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Kesan Kandungan Pengisi dan Modifikasi-Modifikasi Kimia ke atas Sifat-sifat 

Biokomposit Filem Tempurung Kelapa Selulosa Dijana Semula 

 

ABSTRAK 

 

Filem-filem biokomposit tempurung kelapa (TK) selulosa dijana semula (SDS) 

dihasilkan dengan TK dan selulosa berbahlur mikro (SBM) menggunakan N,N-

dimetilasetamida (DMAc) dan lithium klorida (LiKl) melalui teknik larutan penuangan. 

Kesan kandungan TK dan jenis modifikasi-modifikasi kimia yang berbeza dengan 

menggunakan  asid butilmetakrilat (ABM), asid laktik (AL) dan asid asetik (AA) ke 

atas sifat-sifat tegangan, pembelauan X-Ray, morfologi, sifat-sifat terma, dan FTIR 

telah dikaji. Penambahan TK ke dalam matrik selulosa dijana semula meningkatkan 

kekuatan tegangan dan modulus elastisiti sehingga 3 wt% kandungan TK tetapi 

berkurang pada 4 wt% kandungan TK. Pemanjangan pada takat putus bagi filem-filem 

biokomposit TK-SDS berkurang dengan peningkatan kandungan TK hingga  

3 wt% dan meningkat pada 4 wt% TK. Indeks penghabluran dan sifat-sifat terma juga 

meningkat dengan kandungan TK sehingga 3 wt% dan berkurang pada 4 wt% TK. 

Kajian morfologi filem-filem biokomposit TK-SDS menunjukkan penyebaran 

kandungan TK yang baik di dalam matrik SDS pada 3 wt% kandungan TK. Suhu 

penguraian maksimum (Tdmax) dan baki filem-filem biokomposit TK-SDS meningkat 

dengan peningkatan kandungan TK. Pengurangan berat pada suhu 300 dan 600 ºC 

menurun dengan meningkatnya kandungan TK dalam filem-filem biokomposit SDS. 

Modifikasi-modifikasi kimia ke atas filem-filem biokomposit TK-SDS meningkatkan 

indek penghabluran, sifat-sifat tegangan dan terma filem-filem biokomposit TK-SDS 

pada 3 wt% kandungan TK. Filem-filem biokomposit TK-SDS yang dirawat dengan 

ABM, AL and AA menunjukkan kekuatan tegangan, modulus elastisiti, indeks 

penghabluran dan kestabilan terma yg lebih tinggi berbanding filem-filem biokomposit 

TK-SDS tidak di rawat. Interaksi antara muka yang lebih baik diantara TK dan matrik 

SDS telah disokong dengan kajian SEM yang menunjukkan permukaan yang lebih licin 

pada permukaan tegang patah filem-filem biokomposit SDS yang dirawat. Spektra 

FTIR filem-filem biokomposit TK-SDS yang dirawat menunjukkan pembentukan 

tindak balas estrifikasi di antara TK dan modifikasi kimia. TK yang dirawat dengan AA 

menunjukkan kekuatan tegangan dan indeks penghabluran yang lebih tinggi 

dibandingkan dengan filem-filem biokomposit yang dirawat dengan ABM dan AL. 

Namun tetapi, kestabilan terma yang lebih baik filem-filem biokomposit ditunjukkan  

pada TK yang dirawat dengan BMA.     
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The Effect of Filler Content and Chemical Modifications on Properties of Coconut 

Shell Regenerated Cellulose Biocomposite Films 

 

ABSTRACT 

 

The coconut shell (CS) regenerated cellulose (RC) biocomposite films were produced 

with CS and microcrystalline cellulose (MCC) using N.N-dimethylacetamide/lithium 

chloride by solution casting technique. The effect of CS content and different types of 

chemical modifications using butyl methacrylate acid (BMA), lactic acid (LA) and 

acetic acid (AA) on tensile properties, X-ray diffraction, morphology, thermal 

properties and FTIR were investigated. The addition of CS into the regenerated 

cellulose matrix increased the tensile strength and modulus of elasticity up to 3 wt% of 

CS content but reduced at 4 wt% of CS. The elongation at break of CS-RC 

biocomposite films reduced with increasing CS content up to 3 wt% and increased at 4 

wt% of CS. The crystallinity index (CrI) and thermal properties also increased with the 

incorporation of CS content up to 3 wt% and reduced at 4 wt%. The morphological 

study of CS-RC biocomposite films exhibited at 3 wt% CS content has better dispersion 

into the RC matrix. The decomposition at maximum temperature (Tdmax) and residue of 

CS-RC biocomposite films increased with increasing of CS content. Weight loss at 

temperature 300 and 600 °C decreased with increment of CS content in RC 

biocomposite films. The chemical modifications of CS-RC biocomposite films 

improved crystallinity index, tensile and thermal properties of CS-RC biocomposite 

films at 3 wt% of CS content. Treated CS-RC biocomposite films with BMA, LA and 

AA exhibit higher tensile strength, modulus elasticity, crystallinity index and thermal 

stability compared to the untreated CS-RC biocomposite films. The better interfacial 

interaction between the CS and RC matrix was supported by SEM study which showed 

smooth surface on the tensile fracture surface of treated RC biocomposite films. The 

FTIR spectra of treated CS-RC biocomposite films indicated the formation of 

esterification reaction between CS and chemical modifying agent. The CS treatment 

with AA has the highest tensile properties and CrI compared with the treatment with LA 

and BMA of biocomposite films. However, the better thermal stability of CS-RC 

biocomposite films was found with CS treated with BMA. 
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1 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

 

Currently, bio-based composites are preferred materials that present a good compromise 

between final performance and that can substitute and compete with traditional 

petroleum-based materials while reducing environmental harm and maintaining 

economic viability. Industries are developing and manufacturing “greener” materials; 

government is encouraging bio-based product research; researchers are searching for 

eco-friendly materials; and the public is coming to value the benefit of environmentally 

friendly products (Smitthipong et al., 2014). The developments in emerging bio-based 

composite leads to their rapid growth in the market place. The worldwide capacity of 

bio-based plastics is expected to increase from 2.23 million metric ton (2013) to 3.45 

million metric ton in 2020 (Faruk et al., 2012). Despite being consumer favorite 

demands, bio-based composites from petroleum-based polymer are non-biodegradable 

in structure which they are non-recyclable. Petroleum is not sustainable or renewable 

resources. As thousands of tons of these non-degradable petroleum-based polymers and 

composites are discarded daily, leads to significant environment concerns and serious 

ecological problems (Huang & Netravali, 2009; Lu et al., 2014). 

More effort on exploitation of new materials from biomass resources as alternative for 

petroleum-based materials have been made in recent years, resulting the production of 
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2 

 

sustainable and environmental friendly sources of energy known as green materials 

which caught enormous attention and interest in both academic and industrial field 

(Haafiz et al., 2013; Pang et al., 2015). In recent years, there is newly developed all-

cellulose composites (ACCs) represent an approaches to formulating green composites 

that aim to eliminate the chemical incompatibility between matrix and reinforcement 

phases by utilizing cellulose for both components. Consequently, not only some all-

cellulose composites exhibit mechanical properties superior than those cellulose-

reinforced thermoplastic, but also biodegradable in nature (Duchemin et al., 2009; 

Huber et al., 2012).  

Biocomposites made from plant based polymer such as lignocellulosic materials 

referred to as green composites (Vilaplana et al., 2010). Cellulose is one of the most 

abundant, never ending biopolymer on earth with outstanding properties such as high 

flexibility, biocompatibility, good thermal stability, high mechanical strength and 

chemical stability (Flieger et al., 2003; Geng et al., 2014; Li et al., 2014; 

Soheilmoghaddam et al., 2014). However, due to the crystalline form and the hydrogen 

bonds of native cellulose, which is naturally occurring cellulose involved as well as 

lignin that binds the cellulose makes it difficult to process thus restricting its 

applications (Fang & Feng, 2013). Therefore, the conversion of native cellulose into 

regenerated cellulose is essential for structure that is more thermodynamically stable 

material. Regenerated cellulose is a class of materials produce when cellulose is 

regenerated chemically to a cellulose solution by regeneration process (Pullawan, 

2012). Regeneration of cellulose by coagulation with anti-solvent provides a simple 

pathway to transform native cellulose to useful material in many forms such as fibres, 

beads and hydrogel (Zhou, 2010). 
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Cellulose composed of β(1→4) linked glucose repeating units. Because of the stiff 

molecules and close chain packing through numerous intermolecular and intramoleular 

hydrogen bonds, it is extremely difficult to dissolve cellulose in water and most 

conventional solvent (Zhang et al., 2013). The ability to disrupting the inter-chain 

hydrogen bonds of cellulose determines the dissolution efficiency of solvent (Hameed 

& Guo, 2009; Liu et al., 2015). Several processes were introduced to developed 

regenerated cellulose such as viscose and Lyocell process. Viscose process rendered 

possible the utilization of cellulose in different field such as construction, textile 

industry, paint, ceramics, cosmetics or food industry. Lyocell process uses direct 

dissolution of cellulose to produce lyocell fibres mainly for textile industry. The major 

problem associated with this process is that the amine oxide solvent suffers from the 

drawback that the regeneration involves dangerous and potentially explosion conditions 

(Isik et al., 2014). Meanwhile, cellulose dissolution processes, such as cuprammonium 

and xanthate processes are often cumbersome or expensive and require the use of 

unusual solvents, typically with high ionic strength and use relatively harsh conditions. 

Moreover, these processes sometimes cause serious environmental problems because 

these solvents cannot be recovered and reused (Zhu et al., 2006). 

In recent time, new class solvent, ionic liquids (ILs) have recently received much 

attention as green solvents because of its potential to regenerate and chemically modify 

the cellulose (Hameed & Guo, 2009; Soheilmoghaddam et al., 2014). ILs is a kind of 

organic salt with melting temperature lower than 100 ºC, substantially lower than 

normal salt. An ionic liquid that has melting temperature lower than room temperature 

are coined as room temperature ILs (RTILs) (Gupta & Jiang, 2015; Liu et al., 2015). 

RTILs have been used as “eco-friendly” solvent for cellulose dissolution and 

regeneration due to their unique properties such as non-volatile, negligible vapor 
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pressure, non-flammability, outstanding solvation ability, wide temperature for liquid, 

chemical and thermal stability and ease of recycling (Hameed & Guo, 2010; Liu et al., 

2011; Liu et al., 2015; Shibata et al., 2013; Soheilmoghaddam et al., 2014). The most 

common ILs for cellulose dissolution are 1-butyl-3-methylimidazolium chloride 

([Bmim]Cl) (Sun et al., 2015; Tian et al., 2015), 1-ethyl-3-methylimidazolium chloride 

([Emim]Cl) (Soheilmoghaddam et al., 2014), 1-butyl-3-methylimidazolium acetate 

([Bmim]Ac) (Liu et al., 2015), N-allyl-N-methylmorpholinium acetate 

([AMMorp][OAc]) (Raut et al., 2015), 1-allyl-3-methylimidazolium chloride 

([Amim]Cl) (Yang et al., 2013). Solvent system such as dimethyl 

sulfoxide/paraformaldehyde (DMSO/PF) (Gupta & Jiang, 2015, Jiang et al., 2012), 

N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) (Yousefi et al., 2015, Zhang et 

al., 2012), N-methylmorpholine-N-oxide (NMMO) (Erdman et al., 2015; Zhao et al., 

2007) and NaOH/urea solution (Chen et al., 2015; Kuo & Lee, 2009) also have been 

proven capable of dissolving cellulose.  

These developments regarding the novel solvents for cellulose offer the possibilities to 

prepare cellulose biocomposite through solution processing. Nishino et al. (2004) 

prepared an all-cellulose composite from pure cellulose and ramie fiber in DMAc/LiCl 

system. This method eliminates the overheating of incorporated fibers during the 

thermal processing, and thereby the high mechanical performance of plant fibers has 

been remained greatly. Gindl et al., (2007) prepared an optically transparent cellulose 

biocomposite from microcrystalline cellulose (MCC) through partial dissolution of 

cellulose surface with the same solvent system. 

N,N-dimethylacetamide (DMAc) containing lithium chloride is  very frequently used 

solvent system in cellulose chemistry (Potthast et al., 2002). This solvent can dissolve 
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cellulose with a molecular weight of more than 10
6
 under ambient conditions without 

severe degradation or other undesirable reactions. Due to the fact that the mixture is 

able to effect dissolution of cellulose within a certain concentration range of LiCl and 

cellulose, DMAc/LiCl has been utilized in an analytical use to investigate the molecular 

properties of cellulose, such as the chain dimension and flexibility in the dissolved state 

(Ishii et al., 2008; Potthast et al., 2002). One of the several methods have been 

developed for cellulose dissolution in DMAc/LiCl, solvent exchange which consist 

procedure of the immersion of cellulose in water, acetone and further by DMAc. Some 

researchers have explained the effect of solvent exchange as activation (Ishii et al., 

2008; Raus et al., 2012). Skipping the activation step may lead to the dissolution of 

cellulose to take up to several months to proceed regardless of the crystallinity of the 

cellulose (Huber et al., 2012). The uses of DMAc/LiCl with natural filler in cellulose 

biocomposites system have been reported by some researcher. Chen at al., (2015) 

studies the combined effect of four different cellulosic materials (microcrystalline 

cellulose, cotton linter pulp, bamboo pulp and bleached softwood sulfite dissolving 

pulp) in DMAc/LiCl solvent system. Obradovic et al., (2014) reported the use of 

softwood dissolving pulp swelling in DMAc/LiCl solvent system. Yousefi et al., (2015) 

used the canola straw as cellulose fibres to make all-cellulose nanocomposite and 

DMAc/LiCl as a direct solvent.  

Lignocellulosic are produced in billions of tons around the world every year. 

Lignocellulosic agro waste such as oil palm trunks, coir, bamboo, kenaf, hemp and sisal 

exhibit some excellent properties due to their low density, good thermal insulation and 

mechanical properties, durability, sustainability and biodegradability. Natural 

lignocellulosic such as coconut shell has outstanding potential as reinforcement in 

cellulose biocomposites (Hakeem et al., 2014; Liu et al., 2012).  
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Coconut (cocos nucifera), a member of the palm family, grows broadly in tropical and 

sub-tropical regions and is employed for a range of applications including decoration, 

culinary and non-culinary uses; virtually every part of the coconut palm. Coconut shell 

is non-food part of coconut which is hard lignocellulosic agro waste. Coconut shell is 

15-20% part of coconut (Bledzki et al., 2010; Jang et al., 2012). Lignocelluloses present 

in the shells are tougher than wood. First, coconut shells had little or no economic 

value, and their disposal was not only costly but harm to the environment (Chun et al., 

2012). Nowadays, coconut shell is used as activated carbon, mosquitos coil and as 

lignocellulosic filler in polymer composite (Bledzki et al., 2010; Chun et al., 2012; 

Husseinsyah et al., 2012). Several studies have been made regarding the utilizing of 

coconut shell with petroleum-based polymer (Agunsoye et al., 2012; Bledzki et al., 

2010; Chun et al., 2013; Husseinsyah et al., 2013; Husseinsyah & Mostapha, 2011; Jang 

et al., 2012; Pradhan et al., 2004; Singh et al., 2013). 

 

1.2 Problem Statement 

 

The problems with majority of plastic today are their end-of-life disposal of plastic 

waste and the reducing number of landfill sites that leads to environment and ecological 

problems.  Besides, the gradual depletion of fossil fuels have become an impact factor 

to the growing interest in using more environmentally friendly materials and naturally 

occurring polymer for new materials. Thus, the utilizing of cellulosic fibres in 

biocomposite films gives alternative routes to environmentally friendly green products 

as they are renewable with low density, high mechanical properties, lower in cost and 

one of the ways to reduce the major used of plastic in the world. The different approach 

has been made to develop biocomposites such as incorporation of cellulose with 
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