lebih penting lagi, peta yang dihasilkan 

dapat menunjukkan kawasan peredaran gas yang belum diterokai oleh robot dan 

seterusnya boleh digunakan untuk merancang laluan robot. Bahagian akhir dan utama 

dalam tesis ini membincangkan kesan suhu dan kelembapan persekitaran terhadap 

tindak balas sensor gas (iaitu TGS 2600) yang seterusnya boleh mempengaruhi 

keputusan GDM. Proses regresi linear telah dijalankan untuk mewujudkan satu model 

bagi membetulkan ralat suhu dan kelembapan. Model ini telah diuji dalam pelbagai 

konfigurasi dan didapati mampu mengurangkan kesan kedua-dua faktor tersebut 

terhadap tindak balas sensor dalam kepekatan gas yang berbeza. Akhir sekali, dua versi 

algoritma Kernel DM+V/T/H telah dicadangkan dan digabungkan dengan model 

tersebut untuk mengambil kira suhu dan kelembapan persekitaran semasa tugasan 

pemetaan gas. Keputusan eksperimen menunjukkan bahawa algoritma Kernel 

DM+V/T/H berjaya menghasilkan peta peredaran gas yang lebih stabil dan ramalan 

lokasi sumber gas yang lebih tepat berbanding Kernel DM+V sebanyak 34%. 
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An Improved Mobile Robot Based Gas Source Localization with Temperature and 

Humidity Compensation via SLAM and Gas Distribution Mapping 

 

ABSTRACT 

 

This research is concerned with the problem of localizing gas source in indoor 

environment using a mobile robot. The problem could be seen as similar to the event of 

hazardous gas leak in a building. Since the environment is often unknown to the robot, 

the Simultaneous Localization and Mapping (SLAM) operation is required. Two open 

source SLAM techniques (i.e. Gmapping and Hector SLAM) were implemented to 

provide this crucial information. Extensive experiments and analysis on both SLAM 

techniques yielded that the Hector SLAM is more suitable for gas distribution mapping 

(GDM) application due to the improved robot pose estimation, less computational 

requirement and only performs map correction locally. Therefore, the Hector SLAM is 

combined with Kernel DM+V algorithm to achieve real-time SLAM-GDM for 

predicting gas source location. Rigorous real-time experiments were conducted to verify 

the performance of the proposed SLAM-GDM method in an uncontrolled office 

building with the presence of ethanol emission. The experimental results showed that 

the prediction of gas source location is often accurate to 0.5 to 2.0m. Furthermore, an 

Epanechnikov based Kernel DM+V algorithm was also introduced to limit extrapolation 

range in GDM computations. The observed advantages were lower computational 

requirement and slightly more accurate prediction on gas source location. More 

importantly, it was found that the maps produced were able to indicate the areas of 

unexplored gas distribution and therefore could be used for the robot‘s path planning. 

The final and the main part of the thesis deals with the effect of ambient temperature 

and humidity on metal oxide gas sensor (i.e. TGS 2600) response; which could affect 

the GDM results. Linear regression processes were conducted to create a model to 

correct the temperature and humidity drift of the gas sensor response. The model (i.e. 

function) was tested in various configurations and was found to minimize the effects of 

the two environmental factors on the gas sensor response in different gas 

concentrations. Finally, two versions of Kernel DM+V/T/H algorithms were proposed 

and coupled with the drift model to compensate for temperature and humidity variation 

during the GDM task. The experimental results showed that the Kernel DM+V/T/H 

algorithms were able to produce more stable gas distribution maps and improve the 

accuracy of gas source localization prediction by 34%. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Overview 

 

 Olfaction is the ability of an organism to sense smell by detecting tiny particles 

of substance that evaporate and spread through air. Most animals and insects use their 

olfactory senses in order to locate food sources, find mate, detect predator and mark 

territory (Wyatt, 2003). While in human, the sense of smell has been said to influence 

emotional and aesthetical aspects that affect the social interaction with others as well as 

subjective perception to the surrounding. Even though the olfactory system is important, 

human still lack proper vocabularies to describe odour precisely. They tend to describe 

smells using vague or abstract terms related to their personal experience or similarity to 

other odour (Loutfi, 2006).  Animals have been said to have more sensitive olfactory 

system compared to human. For instance, a dog that possesses around 220 million 

olfactory receptors has a thousand times more sensitive sense of smell than a human 

with 5 million receptors (Correa, 2005).  

 Furthermore, the human‘s olfactory sense has limited capability such that it is 

not able to detect the presence of certain gases and distinguish between them. Although 

there are gases that could be sensed, often the source‘s location could not be determined 

accurately. There could also be situations where human get exposed to harmful gas and 

being silently harmed or killed.  

 Since the beginning of the 1990s, the gas sensing technology with mobile robot 

has been an active research study. The motivations are due to critical problems such as 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



2 
 

detecting drugs and explosive, identifying gas leaks location, early detection of fire and 

as well as monitoring polluted area. One real example of such problem is the massive 

explosion in Koahsiung, Taiwan on the 31
st
 July 2014. It was reported that there were a 

series of five explosions along sewage system‘s pipeline; killing at least 25 people and 

injuring 265 people. The event was described to have been caused by gas leak and 

among the victims were four fire-fighters who were inspecting for the leakage 

(MailOnline, 2014).  

   

1.2 Problem Statement 

 

 The presence of toxic gases in the environment can be harmful to human. A 

person may not be aware of their presence and can be silently poisoned or killed. On the 

other hand, the leakage of natural gases could cause headache, fatigue, loss of 

consciousness and death. More importantly, this type of gas is highly flammable; thus a 

tiny spark could result in massive fire or explosion. The current technique of detecting 

the gas leak location requires involvement of human operators on-site. For instance, the 

rescuers need to carry portable gas detectors to several suspected area for monitoring 

the gas concentration. However, this practice could risk their lives and prone to error or 

misinterpretation.  

 Mobile robot equipped with olfactory system could be used to determine the 

location of gas source while being monitored remotely by human operators. 

Nevertheless, in a real-life situation, the surrounding area is often unknown; thus 

requiring the robot to localize itself and map the environment. Moreover, the current gas 

sensor technologies also suffer from many issues such as slow response, non-selectivity 

and highly affected by temperature and humidity of the surrounding. The problems are 

further enhanced by the existence of wind and the variability of gas movement such as 
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through diffusion and turbulence (Patrick P Neumann, 2013). In particular, this thesis 

attempts to solve the problem of localizing gas source in indoor environment, such as 

the condition of gas leak in a building. 

 

1.3 Objectives 

 

 The main objective of this research is to improve the existing methods of finding 

location of gas source in indoor environment using a mobile robot. The work consists of 

two major aspects. First is to combine Simultaneous Localization and Mapping (SLAM) 

and Gas Distribution Mapping (GDM) operations to achieve real-time SLAM-GDM 

solution. The SLAM is implemented to map the unknown area, while the GDM is 

utilized for representing the areas of high concentration of gas, where the gas source 

may exist. The combined map from both operations could provide real-time prediction 

of the gas source location. The second and more important aspect is to further enhance 

the performance of gas source localization by compensating ambient temperature and 

humidity in GDM operation. The specific objectives of the research are as follow: 

  

i. To design robust and reliable mobile robot olfaction system for gas source 

localization. 

ii. To improve SLAM operation and select the suitable SLAM algorithm for 

GDM. 

iii. To propose real-time SLAM-GDM combination and further improve the 

performance of gas source localization by introducing an improved GDM 

method. 
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iv. To model the gas sensor drift due to the changes in ambient temperature 

and humidity, and subsequently propose novel GDM algorithm that 

compensate for these two factors. 

 

1.4 Scope 

  

 This thesis concerns the tasks of finding the location of gas source using a single 

mobile robot. The robot was remotely controlled to perform gas sensing measurements 

across different areas in a building. Path planning strategy is out of scope of this thesis 

since the focus is rather on the SLAM and GDM algorithms. Instead, the robot was 

manually controlled to maneuver and cover as much areas as possible in all experiments 

presented. 

 Metal oxide (MOX) gas sensor particularly TGS 2600 (i.e. sensitive to volatile 

organic compound) was used throughout the research as it was proven to produce 

relatively reliable results and by far the most employed technology in mobile robotics 

(Trincavelli, 2010). The gas sensor was mounted on the robot at fixed position and 

exposed directly to the environment, rather than enclosing it in a chamber. No 

calibration has been performed on the gas sensor to measure the actual concentration of 

gas. This is due to the unavailability of ground truth information and considering to the 

fact that the sensor itself suffers from temperature, humidity and long-term drifts (C. 

Wang, Yin, Zhang, Xiang, & Gao, 2010). Instead, only the sensor‘s signal was used to 

indicate relative gas concentration. This information is sufficient for the project‘s 

objective of building gas distribution map and localizing gas source. 

  In addition, ethanol solution was utilized as the gas source since it is volatile 

and not dangerous to human. Single or multiple cups of the solution were placed at 

different locations while allowing the robot to build the gas distribution maps. A 
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