

The Evolution of Microstructures and Properties due to Materials Tool Interaction during Friction Stir Welding of Similar and Dissimilar Al and Cu Alloys

by

Hasan Issa Dawood (1240410781)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

2015

ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Allah for his blessings and the strength given me to complete this thesis. Special appreciation goes to my main supervisor Dr. Kahtan S. Mohammed for his supervisions and constant support. His invaluable help with constructive comments and suggestions throughout the experimental and thesis work have contributed to the success of this research. I would like also to express my sincere acknowledgment to my co-supervisor, Prof. Dr. Azmi Rahmat for his valuable guidance and comments during my study. I would also express my special gratitude to my friend Dr. Uday M.B. Institute for Vehicle Systems and Engineering, UTM who help and guided me at all time during my study. In addition, I would also like to extend my sincere appreciation to Kasim K. Al-Shemary and Dr. Murtadha S. AL-Nafiey for their willingness to provide insight and comments on my dissertation work.

Unforgettably, I would like to express my appreciation to the Dean Prof. Dr. Khairel Rafezi Ahmad, Deputy Deans, lecturers and all the staff of the School of Materials Engineering. My acknowledgement also goes to all the technicians and office staffs of our school for giving me their fullest co-operation.

My gratitude to my parent for their infinite patience and implicit faith in my capabilities is boundless and cannot be expressed in sufficient words. I would like to extend my deepest thanks to my family (wife, children's, brothers and sisters) for personal support and for their great patience at all times.

HASAN ISSA DAWOOD

TABLE OF CONTENTS

	PAGE
THESIS DECLARATION	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	x x
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	XX
LIST OF SYMBOLS	xxii
ABSTRAK	XXV
ABSTRACT	xxvi
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	8
1.3 Research Objectives	12
1.4 Thesis Outline	13
CHAPTER 2 LITERATURE REVIEW	14
2.1 Friction Stir Welding and Processing	14
2.1.1 Friction Stir Welding of Similar Materials	17
2.1.2 Friction Stir Welding of Dissimilar Materials	20
2.2 Types of Joints Produced in Friction Stir Welding	23

	2.2.1	Friction Stir Welding of Butt Joints	23
	2.2.2	Friction Stir Welding of Lap Joints	24
2.3	Advar	tages and Disadvantages of Friction Stir Welding	25
2.4	Impor	tant Parameters for Improving Friction Stir Welding Joints	27
	2.4.1	Effects of the Welding Tool	27
		2.4.1.1 Effects of Tool Pin Profiles	28
		2.4.1.2 Effects of Tool Shoulder	32
		2.4.1.3 Tool Plunge Depth and Tilt Angle	33
	2.4.2	Tool Rotation and Welding Speeds	35
	2.4.3	Roughness of Workpiece Surfaces	39
2.5	Micro	structure Classification in Friction Stir Welding	42
2.6	Dynar	nic Recrystallization	43
2.7	Mecha	anism of Material Flow	44
2.8	Mecha	anical Properties	47
	2.8.1	Tensile Strength	47
	2.8.2	Hardness Profiles	49
	2.8.3	Fractography	53
2.9	Temp	erature Distribution during Friction Stir Welding	54
2.10	Frictio	onal Heat Input during Friction Stir Welding Process	59
2.11	Effect	s of Thermal Expansion on Friction Stir Welding	61
2.12	Mater	ials	62
	2.12.1	6061 Aluminium Alloy	62
	2.12.2	Pure Copper	63
	2.12.3	Silicon Carbide (SiC)	64
СНАР	PTER 3	RESEARCH AND METHODOLOGY	66
			00

CHAPTER 3 RESEARCH AND METHODOLOGY

3.1	Introd	uction	66
3.2	Exper	imental Materials	68
3.3	Sampl	e and Welding Tool Preparation for Friction Stir Welding	68
	3.3.1	Sample Preparation	68
	3.3.2	Welding Tool Preparation	70
3.4	Frictio	on Stir Welding Process	72
	3.4.1	Friction Stir Welding of Similar Material	73
		3.4.1.1 Friction Stir Welding of 6061 aluminum alloy	73
		3.4.1.2 Friction Stir Welding of 6061 aluminum alloy with Respect to SiC powder	75
	3.4.2	Friction Stir Welding of Dissimilar Aluminum to Copper	76
3.5	Resear	rch Methodology	77
	3.5.1	Tool Pin Geometry and Dimension	77
	3.5.2	Tool Rotational Speeds	78
	3.5.3	Tool Welding Speeds	80
	3.5.4	Surface Roughness	80
		3.5.4.1 Surface Roughness Measurements	80
		3.5.4.2 Friction Coefficient Measurements	81
(3.5,5	Tool Rotational Speeds for Joining Dissimilar Metals	83
3.6	Mater	als and Interface Characterization	84
	3.6.1	Optical Emission Spectrometry (OES) Analysis	84
	3.6.2	Optical Microscopy	85
	3.6.3	FESEM and EDX Analyses	86
	3.6.4	X-Ray Diffraction (XRD) Analysis	86
3.7	Linear	Thermal Expansion Coefficient	87
3.8	Mecha	anical Properties	88

	3.8.1	Tensile Strength of the Joints	88
	3.8.2	Vickers Microhardness Tests	90
	3.8.3	Fractography	90
3.9	Therm	al Property Analysis during Friction Stir Welding Process	91
	3.9.1	Temperature Measurements	91
	3.9.2	Frictional Heat Generation	92
СНА	PTER 4	RESULTS AND DISCUSSION	95
4.1	Introd	uction	95
4.2	Raw N	Material Characterization	95
	4.2.1	Optical Emission Spectrometry (OES) Analysis	95
	4.2.2	Optical Microscopy (OM) and FESEM Equipped with an EDX Techniques	96
4.3	Influe	nce of Tool Pin Geometry on the Weld Properties	99
	4.3.1	Surface Characterization	101
	4.3.2	Macrostructural Studies by Optical Microscope	103
	4.3.3	Microstructural Observations by FESEM Technique	105
	4.3.4	X-Ray Diffraction (XRD) Analysis	107
	4.3.5	Mechanical Properties	109
	Ő	4.3.5.1 Tensile Test Analysis of the Joints	109
		4.3.5.2 Vickers Microhardness Test	111
		4.3.5.3 Fractography	113
	4.3.6	Thermal Analysis	116
		4.3.6.1 Effect of Tool Pin Profiles on Temperature Distribution and G Size	rain 116
		4.3.6.2 Effect of Tool Shoulder Diameter on Heat Flux Distribution	118
4.4	Influe	nce of Tool Rotational Speeds on the Weld Quality	119

	4.4.1	Effects of Tool Rotational Speeds without SiC Reinforcement	119
		4.4.1.1 Optical Microscope Analysis at NZ	120
		4.4.1.2 FESEM and EDX Analysis of Interface Microstructures	121
		4.4.1.3 Mechanical Properties	124
		4.4.1.4 Tensile Strength	124
4.4.1	l.4.1 M	icrohardness Characterization	125
4.4.1	l.4.2 Fr	actography	126
		4.4.1.5 Thermal Properties with Respect to Rotational Speeds	128
		4.4.1.6 Variation in Temperature with Different Rotational Speeds	128
4.4.1	l.6.1 He	eat Generation with Respect to Rotational Speed	129
	4.4.2	Effects of Tool Rotational Speeds with Respect to SiC Reinforcemen	t 130
		4.4.2.1 Microstructural Analysis by Optical Microscope	130
		4.4.2.2 Microstructural Investigation by FESEM Technique	131
		4.4.2.3 EDX Analysis	134
	4.4.3	Mechanical Properties	135
		4.4.3.1 Tensile Test	135
		4.4.3.2 Vickers Microhardness	136
	in l	4.4.3.3 Fractography	138
(9.4.4	Thermal Properties during FSW	141
		4.4.4.1 Variation in Temperature with Respect to Rotational Speeds	141
		4.4.4.2 Effects of Rotational Speeds on Heat Generation during FSW	142
4.5	Influe	nce of Tool Welding Speeds with Respect to SiC Reinforcement	143
	4.5.1	FESEM and EDX Analysis at the Interface	144
	4.5.2	Mechanical Properties of the Joints	147
		4.5.2.1 Tensile Test	147

		4.5.2.2 Microhardness Measurements	148
		4.5.2.3 Fractography	150
	4.5.3	Variation in Temperature with Respect to Welding Speeds	153
4.6	Effect	s of workpiece Surface Roughness on the Joint Characteristics	154
	4.6.1	Effects of Workpiece Surface Roughness on the Surface Appearance	155
	4.6.2	Microstructure Characterization of 6061 Aluminum–Alloy Joints	157
		4.6.2.1 Optical Microscope at the Interface Zone	158
		4.6.2.2 FESEM at the Butt–Joint Interface	159
		4.6.2.3 EDX Analysis at the Joint Interface	161
	4.6.3	XRD Analysis	162
	4.6.4	Measurement of the Mechanical Properties	164
		4.6.4.1 Tensile Strength of the Joints	164
		4.6.4.2 Vickers Microhardness Tests	166
		4.6.4.3 Fractography	169
	4.6.5	Thermal Properties during FSW	172
		4.6.5.1 Variation in Temperature with Different Surface Roughness	172
		4.6.5.2 Effects of Surface Roughness on Heat Generation during FSW	/ 173
4.7	FSW o	of Dissimilar Aluminum to Copper	175
(4 .7.1	FSW of Dissimilar Aluminum to Copper with Preheating	176
		4.7.1.1 Characterization of Weld Surface	177
		4.7.1.2 FESEM and EDX Analysis at the Interface	179
		4.7.1.3 XRD Analysis	183
		4.7.1.4 Thermal Expansion of the Base Materials and Welded Joints	186
		4.7.1.5 Mechanical Properties	188
		4.7.1.6 Tensile Strength	188

4.7.1.6.1 Vickers Microhardness measurements	190
4.7.1.6.2 Fractography	191
4.7.1.7 Thermal Property in FSW Dissimilar Al-Cu Joints	193
4.7.1.8 Temperature Distribution with Respect to Rotational Speeds	s 193
4.7.1.8.1 The Effects of the Rotational Speeds on the Frictional Heat Generation	194
4.7.2 FSW of Dissimilar Aluminum to Copper without Preheating	196
4.7.2.1 Results of Surface Appearance	196
4.7.2.2 Microstructures Analysis	199
4.7.2.3 XRD Analysis	202
4.7.2.4 Mechanical Properties	204
4.7.2.5 Tensile Tests	204
4.7.2.5.1 Microhardness Measurements	206
4.7.2.5.2 Fractography	207
4.7.2.6 Thermal Property	208
4.7.2.7 Temperature Distribution	208
4.7.2.7.1 Measurements of Heat Generation	209
CHAPTER 5 CONCLUSION AND RECOMMENDATION FOR FUTURE	
STUDIES	211
5.1 Conclusion	211
5.2 Recommendations for Future Research	214
REFERENCES	215
APPENDICES	230
LIST OF PUBLICATIONS	280

LIST OF TABLES

NO.	PAGE
2.1: Properties of 6061 aluminum alloy (Hirsch et al., 2008).	63
2.2: Properties of commercially pure copper.	64
2.3: Properties of silicon carbide composite.	65
3.1: Variables used to calculate the heat input and heat flux of different workpiece surface roughness for FSW 6061 aluminum alloy.	94
3.2: Variables used to calculate the heat input and heat flux of different rotational speeds for FSW aluminum and copper with preheating.	94
3.3: Variables used to calculate the heat input and heat flux of different rotational speeds for FSW aluminum and copper without preheating.	94
4.1: Chemical compositions of the raw materials (wt. %).	96
4.2: Experimental parameters applied for examining tool pin profiles.	100
4.3: Tool pin profiles and the grain size of 6061 aluminum alloy joints.	106
4.4: XRD data of 6061 aluminum alloy joints fabricated by different pin profiled tools compared with the BM.	109
4.5: Results of the tensile test.	110
4.6: Experimental parameters applied for examining tool rotational speeds.	119
4.7: Review of the FSW joints properties.	125
4.8: Variation in heat flux with respect to tool rotational speed.	130
4.9: Review of the FSW joints properties.	134
4.10: Experimental parameters applied for examining tool welding speeds.	143
4.11: Experimental parameters for examining the influence of workpieces surface roughness.	155
4.12: Relevant parameters of 6061 aluminum alloy from the XRD analysis.	164
4.13: Process parameters applied for examining tool rotational speeds with preheating on the copper side.	176

4.14: Process parameters applied for examining tool rotational speeds without preheating on the copper side.	176
4.15: XRD results of commercially pure Al and Cu base materials and the FSW joints at different rotational speeds near the interface.	186
4.16: The grain sizes of different welding zones of Al-Cu joints conducted at three different rotational speeds compared to BMs.	200
4.17: XRD results of Al and Cu base materials and the joints friction stir welded at different rotational speeds.	204
4.18: Tensile test properties of FSW Al-Cu joints.	205
othis tem is protected by original copying	

LIST OF FIGURES

NO.	PAGE
2.1: Friction stir welding process (Butt joint).	15
2.2: Friction stir processing for production of surface composite layer (Asadi et al., 2010).	16
2.3: Friction stir processing set up (Thompson et al., 2013)	19
2.4: (a) Copper on the advancing side; and (b) copper on the retreating side (Akinlabi, 2011)	21
2.5: Welds produced with the tool pin plunged in (a) Copper side; (b) at centre line; and (c) in aluminum side (Akinlabi et al., 2010).	22
2.6: Friction stirs welding of lap joint (Zhang et al., 2014).	25
2.7: Profiles of FSW tool pin (Elangovan and Balasubramanian, 2008a).	29
2.8: Effect of tool pin profiles on microstructure of FSP zone; (a) straight cylindrical, (b) tapered cylindrical, (c) threaded cylindrical, (d) square and (e) triangular, (Elangovan and Balasubramanian, 2008a).	29
2.9: (a) MX-Triflute pin and (b) MX-Trivex pin tool (Mishra and Mahoney, 2007).	31
2.10: Tool shoulder profiles (a) Conical and (b) Scrolled (Rodrigues et al., 2009).	33
2.11: Schematic diagram of plunge depth and tool tilt angle (Geiger et al., 2008).	35
2.12: Optical micrographs showing SiC particle distribution in (a) base metal and (b) the NZ in 7093 aluminum alloy–SiC composite (Baxter and Reynolds, 2001).	37
2.13: Welding zones after FSW process (Kadlec et al., 2015).	43
2.14: (a) Metal flow patterns and (b) metallurgical processing zones developed during FSW (Arbegast et al., 2003).	47
2.15: 2019 aluminum alloy FSW weld slice specimen tensile curves (Xu et al., 2013).	48
2.16: Tensile deformation curves of FSW and MIG of 6082-T6 and 6061-T1 aluminum alloys (Moreira et al., 2007).	49
2.17: Microhardness profile of FSW aluminum 6061-T6 and dissimilar joints (Moreira et al., 2009).	51
2.18: Hardness profiles along top, middle and bottom lines of transverse cross section (Tan et al., 2013).	52

2.19: Fracture surface of tensile samples (a) in the BM and (b) in the SZ (Yu et al., 2009).	54
2.20: Effect of depth on peak temperature as a function of distance from weld centerline for a 6061 aluminum alloy FSW at 400 rpm and 120 mm/min (Tang et al., 1998).	55
2.21: Effect of tool rotational speeds on peak temperature as a function of distance from weld center line for a 6061 aluminum alloy FSW at 120 mm/min (Tang et al., 1998).	56
2.22: Variation of peak temperature with distance from weld centerline for a 6061aluminium alloy FSW with and without tool pin at 400 rpm and 120 mm/min (Tang et al., 1998).	57
3.1: Flowchart of research stage one for 6061 aluminum alloys and pure aluminum- copper preparation for friction stir welding technique.	66
3.2: Flowchart of research stage two for friction stir welding process of similar 6061 aluminum alloy.	67
3.3: Flowchart of research stage three for friction stir welding process of dissimilar pure aluminum and copper.	67
3.4: Fitting template and required size of 6061 aluminum alloys.	69
3.5: Friction stir welding fixture.	70
3.6: Machined down to the diameter required of welding tool using a lathe machine.	71
3.7: Welding tool consisting of two parts.	71
3.8: Schematic diagram of heat treatment profile of welding tool.	72
3.9: Friction stir welding machine.	73
3.10: Friction stir welding process showing thermocouple positions.	74
3.11: Friction stir welding process reinforced with 10 vol. % SiC powder.	75
3.12: Welding tool without pin.	76
3.13: Typical image of FSW dissimilar commercially pure aluminum and copper with preheating on the copper side.	76
3.14: Tool pin profiles: (a) threaded tapered cylindrical, (b) triangular and (c) square.	78
3.15: Threaded tapered tool pin profile.	79

3.16: Typical images of 6061 aluminum alloy surface appearances with the surface roughness values; (a) $R_1 = 98$ nm, (b) $R_2 = 60$ nm, (c) $R_3 = 51$ nm and (d) $R_4 = 27$ nm	01
37 nm.	81
3.17: Welding tool profile.	82
3.18: Welding tool geometry.	83
3.19: Schematic diagram of a subsize tensile test specimen (all dimensions in mm).	89
3.20: (a) Image of universal testing machine and (b) Test layout for the subsize tensile specimen.	89
3.21: Layout of the thermocouples along the root line.	91
3.22: Image of K-type thermocouple.	92
3.23: Transient contact between the welding tool and the workpieces showing the distribution of heat flux (Q).	93
4.1: Optical micrograph of the elongated microstructure of the 6061 aluminum alloy BM.	97
4.2: Optical micrograph of commercially pure aluminum BM.	97
4.3: Optical micrograph of commercially pure copper BM.	98
4.4: FESEM micrograph and EDX results of the SiC particles.	99
4.5: Different types of tool pin design; (a) threaded tapered cylindrical (T₁), (b) triangular (T₂) and (c) square (T₃).	100
4.6: FSW 6061 aluminum alloy using a tool shoulder diameter of 17 mm and cylindrical tool pin diameter of 4 mm.	101
4.7: Effect of tool pin geometry on the weld surface quality (a) threaded tapered cylindrical pin T₁, (b) triangular pin T₂ and (c) square pin T₃.	102
4.8: Optical macro images of cross-sectional weld zone fabricated with different tool pin profiles: (a) threaded tapered cylindrical pin T_1 , (b) triangular pin T_2 and (c) square pin T_3 .	104
4.9: FESEM micrographs showing grain microstructures in the weld NZ of 6061 aluminum alloy joints friction stir welded with different tool pin profiles: (a, b) threaded tapered cylindrical pin T_1 , (c, d) triangular pin T_2 and (e, f) square pin T_3 .	107
4.10: XRD patterns of 6061 aluminum alloy before and after FSW at the different tool pin profiles.	108

4.11: Microhardness of the 6061 aluminum alloy joints welded by different tool pin profiles.	113
4.12: FESEM micrographs showing fracture surface feature of 6061 aluminum alloy joint after tensile test using T_1 tool pin (a) 1000× and (b) 3000×.	114
4.13: FESEM micrographs showing fracture surface feature of 6061 aluminum alloy joint after tensile test using T ₂ tool pin (a) $1000 \times$ and (b) $3000 \times$.	114
4.14: FESEM micrographs showing fracture surface feature of 6061 aluminum alloy joint after tensile test using T_3 tool pin (a) 1000× and (b) 3000×.	115
4.15: Transient temperatures sensed by the thermocouples for different tool pin profiles.	117
4.16: Effect of different tool pin profiles on the grain size of 6061aluminum alloy joints.	117
4.17: Temperature distribution in the FSW of aluminum plate with different tool shoulder diameter: (a) 13 and (b) 9 mm.	118
4.18: Optical microscope images of the microstructures at NZ friction stir weld with different rotational speeds: (a) 1300, (b) 1750 and (c) 2000 rpm.	121
4.19: Micrograph of friction stir weld with different tool rotational speeds: (a) 1300, (b) 1750 and (c) 2000 rpm.	122
4.20: EDX analysis for the joints friction stir weld at different rotational speeds: (a) 1300, (b) 1750 and (c) 2000 rpm.	123
4.21: Tensile strength profiles for the joints friction stir welded at different rotational speeds.	125
4.22: Effects of using different tool rotational speeds on microhardness distribution across the welded joints of 6061 aluminum alloy.	126
4.23: FESEM micrographs showing the fracture surface features of the cross- sectional area after tensile test of the specimens treated at: (a) 1300 (b) 1750 and (c) 2000 rpm.	128
4.24: Variation in peak temperature with different tool rotational speeds.	129
4.25: Effects of tool rotational speeds on microstructure of NZ friction stir weld with 10 vol. % SiC powder: (a) 1300, (b) 1750, and (c) 2000 rpm.	131
4.26: FESEM micrographs of friction stir weld with 10 vol. % SiC powder treated at (a) 1300 and (b) 2000 rpm.	132
4.27: FESEM micrographs of friction stir weld treated at (a) 1750 rpm with particle-rich regions of SiC powder and (b) 1750 rpm without SiC powder.	132

xv

4.28: EDX peak of SiC composite treated at 1750 rpm.	135
4.29: Microhardness behavior of specimens treated at (a) 1300, 1750, and 2000 rpm and at (b) 1750 rpm with and without SiC powder.	137
4.30: Comparative diagram of microhardness.	138
4.31: FESEM micrographs of the tensile fracture surfaces of specimens treated at (a, b) 1300, (c, d) 1750, and (e, f) 2000 rpm, as well as (g, h) treated at 1750 rpm without the reinforcement of SiC powder.	140
4.32: Effects of rotational speeds on the friction temperature for joining pieces of 6061 aluminum alloy.	141
4.33: Effects of rotational speeds on the frictional heat flux for joining pieces of 6061 aluminum alloy.	142
4.34: FESEM micrograph at the NZ of friction stir weld with 10 vol. % SiC powder treated at 30 mm/min (a) 1000× and (b) 3000×.	144
4.35: FESEM micrograph at the NZ of friction stir weld with 10 vol. % SiC powder treated at 60 mm/min (a) 1000× and (b) 3000×.	145
4.36: FESEM micrograph at the NZ of friction stirs weld with 10 vol. % SiC powder treated at 80 mm/min (a) 1000× and (b) 3000×.	145
4.37: EDX analysis of the joint friction stir weld at different welding speeds: (a) 30, (b) 60 and (c) 80 mm/min.	147
4.38: Effects of using different welding speeds on the tensile strain-stress curves.	148
4.39: Microhardness behavior of 6061 aluminum alloy joints treated at different welding speeds.	150
4.40: FESEM micrographs of the tensile fracture surface of the specimen treated at 30 mm/min: (a) 1000× and (b) 3000×.	151
4.41: FESEM micrographs of the tensile fracture surface of the specimen treated at 60 mm/min: (a) 1000× and (b) 3000×.	152
4.42: FESEM micrographs of the tensile fracture surface of the specimen treated at 80 mm/min: (a) 1000× and (b) 3000×.	153
4.43: Effects of welding speeds on the friction temperature for the joining pieces of 6061 aluminum alloy.	154
4.44: Typical 3D surface roughness maps of different surface roughness of the workpieces measured using AFM; (a) $R_1 = 98$ nm, (b) $R_2 = 60$ nm, (c) $R_3 = 51$ nm and (d) $R_4 = 37$ nm.	156

- 4.45: Typical images of 6061 aluminum alloy surface appearances of friction stir welded with the following surface roughness values; (a) $R_1 = 98$ nm, (b) $R_2 =$ 60 nm, (c) $R_3 = 51$ nm and (d) $R_4 = 37$ nm. 157 4.46: Optical images of 6061 aluminum alloy joints friction stir welded with different surface roughness of the workpieces: (a) $R_1 = 98$ nm, (b) $R_2 = 60$ nm, (c) $R_3 = 51$ nm and (d) $R_4 = 37$ nm. 159 4.47: FESEM micrographs showing grain microstructures in the weld nugget zone of 6061 aluminium alloy joints friction stir welded with different surface roughness of the workpieces: (a) $R_1 = 98$ nm, (b) $R_2 = 60$ nm, (c) $R_3 = 51$ nm and (d) $R_4 = 37$ nm. 160 4.48: EDX analysis in the weld nugget zone of the 6061 aluminum alloy joints friction stir welded at different surface roughness of the workpieces: (a) R_1 = 98 nm, (b) $R_2 = 60$ nm, (c) $R_3 = 51$ nm and (d) $R_4 = 37$ nm. 162 4.49: XRD pattern of 6061 aluminum alloy joints friction stir welded at different surface roughness of the workpieces $(R_1 - R_4)$. 163 4.50: Effects of using different surface topographies $(R_1 - R_4)$ on the tensile strainstress curves. 165 4.51: Effects of using different surface roughness of the workpieces (R_1, R_4) on the microhardness distribution across the welded joints of 6061 aluminum alloy. 168 4.52: Relationship between Vickers microhardness and average d^{-1/2} of the weld nugget zone using different surface roughness of the workpieces (R_1 - R_d). 169 4.53: FESEM micrographs showing the fracture surface features of the crosssectional area after the tensile test of specimen R_1 : (a) 500× and (b) 1000×. 170 4.54: FESEM micrographs showing the fracture surface features of the crosssectional area after the tensile test of specimen R_2 : (a) 500× and (b) 1000×. 171 4.55: FESEM micrographs showing the fracture surface features of the crosssectional area after the tensile test of specimen R_3 : (a) 500× and (b) 1000×. 171 4.56: FESEM micrographs showing the fracture surface features of the crosssectional area after the tensile test of specimen R_4 : (a) 500× and (b) 1000×. 172 4.57: Variation in the workpiece surface roughness on the friction temperature for joining pieces of the 6061 aluminum alloy. 173 4.58: Variation of the workpiece surface roughness (R_1-R_4) and the friction coefficient with the average friction temperature for joining pieces of 6061 aluminum alloy via friction stir welding. 174
- 4.59: Variation of the workpiece surface roughness and the friction coefficient (μ) on the frictional heat flux for joining pieces of 6061 aluminum alloy.175

4.60: Typical photographs of dissimilar commercially pure Al and Cu FSW at different rotational speeds: (a) 700, (b) 1000 and (c) 1500 rpm.	178
4.61: Interface between Al-Cu observed under FESEM at 700 rpm: (a) 1000× and (b) 3000×.	179
4.62: EDX analysis of dissimilar Al-Cu at the interface, FSW at 700 rpm.	180
4.63: Interface between Al-Cu observed under FESEM at 1000 rpm: (a) $1000 \times$ and (b) $3000 \times$.	181
4.64: EDX analysis of dissimilar Al-Cu at the interface, FSW at 1000 rpm.	181
4.65: Interface between Al-Cu observed under FESEM at 1500 rpm: (a) 1000× and (b) 3000×.	182
4.66: EDX analysis of dissimilar Al-Cu at the interface, FSW at 1500 rpm.	182
4.67: X-ray diffraction analysis of the friction stirs welded joints at (a) 700, (b) 1000 and (c) 1500 rpm.	185
4.68: Thermal expansion coefficient versus temperature for dissimilar commercially pure Al and Cu base materials.	187
4.69: Thermal expansion coefficient versus temperature for dissimilar joints of commercially pure Al-Cu friction stir welded at different rotational speeds.	188
4.70: Tensile test profiles of dissimilar friction stir welded joints at three different rotational speeds and base materials.	189
4.71: Average Vickers microhardness profiles across the welded joints at three different rotational speeds.	191
4.72: FESEM micrographs showing the tensile fracture surface modes of dissimilar Al-Cu joints; (a, b) FSW joint at 700 rpm, (500× and 3000×); (c, d) FSW joint at 1000 rpm, (500× and 3000×) and (e, f) FSW joint at 1500 rpm, (500× and 2000×)	102
	192
4.73: Effects of rotational speeds on friction temperature of joining commercial pure Al and Cu.	194
4.74: Effects of rotational speeds on frictional heat generation of joining commercial pure Al and Cu.	195
4.75: Effects of rotational speeds on the frictional heat flux of joining commercial pure Al and Cu.	195
4.76: Optical macrograph of dissimilar Al and Cu joint, FSW at a rotational speed of 1000; (a) Top view and (b) Bottom view.	197

4.77: Optical macrograph of dissimilar Al and Cu joint, FSW at a rotational speed of 1750; (a) Top view and (b) Bottom view.	198
4.78: Optical macrograph of dissimilar Al and Cu joint, FSW at a rotational speed of 2000; (a) Top view and (b) Bottom view.	198
4.79: : Microstructural analysis of dissimilar Al and Cu joints friction stir welded at; (a) 1750 rpm and (b) 2000 rpm.	200
4.80: FESEM and EDX analysis of dissimilar Al and Cu joint friction stir welded at 1000 rpm.	201
4.81: FESEM and EDX analysis of dissimilar Al and Cu joint friction stir welded at 1750 rpm.	202
4.82: FESEM and EDX analysis of dissimilar Al and Cu joint friction stir welded at 2000 rpm.	202
4.83: XRD analysis of the welded joints FSW at a: (a) 2000, (b) 1750 and (c) 1000 rpm.	203
4.84: Tensile strain-stress curves of dissimilar FSW Al-Cu joints at different rotational speeds compared to the BMs.	205
4.85: The average transverse microhardness across the welded joints at different rotational speeds.	207
4.86: FESEM micrographs showing tensile fracture surfaces of FSW dissimilar Al- Cu joints at different rotational speeds; (a) 1000, (b) 1750 and (c) 2000 rpm.	208
4.87: Effects of tool rotational speeds on friction temperature through FSW of Al and Cu.	209
4.88: Effects of tool rotational speeds on the frictional heat generation of FSW Al and Cu.	210
	010

4.89: Effects of tool rotational speeds on the frictional heat flux of FSW Al and Cu. 210

LIST OF ABBREVIATIONS

FSW	Friction Stir Welding
AS	Advancing Side
RS	Retreating Side
FSP	Friction Stir Processing
BM	Base Metal
SiC	Silicon Carbide
HAZ	Heat Affected Zone
Vol.	Volume
Mg ₅ Si ₆	Magnesium silicide
TWI	The Welding Institute
SZ	Stir Zone
NZ	Nugget Zone
min	Minute
rpm	Revolution Per Minute
Al-Mg-Si	Aluminum-Magnesium-Silicon
TEM	Transmission Electron Microscopy
Al ₄ Cu ₉	Intermetallic Compound
Al ₂ Cu	Intermetallic Compound
AlCu	Intermetallic Compound
TMAZ	Thermomechanically Affected Zone
Al_2O_3	Aluminum Oxide
SMAT	Surface Mechanical Attrition Treatment
SNC	Surface Nano Crystallization

ECAP	Equal	Channel	Angular	Processing
------	-------	---------	---------	------------

Equal Channel Angular Extrusion ECAE

nm Nanometer

MIG Metal Inert Gas

UTS Ultimate Tensile Strength

YS Yield Strength

BMs Base Metals

original copyright Field Emission Scanning Electron Microscopy **FESEM**

Energy-Dispersive X-ray Spectroscopy EDX

HRC **Rockwell Hardness**

OM **Optical Microscope**

Atomic Force Microscopy AFM

OES **Optical Emission Spectrometry**

American Standard Testing of Materials ASTM

Sodium Hydroxide NaOH

X-Ray Diffraction XRD

Wt% Weight Percent

At%

Atomic Percent

LIST OF SYMBOLS

Al-Mg-Si	Aluminum-Magnesium-Silicon
°C	Celsius Temperature
R_a	Surface Roughness, (nm)
<i>R</i> _{max}	Maximum Surface Roughness, (nm)
H_{v}	Hardness Value
H_0 and K_H	The Proper Constants
d	Grain Size, (µm or nm)
ρ	Dislocation Density
Kr	Material Constant
μ	friction coefficient
Μ	Interfacial Torque
R	Shoulder Radius, (mm)
<i>F</i> (r)	Axial Force, (Newton)
q_o	Friction Heat Input, (watts)
ω	Angular Velocity,(rad/sec)
N	Rotational Speed, (rad/sec)
Mn	Manganese
Zn	Zinc
Cu	Copper
kN	Kilonewton
R_1	As-Received Surface Roughness
R_2	Surface Roughness of Specimen Number Two
R_3	Surface Roughness of Specimen Number Three

R_4	Surface Roughness of Specimen Number Four
S	Second
W	Watt
Hz	Hertz
ml	Milliliter
g	Gram
kV	Kilovolt
mA	Milliampere
К	Kelvin
α	linear thermal expansion coefficient, (K^{-1})
ΔL	Change in Length of the Test Piece, (mm)
L _o	Initial Length of the Test Piece, (mm)
T_1	Reference Temperature, (K)
T_2	Test Temperature, (K)
kg	Kilogram
P_T	Applied Load, (Newton)
d_t	Arithmetic Mean of two Diagonal Lengths, (mm)
D	Shoulder Diameter, (mm)
A_c	Contact Area, (mm ²)
Q	Heat Flux, (Watt/mm ²)
wt.	Weight
С	Carbon
0	Oxygen
T_1	Threaded Tapered Cylindrical
T ₂	Triangular

T ₃	Square
cm	centimeter
No.	Number
Nos.	Numbers

othis term is protected by original copyright