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Pelaksanaan Kaedah Ciri Pemilihan dan Pertimbangan untuk Pengenalan Emosi 

daripada Tindakan Manusia 

 

 

ABSTRAK  

 

Emosi ialah keadaan semulajadi, naluri fikiran yang berasal dari keadaan, perasaan atau 

hubungan dengan orang lain. Emosi boleh dikategorikan terutamanya oleh ungkapan 

psiko-fisiologi, tindak balas biologi, interaksi badan dan keadaan mental. Dalam 

interaksi sosial, komponen emosi merupakan elemen penting dalam komunikasi, 

maklum balas dan menyampaikan maklumat. Setiap hari, tubuh manusia telah 

berkembang untuk melaksanakan tugas-tugas yang canggih untuk membawa maklumat 

tentang emosi. Kebelakangan ini telah melihat peningkatan yang ketara dalam 

penyelidikan model pengkomputeran untuk proses emosi manusia terutamanya dalam 

interaksi badan. Walau bagaimanapun, kebanyakan penyelidik kurang untuk menangani 

masalah dalam pra pemprosesan teknologi dan banyak bergantung pada kaedah 

tradisional untuk mentafsir emosi. Oleh itu, projek ini bertujuan untuk membangunkan 

kaedah pengenalan emosi yang lebih baik daripada tindakan manusia yang merangkumi 

pengekstrakan deskriptor dinamik (jarak, kelajuan, magnitud pecutan dan magnitud 

jerk) dan sifat-sifat statistik (min, maksimum, minimum, sisihan piawai, median, log-

energy, RMS dan entropi) daripada data posisi sendi, ciri pemilihan / pengurangan 

(Relief-F, cepat berdasarkan korelasi penapis (FCBF), korelasi ciri pemilihan (CFS), 

linear analisis diskriminan (LDA) dan prinsip analisis komponen (PCA)), kaedah ciri 

pemberat (ciri pemberat berdasarkan „Fuzzy‟ C-min (FWFCM) dan ciri pemberat 

berdasarkan binari dikodkan output (FWBEO)) dan pengenalan daripada emosi yang 

menggunakan pengelasan berbeza (K-jiran terdekat (KNN), „Fuzzy‟ K- jiran terdekat 

(FKNN) dan rangkaian kebarangkalian neural (PNN)). Selepas pengekstrakan ciri, ciri-

ciri yang relevan/berlebihan telah dikeluarkan menggunakan Relief-F, FCBF, CFS, 

LDA dan PCA. Selanjutnya, untuk mengurangkan tahap pertindihan yang besar antara 

ciri yang berkaitan / tidak berlebihan, tesis ini mencadangkan ciri kaedah pemberat 

berdasarkan FWFCM dan FWBEO untuk meningkatkan keupayaan diskriminasi ciri-

ciri dan juga untuk mengurangkan tahap pertindihan di antara ciri-ciri. Eksperimen 

pengelasan emosi berbeza seperti subjek bergantung, subjek yang bebas, jantina 

bergantung dan jantina yang bebas telah dijalankan. Langkah-langkah prestasi seperti 

ketepatan dan g-min keseluruhan dipertimbangkan untuk penilaian pengelasan itu. 

Keputusan eksperimen menunjukkan bahawa kaedah pemberat ciri-ciri yang 

dicadangkan (FWFCM dan FWBEO) berkesan untuk mengklasifikasikan emosi dalam 

tindakan manusia dengan ketepatan maximum adalah 100%. 
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Implementation of Feature Selection and Weighting Methods for Emotion 

Recognition from Human Actions 

 

 

ABSTRACT  

 

Emotion is a natural, instinctive state of mind emanating from one's circumstances, 

mood or relationships with others. Emotion can be characterized primarily by the 

psycho-physiological expressions, biological reactions, body interaction and mental 

states. In social interaction, emotional component serves as an important element in 

communication, response and conveying information. Every day, the human body 

has evolved to perform sophisticated tasks to carry information about emotions. 

Recent years have seen a significant expansion in research on computational models 

of human emotional processes primarily in body interaction. However, most 

researchers fail to address the problem in preprocessing technologies and mainly 

rely on traditional methods to interpret emotion. Thus, this thesis aims to develop 

improved emotion recognition methods from human actions which includes the 

extraction of dynamic descriptors (distance, speed, magnitude of acceleration and 

magnitude of jerk) and statistical features (mean, maximum, minimum, standard 

deviation, median, log-energy, RMS and entropy) from joint position data, feature 

selection/reduction (Relief-F, fast correlation-based filter (FCBF), correlation 

feature selection (CFS), linear discriminant analysis (LDA) and principle component 

analysis (PCA), feature weighting methods (feature weighting based on fuzzy C-

mean (FWFCM) and feature weighting based on binary encoded output (FWBEO)) 

and recognition of emotions using different classifiers (K-nearest neighbor (KNN), 

fuzzy K-nearest neighbor (FKNN) and probabilistic neural network (PNN)). After 

feature extraction, irrelevant/redundant features were removed using Relief-F, 

FCBF, CFS, LDA and PCA. Further, to reduce the higher degree of overlap among 

the relevant/non-redundant features, this thesis proposes FWFCM and FWBEO 

based feature weighting methods to enhance the discrimination ability of the features 

and also to minimize the degree of overlap among the features.  Different emotion 

recognition experiments such as subject dependent, subject independent, gender 

dependent and gender independent were carried out. The performance measures 

such as overall accuracy and g-mean were considered for the evaluation of the 

classifiers. The experimental results demonstrate that the proposed feature weighting 

methods (FWFCM and FWBEO) are effective to classify emotion in human action 

with a maximum accuracy of 100%.  

.  
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CHAPTER 1  

INTRODUCTION 

 

 

1.1 Towards the Emotional Intelligence Machines 

The ubiquitous use of computer technology in human life has become a trend 

and it seems endless. Over the years, many new technologies have been developed to 

make our lives more enjoyable and manageable. This development has led to the 

production of computers that are much faster, efficient and can do better jobs than 

humans. However, one of the biggest issues that provide a barrier, which prevents man 

and machine from melding together, is that humans can understand and express 

emotion, whereas computers cannot. This leads to questions such as “Why would 

machines need emotional intelligence?” It is easy to think of emotion as something not 

required for basic intelligent functioning and thus it is hard to encode in a computer 

programme. Therefore, “why do you need to bother giving emotional abilities to 

machines?” The development of technologies is not about giving more „emotional‟ to 

the intelligence of machines.  It is about how emotional intelligence could solve many 

problems that exist presently, while enabling good technologies for the future. This is a 

chance to give machines more human-like abilities to communicate with users.  

Most of the people already know that too much or too little emotion can impair 

rational thinking and behaviour. Body reaction such as facial expression, tones of voice, 

gestures, postures, eye contact, touch and expressive movement are forms of nonverbal 

communication that can contribute in the emotional development. People find it easy to 

express their feelings during walking, sitting, talking, jumping, running or while doing 
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other physical activities. For instance, a person may walk slowly while dropping his 

head when he is gloomy, stretch his body when nervous or sit idly when he is feeling 

lazy. Neuroscience research studies state that people who essentially have emotional 

problems are more prone to have strong damages in their daily functioning. An article 

from Pacer Centre has explicated that emotional experiences during childhood can result 

in difficulties while growing up (Pacer Center, 2006). In addition to the Diagnostic and 

Statistical Manual of Mental Disorders Fourth Edition Revised (DSM-IVR) criteria, 

several types of emotional disorder affect children and youth. Some of these include, 

Post Traumatic Stress Disorder (PTSD), adjustment disorders, major depressive 

disorder, Attention Deficit/ Hyperactivity Disorder (ADHD), autistic disorder, anxiety 

disorders and many more (Pacer Center, 2006). Scientists have collected evidence that 

shows that the emotional skills are a basic element of intelligence, especially useful for 

learning preferences and adjusting to what is crucial. Thus, there are many reasons for 

the development of emotional intelligence machines and involve teaching the machine 

to understand human emotions and thus enlisting their help for the facilitation of human 

work in several applications such as: 

a) Monitoring system: A Monitoring system provides new computational 

challenges and has wide applications in hospitals, security systems, factory 

environments and many more. For example, out stationed doctors or nurses can 

assist the patients in the hospital by monitoring the emotional state such as 

depression and autism in the patient behaviour on their cell phones using the 

visual inspection systems. In a different scenario, if the patient is wearing a heart 

monitor, for either general fitness tracking or health monitoring, then the 

technology can also potentially be tested to measure the changes of heart rate 

variability associated with the emotional stress and cognitive. In a work 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



 

3 

 

environment, the emotional fatigue is of special interest to improve the safety 

and anxiety of workers. In addition, the video system security can be used to 

detect emotional outbursts in day-to-day communication and detect suspicious 

behaviour such as criminal activity (e.g. fighting and attacking) as a security 

function. 

b) Entertainment: Robotic entertainment is an interesting topic to explore. In 

fiction, the robot has formed its sense of emotions and their own identity. This 

theme has been already adopted in forms of art and film industry like the 

interactive robot theatre. The transfer of the design rules for the believable 

characters from character animation and storytelling brings to more software 

agents and entertaining robots. A first feeling robot designed in 2010 by 

European researchers known as Nao, which understands emotional state as well 

possesses the ability to imitate and learn them. Nao is programmed with 

emotional responses for feelings as sadness, fear, excitement and it can interact 

with humans. It can develop personality and learn to remember faces and 

essential behaviour involving certain people. Another application is the selection 

of music according to the emotional state of the listener (automatic music 

selector). Sophisticated computer-aided learning software interacts emotionally 

to avoid boredom and keep the user interested. 

 

The ability to feel and react appropriately to user emotive feedback is of importance for 

increasing the consumption of adaptive computer systems (e.g., software agents, video 

retrieval systems and many more). Emotional intelligence contains the ability to 

recognize, express, have emotions, matched with the ability to control these emotions, 

utilize them for constructive purposes and skilfully handle the emotions of others. 
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Emotional intelligence skills have been shown to be a better predictor of IQ to measure 

success in life. 

 

1.2 Research Problem and Challenges 

Due to the potential wide-ranging applications and technical challenges across 

many fields, automatic emotion recognition has been a hot topic in pattern recognition 

and computer vision over the past three decades. Previously, most of the efforts have 

focused on different modalities, targeting facial expressions, voice expressions and 

physiological signals. However, less research regarding the association between body 

movements with basic human emotions has been conducted. In addition, there are many 

weaknesses in the quality of statistical features and the feature reduction techniques 

proposed previously, especially in the subject independent recognition and gender 

independent recognition (Hauskrecht et al., 2007). For example, data components group 

such as interclass and intra-class variation which obviously depends on the choice of the 

features. These results can lead to the low accuracy of emotion recognition in most of 

the emotion recognition applications. Regarding this issue, this work aims to enhance 

the emotion recognition rate. This is expected to pave the way for the use of the bodily 

expressions to their full potential. The following are the problems that can pose 

significant challenges in body movement: 

 

a) The relationship between emotions and body movements is regarded as weak 

and is less understood as compared to other modalities such as facial and voice 

expressions. This poses a challenge for the development of a computational 

model of body expressions where how to define emotions that increase and grow 

over a range of eliciting situations, from physical stimuli to complex situations, 

keeping with the roles in social interaction and individual behaviour.  
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b) In some scenarios, most of the motion signal is dominated by the action 

performed and the emotional variations are very subtle. The motions for analysis 

are also likely to be subjected to greater statistical noise as the recording 

procedures are less controlled than for the more archetypal expressions. 

Additionally, body motion contains a higher degree of flexibility that makes it 

difficult to measure. 

c) Unlike modalities such as voice and facial expression, communication of 

emotions by the body movement and expressions require further research in 

order to obtain a better view regarding how various emotional states can 

contribute to the perception and recognition. 

 

1.3 Research Aims and Objective 

The aim of this research is to develop a recognition system for detecting 

emotions from the general body motions. The objectives are as follows: 

a) To extract different statistical features and to select the best features using the 

chosen feature selection and reduction techniques. 

b) To enhance and classify the best-selected features by using the feature weighting 

method and machine learning classifier. 

c) To evaluate and validate the proposed methods in recognising emotion from 

knocking, throwing, lifting and walking actions. 

 

1.4 Scope of the Research 

This thesis presents a systematic approach to investigate emotion in human 

actions. The research work concentrates on the implementation of the feature 

enhancement techniques for improving the recognition rate of emotion in human 

actions. Biological motion library database was used in this study. Four different 
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emotions namely angry, happy, neutral and sad and four actions namely knocking, 

throwing, lifting and walking were considered. Statistical features were extracted from 

the kinematics (distance, speed, acceleration and jerk) of human movement. To make 

sure the features used are relevant and useful, the feature selection and reduction 

techniques were implemented. These techniques are very important in reducing features 

while maximising the classification rate. The empirical studies into feature selection and 

reduction techniques mostly have been confined to the identification of the number or 

percentage of features to be maintained in order to maximise the effectiveness of the 

classification. However, in this case, we assume that the quality of the features has a 

great influence on the performance of a learning algorithm with respect to the 

classification rate. Therefore, we proposed the feature weighting methods as 

enhancement techniques to increase variation between the features. Three classifiers 

were employed for the classification of emotion in human actions such as KNN, FKNN 

and PNN classifier. 

 

1.5 Thesis Outline 

This thesis is organized for the development of a recognition system for 

detecting emotions from general body motions. There are five chapters. 

Chapter 1 is an introduction of this research. This chapter gives brief 

information about the overview background of emotional intelligence machines, 

research problems and challenges, research aim and objectives, scope of the research 

fields. 

Chapter 2 reviews the research background of this research. This chapter covers 

models of emotion from psychological experiments and the potential view of emotional 

intelligence machines from different modalities (e.g. physiological studies, facial, and 

speech and body expression). The chapter also surveys the fundamental process of the 
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development of human body expression systems and includes the explanation of 

different existing methods such as a database, feature extraction, dimensional feature 

reduction and classification. At the end, the research contribution is presented. 

Chapter 3 discusses the research methodology. This chapter explains the 

description of the data collection, segmentation, feature extraction, feature selection and 

reduction techniques, along with proposing the feature enhancement techniques and 

classification methodologies. 

Chapter 4 combines the results from the motion analysis and the emotional 

features developed in Chapter 3 to build an emotion classification system in human 

actions.  

Chapter 5 summarizes the finding and limitation for this research and suggest 

directions for future recommendation. 
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