MEASUREMENT ON STRAIN RATE SENSITIVITY PROPERTIES OF RICE HUSK/LINEAR LOW DENSITY POLYETHYLENE (LLDPE) COMPOSITES UNDER VARIOUS LOADING RATES

NUR SUHAILI BINTI ABDUL WAHAB

1430411344

UNIVERSITI MALAYSIA PERLIS

2016

MEASUREMENT ON STRAIN RATE SENSITIVITY PROPERTIES OF RICE HUSK/LINEAR LOW DENSITY POLYETHYLENE (LLDPE) COMPOSITES UNDER VARIOUS LOADING

RATES

NUR SUHAILI BINTI ABDUL WAHAB

1430411344

Athesis submitted in fulfilment of the requirements for the degree of

Master of Science in Materials Engineering

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

2016

UNIVERSITI MALAYSIA PERLIS

	DECLARATION OF THESIS	
Author's full name :	NUR SUHAILI BINTI ABDUL WAHAB	
Date of birth :	19 JANUARI 1990	
Title :	MEASUREMENT ON STRAIN RATE SENSITIVITY	PROPERTIES
	OF RICE HUSK/LINEAR LOW DENSITY POLYETH	YLENE (LLDPE)
	COMPOSITES UNDER VARIOUS LOADING RATE	S
Academic Session :	2014/2015	Shi
I hereby declare that the thesis be placed at the library of UniMAF	becomes the property of Universiti Malaysia Perli P. This thesis is classified as :	s (UniMAP) and to be
CONFIDENTIAL	(Contains confidential information under the	Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specifie research was done)*	d by the organization where
OPEN ACCESS	I agree that my thesis is to be made imm copy or on-line open access (full text)	nediately available as hard
I, the author, give permission to of research or academic exchange	the UniMAP to reproduce this thesis in whole or ge only (except during a period of years, if	in part for the purpose so requested above).
is item is	Certified by:	
SIGNATURI	E SIGNATUR	E OF SUPERVISOR
900119-02-565	56 DR. MOHD	FIRDAUS BIN OMAR
Data : 21/6/2016		1/6/2016
Date :	Date :	

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGMENT

First of all, I would like to thank the Almighty Allah for His blessing and His power that I have managed to complete my thesis. A number of people have made significant contributions throughout my research work. Their insights, advice and suggestions help me a lot.

I would like to express my deep gratitude to my supervisor, Dr Mohd Firdaus Bin Omar, for his guidance and support from the beginning to the end of my research. He has been an excellent supervisor and has provided full support as well as advices, suggestion and also constructive criticism that greatly influence in my research. I am also grateful to my Co-supervisor, Dr Nik Noriman Bin Zulkepli for his invaluable help and suggestions during my research.

Besides that, my research project could not being completed without the help from staff of School Materials Engineering, Universiti Malaysia Perlis. I would like to extend my heartiest thanks to Mr Zaidi, Mr Nasir, Mr Hadzrul and Mr Idrus for kind involvement and helping me in my research. My gratitude also goes to the staff of School of Materials and Mineral Resources, Universiti Sains Malaysia especially Mr Bisyrul and Mr Khairi for their helping me in handling the research facilities.

Lastly, I would like to thank my family especially my parents for giving me life in the first place, educating me for unconditional support and encouragement throughout my studies and research. Not to forget to my siblings, friends and others who help me in my research. Thank you and may Allah bless you all.

ii

TABLE OF CONTENT

THES	SIS DECLARATION	i
ACK	NOWLEDGMENT	ii
TABI	LE OF CONTENT	iii
LIST	OF TABLES	vii
LIST	OF FIGURES	vii
LIST	OF ABBREVIATIONS	xi
LIST	OF SYMBOLS	xii
ABST	'RAK	xiii
ABST	RACT	xiv
CHA	PTER 1 INTRODUCTION	
1.1	Static and dynamic mechanical properties of materials	1
1.2	Development of dynamic testing	1
1.3	Static/dynamic mechanical behaviour of natural filler reinforced polym	er
	composites X	3
1.4	Problem statements	5
1.5	Objectives of study	5
1.6	Scope of study	6
1.7	1.7Organisation of thesis6	
CHAI	PTER 2 LITERATURE REVIEWS	
2.1	Introduction	8
2.2	Polymer	8
\bigcirc	2.2.1 Thermoplastic polymer	9
	2.2.1.1 Linear Low Density Polyethylene (LLDPE)	9
2.3	Rice husk	10
2.4	Natural filler reinforced composite	11
2.5	Natural filler surface modification	13
	2.5.1 Silane treatment	13
2.6	Static and dynamic mechanical testing	16
	2.6.1 History of Split Hopkinson Pressure Bar Apparatus (SHPBA)	17
	2.6.1.1 Split Hopkinson Pressure Bar Apparatus (SHPBA)	17

	2.6.1.2 SHPB testing on soft specimen	25
2.7	Static and dynamic mechanical behavior of natural filler reinforced	
	polymer composites	26
2.8	Strain rate sensitivity and thermal activation volume	27
2.5	Summary	28
CHA 3 1	PTER 3 MATERIALS AND METHODOLOGY	20
3.1	Materials	2) 20
5.2	3.2.1 Linear low density polyethylene (LLDPE)	2) 29
	3.2.2 Pice busk	2) 30
	3.2.3 Silane coupling agent	30
33	Sample preparation	30
5.5	3.3.1 Formulation for untreated RH reinforced LDPE composites	30
	3.3.2 Procedure for treated PH filler using silane coupling agent	31
	3.3.3 Formulation for different sizes of PH in PH/LI DPE composites	32
3 /	Fabrication of RH filler reinforced LI DPE composites	32
5.4	3.4.1 Compounding process	32
	3.4.2 Compression moulding	32
	3.4.3 Specimen cutting	33
3.5	Material characterisations	33
	3.5.1 Density measurement	33
	3.5.2 Fourier Transform Infrared Spectroscopy	33
	3.5.3 Particle size analyzer	34
3.6	Mechanical tests	34
\bigcirc	3.6.1 Static compression testing	34
	3.6.2 Dynamic compression testing	35
	3.6.2.1 Split Hopkinson Pressure Bar Apparatus (SHPBA)	35
	3.6.3 Static tensile testing	36
3.7	Post damage analysis	36
	3.7.1 Scanning Electron Microscopy	36
3.8	Calibration and verification of SHPB results	37
3.9	Experimental Chart	38

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Effect of rice husk loading on static and dynamic compressive prope			
	of RH	/LLDPE composites	39
	4.1.1	Stress/strain characteristic	40
	4.1.2	Yield behaviour	46
	4.1.3	Stiffness properties	48
	4.1.4	Strength properties	50
	4.1.5	Strain rate sensitivity and thermal activation volume	51
	4.1.6	Post Damage Analysis	53
		4.1.6.1 Physical Analysis	53
		4.1.6.2 Fracture Analysis	56
4.2	Effect	t of filler surface treatment on the static and dynamic compressive	
	proper	rties of RH/LLDPE composites	60
	4.2.1	Material characteristic of raw RH	61
		4.2.1.1 Fourier Transform Infrared Spectroscopy (FTIR)	61
		4.2.1.2 Scanning Electron Microscopy	63
	4.2.2	Strength properties	66
	4.2.3	Stiffness properties	68
	4.2.4	Yield behaviour	70
	4.2.5	Strain rate sensitivity and thermal activation volume	72
	4.2.6	Post Damage Analysis	73
		4.2.6.1 Physical Analysis	73
	. 6	4.2.6.2 Fracture Analysis	77
4.3	Effect	t of particle size on the static and dynamic compressive properties	
\bigcirc	of RH	/LLDPE composites	80
	4.3.1	Material characteristics	81
		4.3.3.1 Particle size conformation	81
	4.3.2	Stress/strain characteristics	82
	4.3.3	Yield strength	85
	4.3.4	Strength properties	88
	4.3.3	Stiffness properties	89
	4.3.5	Strain rate sensitivity and thermal activation volume	90
	4.3.6	Post Damage Analysis	91
		4.3.6.1 Physical Analysis	91

CHAPTER 5 CONCLUSION AND SUGGESTIONS FOR FURTHER WORK

5.1	Conclusion	95
5.2	Suggestion for further work	96

REFERENCES

98

93

APPENDIX A (Publication)	109
APPENDIX B (Calibrations and verifications of the SHPB	esults) 112
APPENDIX C (Example of calculation)	120
LIST OF PUBLICATIONS	122
LIST OF AWARDS	123

othis terms protected by original co

LIST OF TABLES

NO.		PAGE
3.1	The properties of LLDPE	29
3.2	The formulation used for RH/LLDPE composites	31
3.3	The formulation used for treated RH filler using silane coupling agent	31
3.4	The formulation used for particle sizes in RH/LLDPE composites	32
4.1	The overall properties of RH/LLDPE composites under various loading rates	43
4.2	The rate sensitivity and thermal activation volume of RH/LLDPE composites with different strain rates	52
4.3	The overall properties of untreated RH/LLDPE composite and treated composites under various loading rates	71
4.4	The rate sensitivity and thermal activation volume of untreated and treated RH/LLDPE composites with different strain rates	73
4.5	The overall properties of 15 wt. % RH/LLDPE composites under various loading rates as a function of particle sizes	85
4.6	The rate sensitivity and thermal activation volume of RH/LLDPE composites measured under various loading rates as function of particle sizes	91
6.1	The mechanical impedance characteristic of all tested specimens	115

LIST OF FIGURES

NO.		PAGE
2.1	Schematic molecular structures of LLDPE	10
2.2	Hydrolysis of silane	14
2.3	The reaction between the filler and silane	14
2.4	Schematic diagram of strain rate regimes (in reciprocal seconds) and the techniques that are suitable for obtaining them	16
2.5	The schematic diagram of a conventional SHPBA	19
2.6	The Lagrangian x-t diagram illustrating wave propagation in the Hopkinson Bars	19
2.7	Schematic diagram of SHPB signal	20
2.8	Typical diagram of the Hopkinson Bars	24
3.1	The chemical structure of silane coupling agents used in this study	30
3.2	The research flow chart in this study	38
4.1	Stress-strain curve for (A) LLDPE (B) LLDPE/5 wt. % RH (C) LLDPE/10 wt. % RH (D) LLDPE/15 wt. % RH (E) LLDPE/20 wt. % RH (F) LLDPE/30 wt. % RH composites under a wide range of strain rate investigated	44
4.2	The yield stress and the yield strain of the pure LLDPE and the RH/LLDPE composites under a wide range of strain rates investigated	47
4.3	The compression modulus of the pure LLDPE and the RH/LLDPE composites under various levels of strain rates investigated	49
4.4	The ultimate compressive strength (UCS) of the pure LLDPE and the RH/LLDPE composites under various levels of strain rates investigated	50
4.5	RH/LLDPE samples (a) LLDPE (b) 5 wt. % RH (c) 10 wt. % RH (d) 15 wt. % RH (e) 20 wt. % RH and (f) 30 wt. % RH at static loading loadings	54

4.6	RH/LLDPE samples (a) LLDPE (b) 5 wt. % RH (c) 10 wt. % RH (d) 15 wt. % RH (e) 20 wt. % RH and (f) 30 wt. % RH at dynamic loadings	55
4.7	The schematic diagram of RH/LLDPE composite at static and dynamic loading	56
4.8	The fracture structure of RH/LLDPE composites (A) 5 wt. % RH (B) 10 wt. % RH (C) 15 wt. % RH (D) 20 wt. % RH and (E) 30 wt. % RH at dynamic loadings	59
4.9	The schematic diagram of RH/LLDPE composites fracture structure at dynamic loadings	59
4.10	The silane coupling agent grafted onto the cellulose molecules	62
4.11	Comparison of FTIR spectra obtained for (a) untreated RH (b) 1 wt. % silane (c) 3 wt. % silane (d) 5 wt. % silane and (e) 7 wt. % silane-treated	62
4.12	SEM images of the surfaces of (A) untreated RH (B) 1 wt. % silane (C) 3 wt. % silane (D) 5 wt. % silane and (E) 7 wt. % silane	65
4.13	The ultimate compressive strength (UCS) of the untreated RH/LLDPE and the treated RH/LLDPE composites under various loading rates	67
4.14	The illustration of APS silane molecules on RH filler surfaces	68
4.15	The compression modulus of the untreated RH/LLDPE and the treated RH/LLDPE composites under various loading rates	69
4.16	The yield stress and the yield strain of the untreated and the treated RH/LLDPE composites under a wide range of strain rates	71
4.17	RH/LLDPE composites (a) untreated (b) 1 wt. % silane (c) 3 wt. % silane (d) 5 wt. % silane and (e) 7 wt. % silane at static loading loadings	75
4.18	RH/LLDPE composites (a) untreated (b) 1 wt. % silane (c) 3 wt. % silane (d) 5 wt. % silane and (e) 7 wt. % silane at dynamic loading loadings	76
4.19	The fracture structure of RH/LLDPE composites (A) untreated (B) 1 wt. % silane (C) 3 wt. % silane (D) 5 wt. % silane and (E) 7 wt. % silane at dynamic loading	79

4.20	The particle sizes distribution results and SEM images of RH filler (a) 500 μ m (b) 250 μ m (c) 125 μ m (d) 30 μ m	
4.21	True stress-strain curve of 15 wt. % RH/LLDPE composites with (A) 500 μ m (B) 250 μ m (C) 125 μ m (D) 30 μ m of particle sizes under various loading rates	84
4.22	The yield stress value of RH/LLDPE composites under various loading rates as a function of particle sizes	86
4.23	The schematic diagram of RH/LLDPE composites with largest particle size and smaller particle size of rice husk	87
4.24	The ultimate compressive strength (UCS) of the RH/LLDPE composites under various loading rates as a function of particle sizes	89
4.25	The compression modulus of the RH/LLDPE composites under various loading rates as a function of particle sizes	90
4.26	The photograph of RH/LLDPE composites specimen under (a) static loading (0.1 s ⁻¹) and (b) dynamic loading (650 s ⁻¹) as a function of filler sizes	92
4.27	The fracture surface of RH/LLDPE composites with various particle sizes (a) 500 μ m (b) 250 μ m (c) 125 μ m and (d) 30 μ m under 1100 s ⁻¹ of strain rate.	94
6.1	Strain gauge signal on the oscilloscope during calibration	117
6.2	Comparison of stress vs. time characteristic, derived from strain gauge signals during calibration	117
6.3	Dynamic true stress-strain and strain rate-strain curve in compression on linear low density polyethylene (LLDPE) with 14.2 ms ⁻¹ striking velocity	119

LIST OF ABBREVIATIONS

- ASTM American Society For Testing Materials
- FTIR Fourier Transform Infrared Spectroscopy
- LLDPE Linear Low Density Polyethylene
- PMCS Polymer Matrix Reinforced Composites
- RH
- SEM
- SHPB
- UCS
- UTM

othis tern is protected by original copyright

LIST OF SYMBOLS

Ė	Strain rate
\overline{V}^{*}	Thermal Activation Volume
A _b	Cross-Sectional Area of Bar
As	Cross-Sectional Area of Specimen
Co	Wave velocity
ρ	Density
Ε	Bridge Voltage
eo	Voltage Change In The Bridge
Sg	Strain Gauge Factor
E	Young Modulus
k	Boltzmann Constant
l_o	Initial Length of The Specimen
Т	Absolute Temperature
β	Strain Rate Sensitivity Parameter
G	Amplifier Gain Factor
3	Strain Pulse
εί	Incident Strain Pulse
ε _r	Reflected Strain Pulse
ε _t	Transmitted Strain Pulse
σ	Stress

Pengukuran pada Ciri-ciri Kepekaan Kadar Terikan Komposit Sekam Padi/Polietilena Berketumpatan Rendah Linear (LLDPE) di Bawah Pelbagai Kadar Beban

ABSTRAK

Dalam kajian ini, ujian mampatan dinamik dan ujian mampatan statik telah dijalankan dengan menggunakan alatan pecahan Hopkinson tekanan bar (SHPB) dan mesin ujian konvensional (UTM). Kedua-dua teknik ini digunakan untuk mengkaji kesan kadar terikan terhadap sifat-sifat mampatan komposit sekam padi diperkukuh dengan polietilena berketumpatan rendah linear. Keputusan SHPB pada awalnya telah disahkan dan ditentukurkan. Hasil kajian menunjukkan bahawa semua komposit sekam padi/polietilena berketumpatan rendah linear yang diuji mempunyai pergantungan besar terhadap kadar terikan yang dikenakan, dimana tegasan alah, modulus mampatan dan kekuatan mampatan, kesemuanya meningkat dengan peningkatan kadar terikan. Selain itu, kesan kandungan pengisi, agen gandingan silana dan saiz partikel komposit sekam padi/polietilena berketumpatan rendah linear di bawah pelbagai kadar terikan yang dikenakan juga dikaji. Ia boleh dilihat secara jelas bahawa penggunaan pengisi sekam padi ke dalam matrik polietilena berketumpatan rendah linear meningkatkan sifat-sifat mampatan komposit, termasuklah tegasan alah, modulus mampatan dan kekuatan mampatan. Ia juga didapati bahawa kandungan pengisi menunjukkan hubungan yang tidak ketara dengan kepekaan kadar terikan dan isipadu pengaktifan haba. Bagi kesan agen gandingan silana, keputusan menunjukkan bahawa kekuatan mampatan, ciri-ciri kekakuan dan tegasan alah telah bertambah baik bagi komposit sekam padi/polietilena berketumpatan rendah linear yang diuji. Sementara itu, agen gandingan silana mempamerkan hubungan yang ketara dengan kepekaan kadar terikan dan isipadu pengaktifan haba. Bagi kesan saiz partikel pula, ianya didapati bahawa saiz sekam padi memberi kesan yang ketara terhadap ciri-ciri mampatan komposit sekam padi/polietilena berketumpatan rendah linear. Komposit yang mempunyai saiz partikel yang lebih kecil merekodkan ciri-ciri mampatan yang tinggi dari segi kekuatan alah, kekuatan dan kekakuan jika dibandingkan dengan komposit yang mempunyai partikel saiz yang lebih besar. Untuk analisis pasca-kerosakan, keputusan menunjukkan kadar terikan yang dikenakan mempengaruhi kelakuan ubahbentuk komposit sekam padi/polietilena berketumpatan rendah linear yang diuji manakala pada beban dinamik, analisis kerosakan permukaan komposit diperiksa. Keseluruhannya, ia dapat disimpulkan bahawa penemuan kajian ini boleh meluaskan skop dalam bidang kajian vang berkaitan dengan kadar terikan di bawah beban dinamik untuk pengisi semula jadi diperkukuh komposit, dan komposit sekam padi/polietilena berketumpatan rendah linear ini juga mempunyai potensi yang lebih tinggi untuk digunakan dalam aplikasi industri.

Measurement On Strain Rate Sensitivity Properties Of Rice Husk/Linear Low Density Polyethylene (LLDPE) Composites Under Various Loading Rates

ABSTRACT

In this study, the dynamic compression testing and static compression testing were performed using Split Hopkinson Pressure Bar (SHPB) apparatus and a conventional Universal Testing Machine (UTM), respectively. These two techniques were used to investigate the effect of strain rates towards the compressive properties of rice husk (RH) reinforced with linear low density polyethylene (LLDPE) composites. The SHPB results were initially verified and calibrated. The results show that all tested RH/LLDPE composites have a greater dependency towards the strain rate applied, where the yield stress, compression modulus, and compressive strength, were all proportionally increased as the strain rate increased. Besides, the effect of filler content, silane coupling agents and particle sizes of RH/LLDPE composites under a wide range of strain rates also investigated. It can be clearly seen that the introduction of rice husk filler into LLDPE matrix increased the composite's compressive properties, including yield stress, compression modulus and compressive strength. It was also found that the filler content showed insignificant relationship with strain rate sensitivity and thermal activation volume. For the effect of silane coupling agent, the results indicate that compressive strength, stiffness properties and yield behaviour were improved for treated RH/LLDPE composites. Meanwhile, silane coupling agent showed significant relationship with strain rate sensitivity and thermal activation volume. As for the effect of particle size, it was found that the size of rice husk gave significant effects on the compressive properties of RH/LLDPE composites. The composites with smaller particle size has recorded higher compressive properties, in terms of yield strength, strength and stiffness as compared to composites with larger particle sizes. For the post damage analysis, the results show that applied strain rates affected the deformation behaviour of tested RH/LLDPE composites while at dynamic loading, the fracture surface analysis of the composites was examined. Overall, it can be concluded that these research finding can widen the scope of research area that related to the strain rate under dynamic loading for natural filler reinforced composites, and these RH/LLDPE composites also have the high potential to be applied in the industry application.

CHAPTER 1

INTRODUCTION

1.1 Static and dynamic mechanical properties of materials

The mechanical behaviour of materials is determined by their static and dynamic mechanical characterization. Regrettably, many researchers and scientists were only focused on the static rather than dynamic mechanical properties of materials. This is due to a very limited number of dynamic facilities and also the difficulty in running dynamic facilities. Therefore, a systematic research should be carried out in the future in order to improve the knowledge and understanding in the dynamic aspects of the material's behaviour especially for soft materials like polymeric materials.

1.2 Development of dynamic testing

Materials undergo different deformation under different strain rates loading especially at high strain rates. Hence, the knowledge of the material's characteristics in dynamic loading is becoming more crucial in order to produce the optimal products or structures that is able to stand up against high velocity impacts. Based on this highlighted issues, several conventional mechanical test have been developed to gain the mechanical properties of the materials at high strain rate (Hamouda & Hashmi, 1998). For example, Charpy impact test able to yield a strain rate of up to 100 s⁻¹, but only display fracture toughness data from the tests. Besides, this test also similar to the

drop-weight test that cover the low strain rate (i.e. between 1 and 10 ms⁻¹) and only provide energy absorption and fracture toughness (Altenaiji et al., 2014).

One of the most promising techniques that can be used to characterise the mechanical behaviour of materials at very high strain rates is the Split Hopkinson Pressure Bar (SHPB) technique. The SHPB technique was invented by Kolsky (1949) and developed by Hauser (1966), consists of split bar system which includes two bars (known as incident bar and transmitted bar) with specimen in between. Then, a stress pulse travelled through elastic input bars through a sample and lastly travels into an elastic output bar. The SHPB technique can provide a stress-strain curve as the output, which holds useful information to characterise the materials. In the SHPB set-up, a semiconductor strain gauge is mounted on both incident and transmitted bar. These two strain gauges analyse the signal and produce stress and strain of the specimen. However, a conventional SHPB in not suitable for low impedance materials such as polymer and rubber due to the transmitted signal too small to be captured by strain gauge (Song & Chen, 2005; Van et al., 2006). In addition, the equilibrium state is slower in soft materials.

Based on this limitation, the conventional theory technique is invalid and other solution must be carried out. Lately, two common methods have been found to overcome this problem. In the first method, the application of pulse shaper is used to induce a faster dynamic equilibrium achievement (Frew et al., 2005; Vecchio & Jiang, 2007). Another alternative method is the implementation of a low-impedance pressure bar such as polymer bar which has an impedance value closer to that tested materials (Johnson et al., 2010). With this solution method, it is proved that a closer impedance mismatch will significantly enhance the propagation of the transmitted pulse. Based on this situation, it can say that the SHPB test is still relevance for performing of dynamic testing on soft specimen especially in polymer based materials.

1.3 Static/dynamic mechanical behaviour of natural filler reinforced polymer composites

Generally, linear low density polyethylene (LLDPE) is remain as a popular commodity plastic due to its commercial potential in many industrial applications. Sadly, this thermoplastic polymer is still referred to as a low cost engineering plastic and only applied in the conventional applications. The incorporation of natural fillers into LLDPE matrix has shown great potential as it shows increasing in the longevity and durability of LLDPE that fulfil the requirement for engineering application. Interestingly, the used of natural fillers as replacement of glass fibers and minerals in thermoplastic composites is increasing due to the environmental benefits, including their renewable and biodegradable resources and reduce the crude oil usage in the production of the natural fillers (Kim et al., 2011; Kwon et al., 2013). However, natural filler is poorly compatible with polymeric matrices that has lower resulted in mechanical strength of natural filler reinforced thermoplastic composites, especially at the filler/matrix interfaces (Kabir et al., 2013; Zhou et al., 2014). Thus, the surface modification of natural filler has become crucial to achieve the maximum compatibility between filler and matrix which indirectly lead to the improvement in the mechanical properties of composites (Huda et al., 2008; Kabir et al., 2012; Zhou et al., 2014).

Rice husk (RH) is used as reinforcing fillers in LLDPE matrix due to their properties are quite similar to other natural fillers (Tong et al., 2014). The incorporation

of RH into polymer matrices provides advantages characteristics such as biodegradability, light weight, toughness, resistance to weathering and also makes final products more economically competitive (Arjmandi et al., 2015; Kwon et al., 2013; Zhao et al., 2009). Recently, many engineering products are exposed to dynamic loading and it is necessary to investigate the dynamic behaviours of these composite in order to prevent any unexpected failure during the service. In current situation, many of researches only focused on their static rather than dynamic mechanical properties of pure polymer. Unfortunately, the effect of fillers on strain rate sensitivity and dynamic behaviour of the composite were frequently neglected. This issue might be effectuated by the nature of the composite that bring difficulty in the specimen's geometry design for dynamic testing (Hamouda & Hashmi, 1998).

Besides, a few researchers have produced optimal specimen's geometry to overcome this drawback and proved that the dynamic facilities are also suitable for composite materials especially polymer matrix composites (PMCs) (Guo & Li, 2007; Hao et al., 2005). Thus, this is a huge opportunity to discover the capabilities and possibilities of these composites to replace conventional materials, especially in dynamic loading application. However, none of the previous work has specifically reported the dynamic mechanical properties of RH/LLDPE composites. One of the researches that has been demonstrated by Yang et al. (2004) only reported on the mechanical properties of rice husk reinforced polypropylene composites at low loading rates. Besides, another research that reported by Premalal et al. (2002) only focused on the mechanical properties of rice husk powder filled polypropylene at static loading rates. Thus, it is very important to carry out specific experiment to investigate the capability of RH/LLDPE composites under static and dynamic loading rates.

1.4 Problem statements

Nowadays, the use of natural filler reinforced polymer composites in the conventional application have been extended from conservative to more challenging application such as automobiles, construction, load-bearing application and engineering components. Mostly, all of those applications are mainly involve with different level of strain rates. So, it is compulsory to study the effect of strain rate on the highlighted application in order to prevent the unexpected failure during the service. Besides, the knowledge of rate sensitivity is also important during material selection to estimate the magnitude of changes in material's properties. However, there is a very limited number of research that focus on the dynamic behaviour as well as the rate sensitivity of natural filler reinforced polymer composites. Therefore, we believe that a systematic study under a dynamic condition of natural filler reinforced polymer composites is necessary to fulfil the insufficiencies of the information in this material.

1.5 Objectives of study

The objectives of this study are:

- 1) To analyze the effect of RH filler content on the static and dynamic compressive properties of RH/LLDPE composites.
- To examine the effect of silane treatment on the static and dynamic compressive properties of RH/LLDPE composites.
- To investigate the effect of particle size on the static and dynamic compressive properties of RH/LLDPE composites.

 To distinguish the morphology characteristic of RH reinforced with LLDPE composites under various loading rates.

1.6 Scope of study

The scope of this study is to investigate the effect of strain rates on the compressive properties of rice husk reinforced linear low density polyethylene composites under static and dynamic loading. Five different compositions of RH/LLDPE composites will be prepared and mixed using twin screw extruder. Then, the specimens will be compacted using hot press machine. The sample will be compressed under three different strain rates loading at both static and dynamic loading, respectively. Besides, the effect of surface treatment and particle sizes of RH/LLDPE composites under both static and dynamic loading also will be investigated. The specimens will be characterized using Fourier Transform Infrared (FTIR) for compound identification and Scanning Electron Microscopy (SEM) for morphology study. At the end of this study, the compressive properties, strain rate sensitivity and thermal activation volume of the composites are analyzed based on the effect of strain rates toward filler contents, surface treatment and particle sizes.

1.7 Organisation of thesis

This thesis has been divided into eight chapters which each chapter provides the information about the research study as mentioned in the objectives.

• **Chapter 1** covers the introduction of the thesis. It contains a general overview on the development of the static and dynamic testing, summary about dynamic studies

on the natural filler reinforced polymer composites, objectives of the research and organization of the thesis.

- Chapter 2 provides some fundamental concepts of the split Hopkinson pressure bar technique with review of related works reported in previous findings.
- **Chapter 3** explains the material specifications, methodology and experimental procedures that has been performed in this study.
- **Chapter 4** discusses the calibration and verification of the SHPB results.
- **Chapter 5** discusses the effect of RH filler content on the static and dynamic compressive properties of RH/LLDPE composites.
- **Chapter 6** discusses the effect of silane treatment on the static and dynamic compressive properties of RH/LLDPE composites.
- Chapter 7 discusses the effect of particle size on the static and dynamic compressive properties of RH/LLDPE composites.
- Chapter 8 concludes the finding of the research and the assessment that has been made in order to achieve the objective of this study. A few suggestions for further study have been proposed.

CHAPTER 2

LITERATURE REVIEWS

2.1 Introduction

This chapter summaries the principle of the thermoplastic polymers followed by the overview of natural filler reinforced composites, explaining their increasing use in a wide range of engineering application. Besides, the review was also focused on the silane coupling agents as one of the treatment method that improves the properties of natural fillers. In addition, the literature study was carried out on the development of the dynamic facilities, especially in Split Hopkinson pressure bar apparatus (SHPBA). Besides, the study on static and dynamic behaviors of natural filler reinforced plastic was also comprehensively revised.

2.2 Polymer

159

Generally, the name polymer is derived from the Greek poly for many and *meros* for parts. A polymer molecule consists of a repetition of the unit called *mer* (Chanda & Roy, 2006). Basically, there are three main types of polymers which are thermoplastic, thermoset and elastomers (Harper, 2002). Among these three polymer groups, thermoplastic polymers have been widely used in both conservative and challenging applications.