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Pembangunan Hybrid GA-PSO untuk Reka Bentuk Pam Mikro Tanpa Injap 

yang Optimum didalam Aplikasi Bioperubatan 

 

ABSTRAK 

 

Pam mikro adalah salah satu komponen yang paling penting didalam bendalir mikro  

dan sistem mikroelektromekanikal (MEMS) kerana ia mempunyai kebolehan untuk 

mengangkut bendalir dalam skala mikro dan dapat mengawal kadar aliran dengan tepat 

dan cekap. Pelbagai reka bentuk dan pendekatan telah dicadangkan untuk 

membangunkan pam mikro yang mempunyai prestasi yang tinggi. Tesis ini 

menunjukkan kaedah pengoptimuman untuk pam mikro tanpa injap dengan 

menggunakan perlaksanaan pendekatan kepintaran tiruan (AI). Pam mikro tanpa injap 

ini direka bentuk dengan sebuah diafragma, ruangan pengepaman dan elemen 

penyebaran/penyedutan berfungsi sebagai saluran masuk dan saluran keluar dengan 

dimensi keseluruhan adalah 5 × 1.75 × 5 mm
3
. Perlaksanaan struktur pengoptimuman 

pam mikro tanpa injap adalah penting untuk menentukan kadar aliran bersih yang 

maksimum yang boleh dihasilkan oleh pam mikro dengan penggunaan kuasa yang 

rendah. Bagi menentukan prestasi reka bentuk pam mikro, jumlah perubahan, 

ketegangan tenaga, jumlah tekanan, frekuensi resonasi untuk diafragma, halaju bendalir 

dan kadar aliran pam mikro dikaji. Tekanan belakang yang optimum untuk diafragma 

pam mikro tanpa injap diperolehi memalui hasil penilaian. Pengoptimuman dilakukan 

untuk memaksimumkan jumlah perubahan, halaju, kadar aliran bersih dan 

meminimumkan ketegangan tenaga, jumlah tekanan dan frekuensi resonasi pam mikro. 

Bagi menilai prestasi pam mikro untuk aplikasi perubatan, fungsi kesesuaian dibentuk 

untuk menilai pembolehubah reka bentuk struktur pam mikro. Didalam 

menggabungkan alat pengoptimum dengan perisian elemen analysis terhad (FEA) iaitu 

ANSYS Workbench, simulasi dan model pengoptimuman boleh dibina untuk mencari 

parameter reka bentuk pam mikro yang paling optimum. Pam mikro tanpa injap yang 

ditunjukkan dioptimumkan dengan tiga kaedah pengoptimuman yang berbeza iaitu 

algoritma genetik (GA), pengoptimuman sekumpulan zarah (PSO) dan kacukan/hibrid 

PSO dengan GA (dinotasikan sebagai HPSO-GA). Hasil simulasi yang diperolehi di 

bandingkan dan dikaji untuk  ketiga-tiga cara pengoptimuman. Dari kajian yang 

dijalankan, Hasil simulasi menunjukkan bahawa HPSO-GA yang dicadangkan 

memberikan penyelesaian yang lebih baik untuk prestasi pam mikro. Keputusan yang 

diperolehi melalui model yang dibangunkan daripada pengoptimuman HPSO-GA 

menyatakan bahawa jumlah perubahan maksimum diafragma adalah 8.4797 μm dengan 

8 kPa tekanan penggerakkan dan kadar aliran bersih yang optimum adalah               

3.89 mL/min dengan halaju 4.796 m/s. 

 

 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



 

xvii 

 

Development of Hybrid GA-PSO for Optimal Design of Valveless Micropump in 

Biomedical Application 

 

ABSTRACT 

 

Micropumps are one of the most important components of microfluidic and 

microelectromechanical system (MEMS) because of the ability to transport fluids in 

microscale and have the control of the flow rate in an accurate and efficient manner. 

Various designs and approaches are suggested in order to develop a high performance 

micropump. This thesis presents the optimization method of valveless micropump 

utilizing the implementation of artificial intelligence (AI) approaches. The valveless 

micropump is designed with a diaphragm, pumping chamber and diffuser/nozzle 

elements functions as inlet and outlet with the outer dimension of 5 × 1.75 × 5 mm
3
. 

The implementation of structure optimization of valveless micropump is important in 

order to determine the maximum net flow rate that can be generated by the micropump 

with low power consumption. In order to determine the performance of the micropump, 

the total deformation, strain energy, equivalent stress, resonant frequency for 

diaphragm, fluid velocity and net flow rate of the micropump are investigated. 

Optimum back pressure for the diaphragm of valveless micropump was obtained 

through the result assessment. Optimization is done to maximize the total deformation, 

velocity, net flow rate and minimize the strain energy, equivalent stress and resonant 

frequency of the micropump. In order to evaluate the performance of the micropumps 

for medical application, a fitness function is constructed to evaluate the design 

variables of micropump structure. By executing optimization tools in conjunction with 

finite element analysis (FEA) software ANSYS workbench, the simulation and 

optimization model is able to find out the optimum micropump design parameters. The 

presented valveless micropumps are optimized in three deferent optimization methods 

which are genetic algorithm (GA), particle swarm optimization (PSO) and hybrid PSO 

with GA (denoted as HPSO-GA). Simulation results obtained are compared and 

investigated for the three optimization methods. From the research, simulation results 

show that the proposed HPSO-GA provide better solution for micropump performance. 

Results obtained through the developed model of HPSO-GA optimization stated that 

the maximum total deformation of the diaphragm is 8.4797 µm with 8 kPa actuation 

pressure and optimum net flow rate is 3.89 mL/min with velocity of 4.796 m/s. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Overview of Micropumps 

 

Over the years, development of miniaturized microelectromechanical system 

(MEMS) devices becomes essential and critical issues to microfluidics applications. 

Due to the size miniaturization, microfluidics devices have the ability to develop 

unique transport properties and provide the capability of parallel processing and high 

throughput. The fields of microfluidics expand with the development of MEMS devices 

and its application including in lab-on-a-chip (LOC), micro total analysis systems 

(µTAS), chemical analysis systems, bio-MEMS, medical application and other micro 

devices (Ashraf, Tayyaba & Afzulpurkar, 2011; Laser & Santiago, 2004; Nguyen, 

Huang & Chuan, 2002; Yamahata et al., 2005). Advantages of microfluidics in MEMS 

are very small sizes, low power consumption, high precision, better performance, lower 

costs, disposability and can be integrated with electronics devices. 

Recently, investigations into methods of using microfluidics and MEMS 

application for medical application and drug delivery systems (DDS) have been 

expanded (Nuxoll, 2013; Zhang & Nagrath, 2013). MEMS applications are utilized in 

medical applications and DDS to design the devices and instruments for medical used 

such as microreservoir, microactuator, microneedle, microvalve, and micropump. In 

contrast to other microfluidics devices, micropump is a component that has been 

designed according to its application and requirement such as for microelectronic 
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cooling, micro-space exploration, inkjet printers, chemical injection and especially in 

medical applications. 

Specifically, micropumps are the most important element of MEMS and 

microfluidics component because of its ability to transport fluids in microscale and to 

control the flow rate in an accurate and efficient manner. Due to its important role in 

many microfluidics systems, the outcomes from the constantly building MEMS 

technology upon microstructures supplies as well as manufacturing systems tend to 

move to the investigation on micropumps (Anagnostopoulos & Mathioulakis, 2005). 

The most valuable features of micropumps are miniature of sizes and high precision in 

controlling fluid have made them very useful in chemotherapy, insulin delivery for 

diabetic patient and drug dosing for cancer patient (Smits, 1990). Development of 

micropumps becomes more important due to medical demands in order to transport 

drug and insulin in micro or nano dosage. In medical application, micropumps are 

applied to construct DDS that enable enhanced control over the delivery of therapeutic 

agents (Arora, Prausnitz & Mitragotri, 2008; Martanto et al., 2004; Mousoulis, Ochoa, 

Papageorgiou & Ziaie, 2011; Zengerle & Richter, 1992). Micropumps have been 

designed with various types of actuator mechanism used as a device for control on 

mechanical movement according to the micropump’s application. Generally, 

micropumps can be developed by using several actuation methods such as electrostatic, 

piezoelectric, electromagnetic, pneumatic, thermopneumatic, bimetallic and shape 

memory alloy (SMA) actuation (Nisar, Afzulpurkar, Mahaisavariya & Tuantranont, 

2008).  

The researches on micropumps began since 1970s whereas MEMS-based 

micropumps have been developed in 1990s (Ashraf, Tayyaba & Afzulpurkar, 2011; 
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Olsson, 1998; Woias, 2005). Among the earliest development of micropumps was 

proposed by Thomas & Bessman (1975) in 1975. Thomas & Bessman (1975) used the 

micropump for implantation into human body. The micropump was actuated by using 

piezoelectric disc benders and consists of solenoid valve connected to variable pumping 

chambers. In 1978, Spencer et al. (1978) proposed cylindrical micropump actuated by 

piezoelectric stainless steel and the body of micropump machined from stainless steel. 

Tuckerman & Pease (1981) developed micropump used for microelectronics cooling 

based on liquid-phase chip cooling to consider flow rates of several hundred milliliters 

per minute. Lintel & Pol (1988) developed reciprocating displacement pump consisting 

of one and two pump chamber actuated by piezoelectric disc to be used in insulin 

delivery system. Esashi, Shoji & Nakano (1989) proposed normally closed microvalve 

and micropump fabricated on a silicon wafer. The normally closed microvalve actuated 

by piezostack actuator and verified the possibility to use a serial connection of two of 

those valves with a pressure chamber in between. In the year of 1990, Smits (1990) 

designed a peristaltic micropump with three active valves actuated by piezoelectric 

discs. Smits (1990) intended to use the micropump in controlled insulin delivery 

systems for maintaining diabetic blood sugar levels without frequent needle injections. 

Zengerle, Richter & Sandmaier (1992) presented a bulk micromachined membrane 

pump actuated by electrostatic actuator. The micropump consists of two passive check 

valves, a pump membrane and counterelectrode for electrostatic actuation with outer 

dimension of 7 × 7 × 2 mm
3
. 

At present, the investigation and development of micropumps become crucial 

task in research area to produce the high performance micropumps according to its 

application and requirement. Micropumps can be classified in two major categories, 

which are displacement pump and dynamic pump. The description about the 
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classification, concept and working principle of micropumps are explained further in 

Chapter 2. 

 

1.2 Problem Statement  

 

Micropumps as the actuation mechanism in microfluidics systems has been the 

issue in many researches area to determine its achievement in mobility of fluid, low 

power consumption and improved accuracy (Amirouche, Zhou & Johnson, 2009). In 

order to apply micropumps for medical uses, several factors must be taken into account 

such as biocompatibility of materials, effectiveness, and efficiency of the pump. 

Besides that, features of a micropump must also be considered such as actuation 

method, working principles, construction and performance of micropump parameters. 

Basic components of micropumps consist of pumping chamber, diaphragm, 

diffuser/nozzle element, inlet and outlet. These components play an important role to 

attain the high performance of micropumps. The micropumps diaphragm needs to 

deflect as large as it can to perform stroke volume and high compression ratio. Whereas 

the effectiveness and efficiency of the flow rectification is obtained based on the net 

flow rate and dependent on the diffuser/nozzle element design and geometry. In 

addition, materials of micropumps must have good chemical stability, biocompatibility, 

elasticity and economics scale (low cost). 

Micropumps have complex design variables and require specific time to 

develop a pump system with high performance based on its application. In order to 

make the design of micropumps more systematic and efficient, the optimization tool of 

micropump variables is suggested. Many theories and methods are used to optimize the 
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micropumps in order to acquire the high performance of micropumps. To design a 

micropump is a critical issue in choosing the optimum parameters to attain high net 

flow rate in forward direction (which fluid flow from inlet to outlet) with low power 

consumption and to avoid the fluid flow in reverse direction (which fluid flow from 

outlet to inlet). Hence, to develop a high performance and low power consumption of 

micropump, design optimization of micropump is suggested in this research by using 

the implementation of artificial intelligence (AI) approaches. 

 

1.3 Research Objectives 

 

The main objective of this research is to optimize the design variables of 

micropump by using AI approaches. In this research, the appropriate dimensions and 

parameters of the micropump are determined according to the application of the 

micropump. The other objectives are listed as follow: 

i. To determine the optimum parameters for the micropump according to its 

application and requirement. 

ii. To generate the optimization of micropump based on genetic algorithm 

(GA) and particle swarm optimization (PSO) methods. 

iii. To develop a hybrid optimization method used to optimize the micropump 

design variables. 

iv. To analyze and investigate the performance of micropump. 

 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



 

6 

 

1.4 Research Scope 

 

In this research, the performance of valveless micropump is studied. This 

research starts with the determination of the design variables for valveless micropump 

to be optimized using the implementation of AI methods. The variable parameters of 

valveless micropump are determined based on its application in medical application. 

The structure of valveless micropump is designed and simulated using ANSYS 

Workbench software whereas for the optimization algorithm is developed using 

MATLAB. This study focuses on GA, PSO and hybrid PSO-GA (denoted as         

HPSO-GA) optimization tools to optimize the design variables of valveless 

micropump. Simulation results obtained are compared for the three methods of 

optimization.  

Three types of materials are investigated in this research to analyze the 

structural performance of the valveless micropump. These materials are silicon, silicon 

dioxide and stainless steel that have been successfully applied in medical application 

with the recent growth of drug delivery systems (DDS). Besides, these materials are 

extensively used as a good biocompatible material. However, a trend towards the use of 

polymers as substrate materials is growing as polymer materials are widely used in 

medical application. One of the most popular polymer materials in MEMS is 

polydimethysiloxane (PDMS). Although PDMS have some advantages and becomes a 

trend in MEMS fabrication, however this material has not selected to be included in 

this work. This is because the limitation of PDMS in term of the structure. PDMS is a 

soft structure and has the tendency to swell in most of the organic solvents besides its 

low Young’s Modulus (several hundreds kPa) resulting in a bulging of the structures 

for applied pressure differences larger than 1 bar (0.1 MPa). Furthermore, the surface of 
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