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Fabrikasi, sifat-sifat dan kajian in vitro magnesium/zink/biokaca komposit 
difabrikasi menggunakan kaedah metalurgi serbuk 

 
 

ABSTRAK 
 

Pembangunan biobahan logam menjadi aktiviti kajian yang utama sebagai implan dalam 
aplikasi ortopedik. Pada masa kini, titanium tulen secara komersial dan aloi, aloi 
berasaskan kobalt dan keluli tahan karat adalah bahan-bahan logam yang biasa 
digunakan sebagai implan dan mereka dikategori sebagai bahan biolengai. Salah satu 
topik utama penyelidikan terpenting dalam pembangunan biobahan adalah bagaimana 
untuk menggabungkan bioaktif, biodegradasi dan bahan-bahan biolengai. Kajian ini 
bertujuan untuk memfabrikasi bio-komposit yang mempunyai ketahanan kakisan yang 
tinggi, tindak balas bio-aktiviti yang tinggi dan kekuatan mampatan menghampiri tulang 
semulajadi untuk aplikasi bioperubatan. Tujuh komposisi komposit yang berbeza telah 
difabrikasi menggunakan serbuk Mg, Zn dan biokaca. Peratus berat biokaca di variasi 
dari 0, 5, 10, 15, 20, 25 dan 30. Bahan-bahan mentah diadun menggunakan mesin 
putaran selama 1 jam pada 140 rpm. Komposit-komposit ditekan menggunakan mesin 
tekan tangan hidraulik pada 500 MPa. Proses pensinteran dilakukan selama 3 jam pada 
450°C dan 550°C menggunakan relau tiub di dalam persekitaran gas argon. 
Mikrostruktur komposit dicirikan menggunakan mikroskop optik dan mikroskop 
imbasan elektron. Fasa yang terbentuk di dalam komposit ditentukan menggunakan 
pembelauan sinar x-ray (XRD). Sifat-sifat fizikal seperti keliangan, ketumpatan sebenar 
dan ketumpatan pukal ditentukan menggunakan pycnometer. Sifat mekanikal ditentukan 
menggunakan ujian mampatan. Kelakuan perambatan retak selepas ujian mampatan 
dikenalpasti menggunakan mikroskop optik. Untuk ujian kakisan in vitro, semua sampel 
di rendam di dalam bendalir badan tersimulasi (SBF), fosfat berpenimbal salin (PBS) 
dan larutan Ringers selama 72 jam dan perubahan pH dipantau menggunakan meter pH. 
Produk kakisan diperiksa meggunakan XRD dan mikroskop optik. Kajian bioaktiviti in 
vitro dijalankan dengan merujuk kepada garis panduan Kokubo dan Takadama. Semua 
sampel direndam dalam SBS dan PBS selama 24 jam pada 36.5°C. Pembentukan 
lapisan apatit diperhatikan menggunakan SEM bersama EDS. Mikrostruktur komposit 
menunjukkan liang berhampiran sempadan butir dan biokaca bergugus dengan 
pertambahan kandungan biokaca. Ketumpatan sebenar komposit meningkat dengan 
peningkatan kandungan biokaca dan nilai keliangan paling tinggi ditunjukkan oleh 
komposit dengan 30% bt. biokaca. Sampel dengan penambahan biokaca 5% bt. disinter 
pada 550°C menunjukkan nilai kekuatan mampatan paling tinggi iaitu 117.43 MPa. 
Secara umumnya, perambatan retak boleh dilihat condong 45° daripada beban kenaan 
kecuali sampel dengan 30% bt. biokaca. Bagi ujian kakisan in vitro, sampel direndam 
dalam larutan Ringers menunjukkan kadar kakisan paling rendah diikuti sampel 
direndam dalam PBS dan SBF. Keputusan ini menunjukkan kehadiran fosfat yang 
tinggi di dalam PBS merencat kadar kakisan Mg/3Zn/BG komposit. XRD menunjukkan 
kehadiran Mg(OH)2 sebagai produk kakisan utama untuk semua sampel di dalam semua 
larutan. Secara umumnya, kadar kakisan menurun dengan penambahan biokaca. Untuk 
ujian in vitro bio-aktiviti, pembentukan apatit sfera dengan nisbah Ca/P antara 0.83 
hingga 2.12 diperhatikan. Semakin tinggi kandungan biokaca, semakin tinggi nisbah 
Ca/P. Tiada pembentukan apatit dilihat pada sampel direndam dalam larutan PBS. 
Secara keseluruhannya, sampel yang disinter pada suhu 550°C menunjukkan sifat yang 
lebih baik berbanding sampel yang disinter pada suhu 450°C dengan sampel 
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xviii 

 

Mg/3Zn/5BG, Mg/3Zn/10BG dan Mg/3Zn/15BG masing-masing menunjukkan 
kekuatan mampatan, sifat kakisan dan sifat bio-aktiviti paling baik di antara semua 
sampel yang diuji.  
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Fabrication, properties and in vitro study of magnesium/zinc/bioglass composite 
fabricated by powder metallurgy method 

 
ABSTRACT 

 
The development of metallic biomaterials becomes a major research activity especially 
for load bearing implants in the orthopaedic applications. Currently, commercially pure 
titanium and its alloy, cobalt-based alloys and stainless steel are common metallic 
materials used as implants and they are grouped as bio-inert materials.  One of the main 
important research topics in development of biomaterials is how to combine bioactive, 
biodegradable and bio-inert materials. The aim of this research is to fabricate high 
corrosion resistance of biocomposite, high bioactivity response and compressive 
strength close to the natural bone for biomedical application. Seven different 
compositions of composites were fabricated using Mg, Zn and bioglass powders. 
Bioglass weight percentage was varied from 0, 5, 10, 15, 20, 25 and 30wt. %. The raw 
materials were mixed for 1 hour using a roll mill machine at 140 rpm. The composites 
were compacted using a hydraulic hand press machine at 500 MPa. Sintering process 
was done for 3 hours at 450 ˚C and 550 ˚C using a tube furnace under argon gas 
environment. Microstructure of the composites was characterised using optical and 
scanning electron microscope (SEM). The phases developed in the sintered samples 
were determined using x-ray diffraction (XRD).  Physical properties such porosity, true 
density and bulk density were measured by pycnometer. Mechanical property of the 
samples was determined by compression test. Crack propagation behaviour after 
compression test was identified using optical microscope. For in vitro corrosion test, all 
samples were immersed in simulated body fluid (SBF), phosphate buffered saline (PBS) 
and Ringers solution for 72 hours and pH changes was monitored using pH meter. The 
corrosion products were examined by XRD and optical microscope. In vitro bioactivity 
study was performed by referring to Kokubo & Takadama procedure guideline. All 
samples were immersed in SBF and PBS for 24 hours at 36.5 °C. The formation of 
apatite layer was observed by SEM with EDS. The microstructure of the composite 
showed that the pore segregated near the grain boundaries and bioglass clustering was 
observed with increasing content of bioglass. The true density of the composites 
increased with the increasing content of bioglass and the highest value of porosity was 
indicated by the composites with 30 wt. % of bioglass. Compressive strength value 
shows the increasing trend with the increasing sintering temperature. Sample with 5 wt. 
% bioglass addition sintered at 550 °C shows the highest compressive strength with 
117.43 MPa. Generally, crack propagation can be seen slanted 45° from the applied load 
except for sample with 30 wt. % bioglass addition. For in vitro corrosion test, samples 
immersed in the Ringers solution shows the lowest corrosion rate followed by the 
samples immersed in PBS and SBF. The results indicated that the existence of high 
phosphate ions in PBS has retarded the corrosion rate of composite Mg/Zn/BG. XRD 
showed the presence of Mg(OH)2 as the major corrosion product for samples immersed 
in all solutions. In general, the corrosion rate of samples decreased with the addition of 
bioglass. For in vitro bioactivity test, spherical apatite formation with Ca/P ratio ranging 
from 0.83 to 2.12 was observed precipitated on the sample surface. Higher bioglass 
content lead to higher Ca/P ratio. However, no apatite formation observed on sample 
immersed in PBS. Generally, sample sintered at 550°C shows better properties compare 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  Research Background 

 

Today, biomaterials represent a significant portion of the healthcare industry 

with an estimated market size of over $ 9 billion per year in the United States. The 

industry expert predict that implantable device market will grow more than 8% per year 

in the United State to top $50 billion in 2015 (Carter et al., 2011). Over 500,000 

artificial joint replacements, such as the knee or hip, are implanted yearly in the United 

States.  Through the years the increasing numbers of injuries due to road accidents, 

sports, war and etc. lead to the increasing numbers of implant demand (Sargeant & 

Goswami, 2006; Paital & Dahotre, 2009). The life expectancy is increasing for every 

century. The average age is around 80 years at the end of 20th century compare to 40 

years in the early of 20th century. The ageing of population risking to several health 

problem for example osteoporosis which is not so generic in the earlier century (Vallet-

regí, 2010). Furthermore the worldwide population of people younger than 40 years of 

age receive hip implant is expected to be 80 million by 2030 which is likely to create a 

need for implant that last longer in vitro (Krishna et al., 2008). The increasing demand 

in the U.S market indicates that this biomedical industry is also increasing worldwide.  
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Biomaterial is considered as a relatively young field however its origins date 

back thousands of years. Archaeologists have discovered of humans containing metal 

dental implants from as early as 200 A.D., and it is known that linen was used as a 

suture material by the Egyptians. However, the development of the biomaterials field 

significantly increased after the World War II (Temenoff & Mikos, 2008).  

There are three different generations of biomaterials which are bioinert materials 

(first generation), bioactive and biodegradable materials (second generation) and 

materials that can stimulate specific cellular response (third generation). Starting in the 

1960s-1970s, the first generation of biomaterial was designed to be inert, or inactive 

with the body, thus decreasing the potential for negative immune response to the 

implant (Navarro et al., 2008). Several examples of bioinert materials are stainless steel, 

cobalt-chrome based alloys, titanium based alloys and zirconia. Stainless steel and 

cobalt-chrome based alloys were the first metallic materials successfully used during the 

twentieth century. Stainless steel was the first used in orthopaedic surgery in 1926. 

Besides used as implant materials, stainless steels were also used to manufacture 

surgical and dental instrument. However the usage of stainless steel can bring adverse 

effect to the patient due to release of nickel and cobalt ions (Paital & Dahotre, 2009; 

Chen & Thouas, 2015). Ceramic materials in the first generation biomaterials 

commonly consist of alumina, zirconia and several porous ceramics (Ratner et al., 

2004).  

The second generation of biomaterial appeared between 1980 and 2000. The 

second generation can be defined as the development of bioactive materials. Bioactivity 

can be defined as the property of the material to develop a direct, adherent, and strong 

bonding with the bone tissue. The most common ceramics that can be classified in this 
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category are bioglass, glass ceramic and calcium phosphate (CaPs) (Park et al., 2006; 

Ionita et al., 2007).  

The third generation biomaterials are meant to be new materials that are able to 

stimulate specific cellular responses at the molecular level. In this generation, bioactive 

and biodegradable properties are combined. Tissue engineering scaffold appeared 

approximately at the same time as the third generation biomaterials. Tissue engineering 

scaffold are three dimensional structures that assist in the tissue engineering process by 

providing a site for cell to attach, proliferate, differentiate and secrete an extra cellular 

matrix, eventually leading to tissue formation (Edwards et al., 2004).  

Recently, magnesium can be classified as biodegradable materials because of its 

ability to degrade in human body. Magnesium and its alloys are popular materials used 

for implant research nowadays due to their excellent mechanical and physical 

properties, non-toxicity and also biodegradability in bioenvironment. Magnesium is 

actually needed by the human body for bone strength and growth in substantial amount 

(Xu et al., 2009; Xue et. al, 2012). Magnesium is the fourth abundant cation in the 

human body and it can stabilize DNA and RNA structure (Staiger et al., 2006). 

None of the metallic materials used in orthopaedics is bioactive. In order to 

improve the bioactivity of the alloys, various attempts have been made such as 

anodisation, coating, ion implantation and chemical etching (Ye et al., 2009). Besides 

that, there is also the application of metal matrix composites to enhance the bioactivity 

properties. The adding of bioactive materials to metal matrix such as fluoroapatite, 

hydroxyapatite, bioglass and others are being made to make the implant bond well to 

the living bone (Razavi et al., 2010; Huan et al., 2011; Wan et al., 2016). Research 

using bioglass in metal matrix composites is still lower in number.  
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In 1972, Hench discovered that some glasses system which is bioglass can 

spontaneously bond to the living bones without having the fibrous tissue (Hench, 2006). 

Bioglass are fabricated usually with composition of 45% SiO2, 24.5% CaO, 24.5%Na2O 

and 6% P2O2. The essential requirement for a material to bond to living bones is 

formation of apatite layer on the implant surface after implanted to the living bone. This 

formation allowed bonding to the living bone. The ability to form apatite is reported to 

increase in the order hydroxyapatite < apatite-wollastonite < bioglass. The degree of 

ability to form apatite on the implant surface can predict the in vivo bioactivity of the 

materials as long as the materials does not contain any substance that can induce 

toxicity (Kokubo & Takadama, 2006). Most of the current work focused on bioglass 

alone on how to improve the bioactivity of bioglass by incorporating with ZnO and 

MgO (Balamurugan et al., 2007; Majhi et al., 2011; Saboori et al., 2009; Yu et al., 2015; 

Shankhwar & Srinivasan, 2016) and also to combine the bioinert materials such as Co-

Cr-Mo and Ti alloys with bioactive materials (Oksiuta et al., 2009; Jurczyk et al., 2011; 

Martínez et al., 2013; Doni et al., 2015).   

In this research powder metallurgy method is being used to fabricate 

Mg/3Zn/bioglass composite. Addition of bioglass as bioactive materials to magnesium 

will combine the biodegradable properties of magnesium and bioactive properties of 

bioglass, thus increasing the corrosion resistance of magnesium alloys. This 

combination is expecting to bring longevity to implant condition lifespan without the 

need for second surgery procedure.  
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1.2 Problem Statement 

 

• Cobalt alloys, titanium alloys and stainless steel are the most common implant 

used nowadays. However the mechanical and physical properties are found to 

differ with natural human bone. These differences in properties led to stress 

shielding due to incompatibility of elasticity modulus (Chen & Thouas, 2015). 

Stress shielding occurs when the load which was originally carried by bones 

alone was shared by implants and bones. Bones will naturally reduce their mass 

under lower load or stress. This will lead to the formation of weaker bones 

(Ridzwan et al., 2007). Cobalt alloys, titanium alloys and stainless steel also 

usually need second surgery procedure due to the loosening affected by wears 

and also to remove the implant after the affected tissue healed. Furthermore the 

demand for more advanced materials to produce implant that can sustain longer 

in human body, lesser toxicity effect and also by any chance can eliminate the 

second surgery procedure led to further research on new materials for 

biomedical application (Staiger et al., 2006; Akca & Erarslan, 2012).  

• An implant or artificial material implanted into human bones defects generally 

encapsulated by fibrous tissue, leading to their isolation from surrounding bones. 

This problem commonly occurs in nowadays used cobalt alloys, titanium alloys 

and stainless steel implant. One of the important research focuses is to combine 

the biodegradable and bioactive materials. There are several fabrication methods 

in combining biodegradable and bioactive materials and the two major methods 

are coating and casting. Coating method by thermal spray often occur flake off 

due to poor ceramic metal interface bonding while thin film methods are 

expensive (Khalid et al., 2016; Sola et al., 2011). Fabrication via powder 
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