PROPERTIES AND BIODEGRADABILITY OF LOW DENSITY POLYETHYLENE/THERMOPLASTIC SOYA SPENT POWDER (TSSP) BLENDS ADDED SPEAR GRASS POWDER AS PRO-OXIDANT

NURADIBAH MOHD AMER

UNIVERSITI MALAYSIA PERLIS 2016

PROPERTIES AND BIODEGRADABILITY OF LOW DENSITY POLYETHYLENE/ THERMOPLASTIC SOYA SPENT POWDER (TSSP) BLENDS ADDED SPEAR GRASS POWDER AS PRO-OXIDANT

by NURADIBAH MOHD AMER (1331111028)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Bioprocess Engineering

> School of Bioprocess Engineering UNIVERSITI MALAYSIA PERLIS

> > 2016

ACKNOWLEDGEMENT

First and foremost, my utmost gratitude to my supervisor, Dr. Sam Sung Ting whose help me a lot in my journey to complete my research and thesis. His excellent guidance, caring, patiently corrects my writing day and nights will not be forgettable. I really appreciate his enthusiasm and ideas towards this research.

Thank you does not seem sufficient but it said with appreciation and respect. Special appreciation goes to my co-supervisor, Dr. Nik Noriman bin Zulkepli for his supervision and knowledge to this topic. Not forgettable, thank you to Associate Professor Dr. Dachyar, Puan Nurul Ain Harmiza binti Abdullah for their consultation.

I would like to express my indeed grateful to my beloved parents, Mr. Mohd Amer bin Dahari and Mrs. Aminah bt Ahmad for their endless love, encouragement and prayers that make this research become possible. I would also like to thank to all teaching engineers and technicians who rendered their helps during the period of my project work. Last but not least, sincere thank to all my colleagues for sharing the knowledge and their moral support. I really appreciated it.

TABLE OF CONTENTS

THE	ESIS DECLARATION	i
ACH	KNOWLEDGEMENT	ii
TAE	BLES OF CONTENTS	iii
LIS	T OF TABLES	viii
LIS	T OF FIGURES	x
LIS	T OF ABBREVIATIONS	xiv
LIST	T OF NOMENCLATURES	xvi
LIS	T OF SYMBOLS	xvii
ABS	STRAK	xviii
ABS	STRACT	xix
CHA	Bles OF CONTENTS T OF TABLES T OF FIGURES T OF ABBREVIATIONS T OF NOMENCLATURES T OF SYMBOLS STRAK STRACT APTER 1 INTRODUCTION Background	
1.1	Background	1
1.2	Problem Statement	5
1.3	Research Objectives	6
1.4	Scope of Study	6
1.5	Thesis Organization	7
CHA	APTER 2 LITERATURE REVIEWS	
2.1	Usage of Plastic In Plastic Industry	8
2.2	Type of Polyolefins	10
	2.2.1 Polyethylene	10
	2.2.2 Polypropylene	12
2.3	Sources of Natural Polymers	13

	2.3.1	Polysaccharides	13
		2.3.1(a) Starch	15
		2.3.1(b) Cellulose	18
		2.3.1(c) Chitin and Chitosan	19
	2.3.2	Proteins	19
		2.3.2(a) Wheat Gluten	20
		2.3.2(b) Collagen/ Gelatine	21
		2.3.2(c) Soya	22
2.4	Types	s of Compatibilizers and Plasticizer	25
	2.4.1	2.3.2(c) Soya s of Compatibilizers and Plasticizer Compatibilizer in Polymer Blends Plasticizer in Polymer Blends Grass as Pro-Oxidant	26
	2.4.2	Plasticizer in Polymer Blends	27
2.5	Spear	Grass as Pro-Oxidant	. 28
2.6	Biode	gradable Plastic	29
2.7	Isolati	ion of Microorganisms as the Agent of Biodegradation	31
СНА	PTER 3	METHODOLOGY	
3.1		luction	34
3.2	Mater	ials (34
3.3	Prepa	ration of Samples	37
	3.3.1	Thermoplastic soya spent powder (TSSP) preparation	37
	Q3.3.2	Spear Grass Preparation	37
	3.3.3	Blends Preparation	37
3.4	Biode	gradability Test	39
	3.4.1	Natural Soil Burial Test	39
	3.4.2	Natural Weathering Test	40
3.5	Analy	vsis	41
	3.5.1	Tensile Properties	41

	3.5.2	Morphological Study	42
	3.5.3	Fourier Transform Infrared (FTIR) Analysis	42
	3.5.4	Differential Scanning Calorimetry (DSC)	42
	3.5.5	Thermogravimetric Analysis (TGA)	43
3.6	Isolati	on of Degrading Microorganisms	43
3.7	Mediu	m Preparations	44
	3.7.1	Potato Dextrose Agar (PDA)	44
	3.7.2	Preparation of Basal Medium	45
3.8	Isolati	on of degrading fungi in LDPE/TSSP blends	45
3.9	Inocul	ums Preparation	46
	3.9.1	Microorganisms	46
	3.9.2	Potato Dextrose Agar (PDA) Preparation of Basal Medium on of degrading fungi in LDPE/TSSP blends ums Preparation Microorganisms Microbial Inoculums	46
	3.9.3	Visible Cell Counting by Haemocytometer	46
3.10	Liquic	I State Fermentation	48
3.11	Morph	nology Identification	48
3.12		fication of Unknown Microorganisms by 18S rDNA Region ncing Analysis	49
CHA BLEN		EFFECT OF GLYCEROL ON LDPE/SSP AND LDPE/TSSP	
4.1	Glyce	erol as Plasticizer Agent in the LDPE/TSSP blends	50
	4.1.1	Characterization of Ester Bond by FTIR Analysis	50
	4.1.2	Plasticization Mechanism of Glycerol to SSP	51
	4.1.3	Processing Behaviours of LDPE/SSP blends and LDPE/TSSP blends	53
	4.1.4	Tensile Properties	55
	4.1.5	Thermogravimetric Analysis (TGA)	61
	4.1.6	Differential Scanning Calorimetry (DSC)	63

4.2	Effect Glyce	of Natural Weathering on the LDPE/SSP Blends Plasticized by rol	65
	4.2.1	Tensile Properties	66
	4.2.2	Carbonyl Indices	76
4.3	Effect Glyce	of Natural Soil Burial on the LDPE/SSP Blends Plasticized by erol	79
	4.3.1	Tensile Properties	79
	4.3.2	Carbonyl Indices	89
4.4	Isolati	on of Plastic Degrading Microorganisms	92
	4.4.1	Utilization of LDPE/TSSP Powder as Carbon Source	93
	4.4.2	Morphology of Isolated Strains	96
	4.4.3	Identification of Fungi Degrading LDPE/TSSP Blends	98

CHAPTER 5: EFFECT OF SPEAR GRASS POWDER AS PRO-OXIDANT ON NATURAL WEATHERING AND SOIL BURIAL

5.1	Incorporation of Spear Grass as Pro-Oxidant	101
	5.1.1 Tensile Properties	101
5.2	Incorporation of Spear Grass Powder in LDPE/TSSP Blends	105
	5.2.1 Natural weathering	105
	5.2.1(a) Tensile Properties	105
	5.2.2 Carbonyl Indices	112
5.3	Natural Soil Burial	114
	5.3.1 Tensile Properties	115
	5.3.2 Carbonyl Indices	119

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

6.1	Conclusions	121
6.2	Recommendations for further study	123

REFERENCES	124
APPENDIX	137
LIST OF PUBLICATIONS	140
LIST OF AWARDS	141

othis item is protected by original copyright

LIST OF TABLES

NO.		PAGE
1.1	Generation of solid waste in East Malaysia	1
2.1	Differences between LDPE and HDPE	10
2.2	Types of polysaccharides	14
2.3	Amino acid compositions in soya proteins	23
2.4	Metal composition in spear grass	28
2.5	Definition of biodegradable plastic	30
3.1	Raw materials, function and supplier	35
3.2	Amino acid compositions in soya proteins Metal composition in spear grass Definition of biodegradable plastic Raw materials, function and supplier Purpose, instruments and model	35
3.3	Table of formulation for series 1 (Effect of different blend ratio to LDPE/SSP blends)	38
3.4	Table of formulation for series 2 (Effect of glycerol as plasticizer on LDPE/TSSP blends)	38
3.5	Table of formulation for series 3 (Effect of spear grass powder as pro-oxidant in LDPE/TSSP blends)	38
3.6	Average temperature, rainfall, and relative humidity for the Perlis	40
4.1	Weight loss (%) for neat LDPE, LDPE/SSP blends and LDPE/TSSP blends	62
4.2	DSC data for pure LDPE, LDPE/SSP blends and LDPE/TSSP blends	64
4.3	Data of tensile strength (MPa), Elongation at break (%) and Young's modulus (MPa) for LDPE/SSP blends and LDPE/TSSP blends after 9 months of natural weathering	67
4.4	Carbonyl index for LDPE/SSP blends and LDPE/TSSP blends after 9 months of natural weathering	78

4.5	Data of tensile strength (MPa), Elongation at break (%) and Young's modulus (MPa) for LDPE/SSP blends and LDPE/TSSP	
	blends after 9 months of soil burial	80
4.6	Percentage of changes for hydroxyl group	91
4.7	Blast report for WI isolate	99
4.8	Blast report for GI isolate	99
4.9	Blast report for BI isolate	100
5.1	Data of tensile strength (MPa), Elongation at break (%) and Young's modulus (MPa) for LDPE/TSSP blends and LDPE/TSSP blends added	
	spear grass powder after 9 months of natural weathering	106
5.2	Carbonyl index for LDPE/TSSP blends and LDPE/TSSP blends added	
	Carbonyl index for LDPE/TSSP blends and LDPE/TSSP blends added spear grass powder after 9 months of natural weathering	114

LIST OF FIGURES

NO.		PAGE
1.1	Component of solid waste (%)	2
2.1	Structure of propylene monomer	13
2.2	Structure of amylose and amylopectin	16
2.3	Structure of soya bean	22
2.4	General mechanism of plastic biodegradation	29
3.1	Overall process for natural weathering and soil burial test	36
3.2	Samples buried in the soil	39
3.3	Samples on the natural weathering rack	41
3.4	Flowchart of the identification of unknown microorganisms	44
3.5	Appearance of the haemocytometer grid visualised under the microscope	47
3.6	Heat fixed process of the microbial sample	48
4.1	IR spectra of pure LDPE, LDPE/25% SSP and LDPE/25% TSSP blends	51
4.2	Structure of glutamic acid	51
4.3	Formation of ester bond between SSP and glycerol	52
4.4	Schematic diagram of SSP plasticized by glycerol	53
4.5	Peak Torque of LDPE/SSP blends and LDPE/TSSP blends	54
4.6	Stabilization Torque of LDPE/SSP blends and LDPE/TSSP blends	55
4.7	Tensile strength of LDPE/SSP blends and LDPE/TSSP blends	56
4.8	Elongation at break (E _b) of LDPE/SSP blends and LDPE/TSSP blends	57

4.9	(a) SSP filler and Tensile fracture surface of LDPE/SSP blends with SSP contents of (b) 0 wt % (c) 5wt % (d) 15wt % and (e) 25 wt%	58
4.10	Tensile fracture surface of LDPE/TSSP blends with various TSSP contents of (a) 5wt % (b) 15wt % and (c) 25wt %	59
4.11	Comparison of Young's modulus between LDPESSP blends and LDPE/TSSP blends	60
4.12	Weight loss (%) versus temperature diagram of pure LDPE, LDPE/SSP blends and LDPE/TSSP blends	61
4.13	DSC melting thermogram of neat LDPE, LDPE/25% SSP blends and LDPE/25% TSSP blends	63
4.14	DSC heating thermogram of neat LDPE, LDPE/25% SSP blends and LDPE/25% TSSP blends	64
4.15	Comparison of the tensile strength after 9 months of weathering	70
4.16	Comparison of the E_b after 9 months of weathering	71
4.17	SEM micrographs of weathered surface for LDPE/SSP blends with SSP contents of (a) 0 wt % (b) 5 wt% (c) 25wt % after 3 months; (d) 0 wt% (e) 5 wt% (f) 25 wt% after 6 months; (g) 0 wt% (h) 5 wt% (i) 25 wt% after 9 months of weathering	74
4.18	SEM micrographs of weathered surface for LDPE/TSSP blends with TSSP contents of (a) 5 wt% (b) 25 wt% after 3 months; (c) 5 wt% (d) 25 wt% after 6 months; (e) 5 wt% (f) 25 wt% after 9 months of weathering	75
4.19	IR spectra of LDPE/SSP blends over 9 months of weathering	77
4.20	IR spectra of LDPE/TSSP blends over 9 months of weathering	77
4.21	Comparison of the tensile strength for LDPE/SSP blends and LDPE/TSSP blends after 9 months of soil burial	82
4.22	Mechanism of sunlight and microorganisms to penetrate through LDPE/TSSP blends	83
4.23	SEM micrographs for LDPE/SSP blends with SSP contents of (a) 0 wt% (b) 5 wt % (c) 25 wt% after 3 months; (d) 0 wt% (e) 5 wt% (f) 25 wt% after 6 months; (g) 0 wt% (h) 5 wt% (i) 25 wt% after 9 months of soil burial	86

4.24	SEM micrographs of LDPE/TSSP blends with TSSP contents of (a) 5 wt% (b) 25 wt% after 3 months; (c) 5 wt% (d) 25 wt% after 6 months; (e) 5 wt% (f) 25 wt% after 9 months of soil burial	87
4.25	E_b of LDPE/SSP blends and LDPE/TSSP blends after 9 months of soil burial	88
4.26	Young's modulus of LDPE/SSP blends and LDPE/TSSP blends after 9 months of soil burial	89
4.27	IR spectra of LDPE/SSP blends over 9 months of composting period	90
4.28	IR spectra of LDPE/TSSP blends over 9 months of composting period	90
4.29	Carbonyl index for the LDPE/SSP blends and LDPE/TSSP blends over a period of soil burial test	92
4.30	Three different strains isolated from composting soil; (a) W1 isolate, (b) G1 isolate and (c) B1 isolate	93
4.31	Percentage increment of cell dry weight (mg)	95
4.32	Production of biomass	96
4.33	Morphology of (a) white strain; (b) green strain and (c) brown strain	97
5.1	Tensile strength of LDPE/TSSP blends with the addition of spear grass powder	102
5.2	E_b of LDPE/TSSP blends with the addition of spear grass powder	102
5.3	SEM micrographs of LDPE/TSSP with various spear grass powder loadings of (a) 1 wt % (b) 1.5 wt % and (c) 3 wt %	103
5.4	Young's modulus of LDPE/TSSP blends with the addition of spear grass powder.	104
5.5	Tensile strength of LDPE/TSSP blends with and without spear grass after 9 months of natural weathering	109
5.6	E_b of LDPE/TSSP blends with and without spear grass after 9 months of natural weathering	107

5.7	SEM micrographs of weathered surface for LDPE/TSSP blends added spear grass powder with TSSP contents of (a) 5 wt % (b) 25 wt% after 3 months; (c) 5 wt % (d) 25 wt % after 6 months; (e) 5 wt % (f) 25 wt % after 9 months of weathering	r 111
5.8	Comparison of the IR spectra of blends with and without spear grass powder after 9 months of natural weathering	113
5.9	Degradation pathways of polyethylene containing pro-oxidant	113
5.10	Tensile strength of spear grass powder added LDPE/TSSP blends after 9 months of soil burial	115
5.11	E_b of the spear grass powder added LDPE/TSSP blends after 9 months of soil burial	116
5.12	SEM micrographs of LDPE/TSSP blends added spear grass powder with TSSP contents of (a) 5 wt% (b) 25 wt% after 3 months; (c) 5 wt% (d) 25 wt% after 6 months; (e) 5 wt% (f) 25 wt% after 9 months of soil burial	117
5.13	Young's modulus of LDPE/TSSP blends added spear grass powder after 9 months of burial exposure	118
5.14	Carbonyl index for the DPE/TSSP blends and LDPE/TSSP blends	110
	added spear grass powder over a period of soil burial test	120
(orhib	

LIST OF ABBREVIATIONS

Brown isolate
Diethylene glycol
Degree of substitution
Different scanning calorimetry
Elongation at break
Ethylene glycol
Epoxidised natural rubber with 50 mol% epoxidation
Epoxidised palm oil Epoxidised soya bean oil Fourier transform infrared
Epoxidised soya bean oil
Fourier transform infrared
Green isolate
High density polyethylene
Low density polyethylene
Linear low density polyethylene
Poly(butylenes adipate-co-terephthalate)
Poly- ϵ -caprolactone
Potato dextrose agar
Polyethylene
Polyethylene glycol
polyethylene-grafted maleic anhydride
Propylene glycol
Poly(hydroxybutyrate-co-valerate)
Polypropylene

PS Polystyrene

- PVA Poly(vinyl alcohol)
- PVC Polyvinyl chloride
- SEM Scanning electron microscopy
- SPI Soya protein isolate
- SSP Soya spent powder
- TEG Triethylene glycol
- TGA Thermogravimetric analysis
- TPS Thermoplastic starch
- TSSP Thermoplastic soya spent powder
- Universal Testing Machine UTM
- W1 White isolate
- WG Waste gelatine
- sed so. Wheat gluten epoxidised soya bean oil WGESO -po othis item is prot

LIST OF NOMENCLATURES

NH ₄ NO ₃	Ammonium nitrate
MgSO ₄ .7H ₂ O	Magnesium sulphate heptahydrate
K ₂ HPO ₄	Pottasium hydrogen phosphate
CaCl ₂ .2H ₂ O	Calcium chloride dihydrate
KCl	Pottasium chloride
Thiamine-HCL	Thiamine hydrochloride
Pb	Plumbum
Cu	Copper
Zn	Zinc
Cd	Cadmium
Mn	Manganese
Fe	Ferum
.*0	Pottasium chloride Thiamine hydrochloride Plumbum Copper Zinc Cadmium Manganese Ferum techet thus techet Automite Ferum techet Automite Automite Ferum techet Automite Ferum techet Automite Automite Automite Ferum techet Automite
othis	

LIST OF SYMBOLS

%	percentage
kg/capita	kilogram per capita
°C	degree celcius
g/cm ³	gram per cubic centimetre
mgkg ⁻¹	miligram per kilogram
g	gram
h	miligram per kilogram gram hour micrometer weight percentage millimetre per minute
μm	micrometer
wt%	weight percentage
mm/min	millimetre per minute
kV	kilo volt
mg	miligram
°C/min	degree celcius per minute
ΔH*f	heat fusion for 100% crystalline polyethylene
ΔH•f	heat of fusion for semicrystalline polyethylene
L MIS	litre
ml O	mililitre
cm ³	cubic centimetre
mm ³	cubic milimetre
cm- ¹	reciprocal wavelength
MPa	mega pascal

Sifat-Sifat dan Keupayaan Biodegradasi oleh Campuran Polietalina Berketumpatan Rendah/Termoplastik Serbuk Hampas Soya Bersama Serbuk Lalang Ditambah sebagai Pro-Oksida

ABSTRAK

Pembuangan sampah merupakan suatu masalah persekitaran yang serius dan menjadi cabaran terbesar dalam pengurusan sisa pembuangan. Keazaman yang tinggi untuk menghasilkan polimer yang 'mesra alam' telah mendorong para penyelidik untuk menjalankan kajian mengenai polimer terbiodegradasi melalui campuran polimer semulajadi ke dalam bahan plastik yang tidak terbiodegradasi. Termoplastik merupakan suatu bahan yang dihasilkan melalui gabungan pemplastik ke dalam polimer semulajadi contohnya kanji. Oleh yang demikian, dalam kajian ini, suatu percubaan untuk menggabungkan polimer semulajadi berdasarkan protein iaitu hampas soya ke dalam matrik polietalina berketumpatan rendah telah dijalankan. Kajian ini menyiasat pengaruh gliserol terhadap sifat-sifat campuran yang dersedia daripada kandungan polietalina berketumpatan rendah yang divariasikan daripada 5 sehingga 25 peratus kandungan. Serbuk lalang (1.5 peratus) yang bertindak sebagai pro-oksida telah ditambah ke dalam campuran polietalina berketumpatan rendah/hampas serbuk soya dan polietalina berketumpatan rendah/termoplastik hampas serbuk soya. Pendedahan kepada persekitaran semulajadi dan penanaman ke dalam tanah telah dijalankan selama 9 bulan untuk mengenal pasti tahap potensi polimer yang terhasil untuk mereput dalam yang berbeza. Hasilnya, campuran polietalina berketumpatan persekitaran rendah/termoplastik hampas serbuk soya menunjukkan kekuatan tegangan dan pemanjangan pada takat patah yang lebih tinggi berbanding campuran polietalina berketumpatan rendah/ hampas serbuk soya selepas pendedahan kepada persekitan dan penanaman di dalam tanah. Walaubagaimanapun, selepas penambahan serbuk lalang, kekuatan tegangan dan pemanjangan pada takat patah untuk kedua-dua campuran menurun. Imej mikrograf SEM menunjukkan terdapat penghasilan retak, lubang dan kolonisasi kulat pada permukaan polietalina berketumpatan rendah/ hampas serbuk soya dan polietalina berketumpatan rendah/ termoplastik hampas serbuk soya. Bagi analisa pengimbasan kalorimeter pula, polietalina berketumpatan rendah/hampas serbuk soya menghasilkan penghabluran yang lebih tinggi (15.65% untuk 25 peratus kandungan) berbanding polietalina berketumpatan rendah/termoplastik hampas serbuk soya (14.76%) untuk peratus kandungan yang sama. Kestabilan terma untuk setiap campuran menurun daripada 451°C bagi polietalina berketumpatan rendah asli dengan pertambahan 25 peratus kandungan hampas serbuk soya (269 °C) dan termoplastik hampas serbuk soya (284°C). Sebanyak tiga jenis mikroorganisma telah berjaya diasingkan. Aspergillus fumigatus daripada genus Aspergillus mencatatkan peningkatan sel berat kering yang paling tinggi iaitu sebanyak 56% melalui proses fermentasi.

Properties and Biodegradability of Low-Density Polyethylene/Thermoplastic Soya Spent Powder (TSSP) Blends Added Spear Grass Powder as Pro-Oxidant

ABSTRACT

Plastic waste is a serious environmental problem and become an enormous challenge to waste management. A high determination to produce eco-friendly polymer has led the researchers to investigate about biodegradable polymers by adding natural polymer into the non-degradable plastic material. Thermoplastic is a material that produced by incorporating the plasticizer into the natural polymer, ie starch. Therefore in this research, an attempt was made by incorporating protein based natural polymer which was soya spent powder (SSP) into LDPE matrix. This study investigated the influence of glycerol on the properties of blends prepared from low density polyethylene (LDPE) with different SSP content varied from 5 to 25 wt%. Spear grass powder as a natural pro-oxidant (1.5 wt%) has been added into LDPE/SSP and LDPE/TSSP blends. Natural weathering test and soil burial test were performed for 9 months period to determine the potential of this polymer to degrade in different surroundings. As a result, LDPE/TSSP blends showed higher strength and elongation at break (E_b) compared to LDPE/SSP blends after weathering and composting. However, after the addition of spear grass powder, the tensile strength and E_b of **LDPE**/TSSP blends decreased. Scanning electron microscopy (SEM) micrographs showed the formation of crack, pores and fungus colonization on of LDPE/SSP and LDPE/TSSP blends surfaces. For differential scanning calorimetry (DSC) analysis, LDPE/TSSP blends presented higher crystallinity (15.65% for 25 wt% TSSP) compared to LDPE/SSP blends for the same blends ratio (14.76%). The thermal stability for each blends decreased from 451 °C (for neat LDPE) with an increase of 25 wt% of SSP (269 °C) and TSSP (284 °C) content. Three different strains have been successfully isolated in this study. Aspergillus fumigatus from the genus of Aspergillus encountered the highest percentage increment of cell dry weight (mg) which is 56% through the fermentation process.

CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, the disposal of plastic waste is a serious environmental issue that still meets the dead end. Most of the solid waste is contributed by petroleum-based plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC). Apart from that, 40% of the plastic that used in the packaging application is from polyethylene (Sung, 2010). Table 1.1 illustrates generation of solid waste in East Malaysia.

Table 1.1: Generation of solid waste in East Malaysia (Pusat Perbadanan dan Pengurusan Sisa Pepejal Awam, 2014)

Year	Amount (Tonnes per day)
2005	17 000
2012	22 000
2013	30 000-33 000

Average generation of solid waste for one person is about 1.25 kg/capita a day (Pusat Perbadanan dan Pengurusan Sisa Pepejal Awam, 2014). Figure 1.1 demonstrates the components of solid waste. Plastic contributes about 25% from the components of solid waste. This indicates the high amount of plastic waste disposal based on the statistic generation of solid waste in East Malaysia.

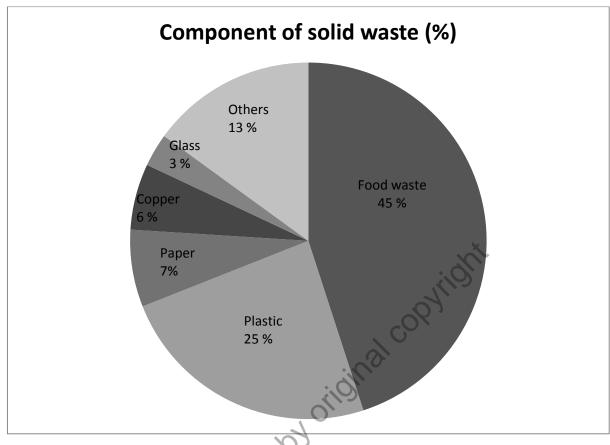


Figure 1.1: Component of solid waste (%) (Pusat Perbadanan dan Pengurusan Sisa Pepejal Awam, 2014)

Polyethylene is not biodegradable and last for many years upon disposal. In the present studies of biodegradability of PE, the researchers have jump into conclusion that the number of bacteria that can degrade PE is based on its molecular weight (Luckacahan et al., 2006). They defined the high molecular weight PE cannot be biodegraded since it comprises of many branches that hardly to break down. PE takes hundreds years to completely degrade and highly resistant due to chemical and environmental degradation (Otake et al., 1995).

By introducing natural polymer into the non-degradable plastic, a low cost of degradable polymer can be produced (Sam et al., 2010). Nevertheless, most of the researches focused on the starch that rich in polysaccharide. Danjaji et al. (2002) blended sago-starch with the linear low density polyethylene (LDPE) and Sabetzadeh et

al. (2015) used thermoplastic starch as a filler in linear low density polyethylene/ low density polyethylene. However, there are only few studies that incorporate the protein based natural polymer in the non-biodegradable polymer (Kaur et al., 2009). Soya protein-based polymer is another potential natural polymer instead of starch-based biodegradable natural polymer. Soya spent powder (SSP) is an abundant biomaterial because it is the by-product from soya oil production. Therefore, the cost of SSP is cheaper than soya protein isolate and soya protein concentrate (Tian et al., 2009). However, it needs intense transformation to disrupt its native structure and to become thermoplastic. A thermoplastic is described as a polymer that softens or melts on heating, and returns to a solid state on cooling.

Today, most of the researchers are focusing on thermoplastic starch (TPS). Nevertheless, there is lack of research are carried on thermoplastic based protein. Plasticizers are inert organic compound, used as polymer additives which have low molecular weight, high boiling points and low pressures. The incorporation of plasticizers is to improve the mechanical properties such as flexibility and tensile strength (Rahman & Brazel, 2004). A good plasticizer means that it has a good compatibility with polymer, which depends on polarity, solubility, structural configuration and molecular weight of plasticizer. Plasticizing agents that were commonly used included water and glycerol (Famá et al., 2006; Alves et al., 2007), polyethylene glycol (Parra et al., 2004) and other polyols, such as sorbitol, mannitol and sugars (Talja et al., 2008; Kechichian et al., 2010). Some researchers found that glycerol is the best plasticizer for water soluble polymers due to the presence of hydroxyl group in the glycerol (Bertuzzi et al., 2007; Müller et al., 2008). This hydroxyl group provides the hydrogen bonds in polymeric chains which increase the tensile strength and present

more flexible structure to the blends. According to Wang et al. (2004), they observed that the tensile properties of the LDPE/rich starch blends slightly increased after the incorporation of glycerol to the starch.

Pro-oxidant is a substance that accelerates the oxidation process of another substance. In this context, spear grass powder (*Imperata cylindrica*) was incorporated into the LDPE/TSSP blends to enhance the biodegradability of the polymer. Spear grass powder contains some metal compounds i.e cuprum, zinc, mangan and ferum (Okonmah & Agbogidi, 2013). The usage of spear grass powder can be considered as green, low-cost and non-toxic pro-oxidant. The previous study by Sharma et al. (2001) found that the incorporation of manganese stearate as the key pro-degradent has increased the rate of degradation tremendously. Therefore, it was proven that the pro-oxidant can accelerates the degradation process by inducing the oxidative reaction in the polymer chains.

In this study, LDPE were blended with SSP and TSSP in various blends ratios. The properties of these two blends after subjected to natural weathering and soil burial for 9 months were compared to determine their biodegradability. Spear grass powder was added to the blends in order to fasten the degradation rate of the materials. This study also included isolation and identification of microorganism that contribute in the degradation of the blends from soil burial test. The purpose of the identification is to find out the key microorganism which involved in the biodegradation of the LDPE/TSSP blends. In addition, this research is strengthening by the biodegradability study through the liquid state fermentation. From this method, the biodegradability of the blends is evaluated from biomass profile of the selected microorganisms.