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Kajian Aliran Bendalir Arteri Untuk Morfologi Sentuhan Stenosis Berganda 

Dalam Aplikasi Perubatan 

 

ABSTRAK 

 

Penyelidikan pengaliran bendalir telah diusahakan sekian lama sejak bermula 

kemunculan peranti sistem mikroelektromekanikal (MEMS). Sistem vaskular manusia 

penting untuk pengangkutan sistem mikroelektromekanikal dengan itu membolehkan 

kajian dan analisis terhadap penyakit manusia. Aterosklerosis adalah penyakit vascular 

yang dicirikan oleh pemendapan plak pada dinding arteri. Perkembangan plak 

aterosklerosis boleh menyebabkan kesan-kesan yang serius seperti serangan jantung dan 

strok disebabkan oleh gangguan pengaliran darah. Oleh itu, kajian dinamik bendalir 

adalah aspek penting untuk meramalkan pertumbuhan aterosklerosis. Dalam kajian ini, 

pengaliran bendalir Newtonian melalui dual stenosis telah dikaji menggunakan perisian 

Ansys CFX. Untuk kajian kesan-kesan morfologi stenosis, tiga geometri stenosis telah 

digunakan iaitu stenosis berbentuk kosinus, stenosis berbentuk menjulur dan senosis 

berbentuk tidak sekata. Setiap geometri yang digunakan mempunyai lebar dan tinggi 

yang sama tetapi berbeza keluasan. Selain itu, kesan-kesan jarak antara stenosis telah 

dikaji dengan mengubah jarak antara stenosis dari dekat hingga jauh tanpa mengubah 

saiz setiap stenosis. Pengaruh nombor Reynolds juga dikaji dalam julat 100 ke 400 

berdasarkan aliran fisiologi manusia. Ciri-ciri aliran darah seperti profil halaju, tekanan 

dinding arteri dan tekanan kepatahan dinding arteri telah dijalankan untk semua kes 

kajian. Hasil kajian menunjukkan halaju puncak, kejatuhan tekanan dan tegasan ricih 

dinding dengan nilai 0.7518 ms
-1

, 398.16 Nm
-2

 dan 15.39 Nm
-2

 masing-masingnya 

adalah paling tinggi dalam kes dual stenosis berbentuk tak sekata. Menariknya, dual 

stenosis berbentuk menjulur menunjukkan halaju puncak (0.672 ms-2)  dan tegasan 

ricih dinding (14.90 Nm-2) lebih tinggi daripada dual stenosis berbentuk kosinus 

dengan halaju puncak, 0.6578 ms
-1

 dan tegasan ricih dinding 13.06 Nm
-2

 walaupun 

keluasan dual kosinus adalah lebih besar. Penemuan ini membuktikan stenosis yang 

kritikal lebih bergantung kepada pengaruh morfologi stenosis berbanding peratusan 

pengurangan diameter arteri atau keluasan stenosis. Analisa terhadap kesan jarak antara 

stenosis menunjukkan jarak antara stenosis juga penting kepada profil halaju, taburan 

tegasan ricih dinding dan variasi tekanan kepatahan bendalir. Selain itu, kesan nombor 

Reynolds juga nyata dalam mengubah corak aliran di mana nombor Reynolds yang 

lebih tinggi meningkatkan saiz zon peredaran. Zon peredaran kebiasaanya berlaku di 

dalam arteri yang tersumbat dengan serius. Konklusinya, kajian ini menunjukkan ciri-

ciri aliran darah melalui dual stenosis adalah berkait rapat dengan pengaruh morfologi 

stenosis, jarak antara stenosis dan nombor Reynolds.  
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Arterial Fluid Flow Investigation on Double Stenoses Contact Morphology for 

Medical Application 

 

ABSTRACT 

 

Fluid flow investigation has been constantly worked upon since the dawn of 

Microelectromechanical Systems (MEMS) devices. Human vascular system provides 

the means for MEMS transportation thus enabling study and analysis on human 

diseases. Atherosclerosis is a vascular disease characterized by deposition of plaques on 

the arterial wall. The progression of atherosclerotic plaques may cause serious 

consequences due to disturbance of the blood flow such as heart attack and stroke. 

Therefore, the study of the fluid dynamics in the stenosed artery bears important aspects 

to predict the development of atherosclerosis. In this research, the Newtonian fluid 

through double stenoses has been investigated using Ansys CFX software. To study the 

effects of stenosis morphology, three different geometries have been used; cosine-

shaped, irregular shape and protruding shape. These geometries present different area 

occlusion but similar configurations of stricture length and height. On the other hand, 

the effects of restriction spacing have been explored by varying the distance between 

the double stenoses without changing the size of each stenosis. The effects of Reynolds 

numbers have been investigated as well in the range of 100 to 400 based on human 

physiological flow. Hemodynamic characteristics of blood flow such as velocity 

profiles, wall pressure and wall shear stress distributions have been performed for all 

cases. The results demonstrate highest peak velocity, pressure drop and peak wall shear 

stress with the value of 0.7518 ms
-1

, 398.16 Nm
-2

 and 15.39 Nm
-2

 respectively for the 

case of double irregular stenoses. It is interesting to find out that double protruding-

shaped stenoses exhibit greater peak velocity (0.672 ms
-1

) and peak wall shear stress 

(14.90 Nm
-2

) in comparison with cosine-shaped stenosis with peak velocity, 0.6578 ms
-1

 

and peak wall shear stress, 13.06 Nm
-2

 although the area occlusion of cosine shaped is 

larger instead. These findings indicate that the severity of the stenosis is primarily 

caused by the morphology of the stenosis rather than percentage of diameter reduction 

criterion or effects of area occlusion. Analysis on the effects of restriction spacing 

shows that the distance between a couple of stenoses has a considerable influence on the 

velocity profile, wall pressure distribution and wall shear stress variation. In addition, 

the effects of Reynolds numbers are noticeable in changing the flow pattern near the 

stenotic region whereby the higher Reynolds numbers increase the size of recirculation 

zone. The recirculation zones usually occur in the severe stenosed artery. In conclusion, 

the present study shows that the blood flow characteristics through double stenoses are 

strongly influenced by the stenosis morphology, restriction spacing and Reynolds 

numbers
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

The study of both air and liquid flow dynamics has led to many new discoveries 

from aeronautical, gliders, sky-scrapper stability, ships, submarines, irrigation, and 

many more. These are in the scale of macro, the rules and conditions change for micro 

scale and below. The emerging of electronic technology with exponential evolution 

coupling with miniaturization as a catalyst, has led fluid study in micro scale to be an 

important field of research. The areas whereby requires this application are such as in 

medical, 3D-printing, MEMS, electronics packaging heat transfer, drug delivery and 

photonics.  In the field of medical, blood flow study has catapulted as an important 

niche whereby understanding the flow dynamics will enable electronics sensors, stents 

and MEMS devices to be deployed for better understanding of human blood channel 

anatomy.  

Cardiovascular disease (CVD) has become a leading cause of global death. 

According to World Health Organization (WHO) statistics in 2012, an approximate of 

17.5 million people died from CVD mainly due to heart attack (7.4 million) and stroke 

(6.7 million) (WHO, 2015).  A heart attack normally occurs when the coronary artery is 

occluded and a stroke happens when the carotid artery is hampered (Tian, Zhu, Fok, & 

Lu, 2013). CVD is prevalent among elderly population aged above 65 years resulting in 

fatal complications (Sommer, 2008). On top of that, both public and private institutions 

have to bear a huge amount of CVD health care costs, plus indirect costs for example 
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productivity loss (Sommer, 2008). Schematic of the cardiovascular system comprises 

the heart and vital components of the circulatory system are illustrated as in Figure 1.1.  

The whole cardiovascular system is responsible to deliver blood and control its 

flow throughout the body (Devasahayam, 2000). Basically, the blood vessels possess 

different structures and functions to sustain the proper circulation. Blood is extremely 

important to carry nutrients and oxygen to various parts of the body and wastes to the 

excretory organs. However, the efficiency of the cardiovascular system for blood 

delivery will be less under pathological conditions where the elasticity of the vessel wall 

is reduced and diameter of the vessel is decreased due to deposits on the inner surface 

(Devasahayam, 2000). These conditions also called as atherosclerosis (Paeng, 2013).  

 

 
 

Figure 1.1: Schematic of the cardiovascular system (Devasahayam, 2000) 
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The knowledge and analysis of blood flow characterization for CVD problems is 

crucial to develop effective MEMS devices such as electronic stent, wireless 

CardioMEMS and MEMS shear stress sensor. Currently, the invention of electronic 

stent allows the measurement of blood pressure inside a blockage artery and thus may 

predicts the incidence of restenosis. With the advanced of MEMS technology, periodic 

invasive surgery which is traditionally needed to monitor the occurrence of restenosis 

will be unnecessary. On the other hand, MEMS has been successfully implemented for 

CardioMEMS monitoring device where heart rates and artery pressures can be 

monitored daily by a portable electronic unit (Khan and Rich, 2015). Measurement of 

wall shear stress exerted by the flowing blood in cardiovascular disease also has been 

extensively studied in this decade to improve the MEMS sensor design which is 

operated based on heat transfer principle and fabricated with biocompatible materials 

(Soundararajan, G., Hsiai, T. K., DeMaio, L., Chang, M., & Chang, S, 2004; Yu et al., 

2007) .  

 

1.2 Normal Artery Histology 

 

A basic understanding of a healthy artery is needed prior to narrating a stenosed 

artery. The artery is basically composed of three concentric layers (tunics): intima, 

media and adventitia as shown in Figure 1.2. The intima, innermost layer contains a 

lining of endothelial cells with thickness of 0.2 to 0.5 µm surrounding the central space 

(lumen). A thick layer of elastic fibers called the internal elastic lamina is formed 

between the intima and media. The middle layer, tunica media, is the thickest layer of 

the arterial wall. It is made up of smooth muscle cells (SMC) and elastin. The inner half 

of the SMC layer gets its nutrients from the lumen through diffusion process. On the 
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other hand, the media is separated from the adventitia (outer layer) by the external 

elastic lamina. The tunica adventitia consists mainly a dense network of collagen fibers 

with nerves, fibroblasts and vasa vasorum (Dunnen et al., 2009; Humphrey, 2002; 

Kalita & Schaefer, 2008; Labrosse, 2007)    

 

 

Figure 1.2: Schematic of an artery (Ghesquiere, 2007) 

 

1.3 Atherosclerosis 

 

The progression of atherosclerosis disease induced by accumulation of lipids 

and fibrous elements on the arterial wall create abnormality on the blood flow (Filipovic 

et al., 2013; Mihai, Youn, & Seshaiyer, 2012). The root causes of atherosclerosis are 

still unclear, but it is believed that unhealthy diet is one of the behavioral factors (Chan, 

2006). The progression of atherosclerosis can be characterized by two fundamental 

processes; deposition of lipid and inflammation (Halvorsen et al., 2008). Low density 

lipoprotein (LDL) in the intima is prominent in initial formation of atherosclerosis as it 

may diffuse through endothelium (Paeng, 2013). Oxidized LDL may cause 

dysfunctional of the endothelium and stimulates recruitment of monocytes into the 

intima layer. Dysfunctional of the endothelium exposes smooth muscle cells (SMC) 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 


