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SINTESIS, PENCIRIAN DAN SIFAT-SIFAT KOMPOSIT 

NANO POLIETILENA BERKETUMPATAN RENDAH TERISI 

GRAFIT TERKURANG 

ABSTRAK 

Bahan berasaskan grafit telah menjadi calon yang menjanjikan dalam nanokomposit 

poliolefin dalam aplikasi luas seperti bahan pembungkusan. Walau bagaimanapun, 

penggunaan gabungan ini menimbulkan keraguan tentang kesan haba yang digunakan 

pada nanokomposit. Di sini, kajian sistematik telah dijalankan untuk menyiasat kesan 

penurunan oksida grafit (rGO) ke arah bahan poliolefin. Kaedah pengecoran hijau dan 

mudah diperkenalkan dalam fabrikasi polietilena berketumpatan rendah / pengurangan 

grafit oksida (LDPE / rGO) nanokomposit dengan kandungan pengisi 0.05 - 1 wt%. 

Tanpa sebarang pengubahsuaian antara polietilena dan oksida grafit yang diturun, 

beberapa pencirian telah dilaksanakan ke arah nanokomposit. Sifat optik melalui 

spektroskopi yang kelihatan UV secara berkesan mengenal pasti ketelusan 

nanokomposit, di mana ketelusan berkurangan dengan penambahan rGO. Ujian 

ketegangan juga dilakukan untuk menentukan sifat ketegangan filem yang direka. Filem 

yang berkandungan 0.3 wt% rGO menunjukkan kekuatan ketegangan tertinggi secara 

keseluruhan. Halangan gas bersama-sama dengan sifat-sifat dielektrik dari 

nanokomposit dikaji secara mendalam. Mikroskop elektron penghantaran (TEM) 

digunakan untuk memerhatikan penyebaran dan morfologi grafit oksida yang 

dikurangkan dalam polietilena. Selanjutnya, penguraian haba nanocomposites diselidiki 

melalui analisis termogravimetrik (TGA). Kajian kinetik terhadap nanokomposit yang 

berdegradasi telah menunjulkan bahawa model Flynn-Wall-Ozawa (FWO) adalah satu 

langkah lebih tinggi berbanding dengan model Kissinger (K). Walaupun hanya terdapat 

satu langkah kemerosotan terma yang muncul namun unsur-unsur yang terurai masih 

tidak diketahui. Oleh itu, kromatografi gas (GC) dan spektroskopi jisim (MS) ditambah 

dengan TGA digunakan untuk memisahkan sebatian yang berkembang ke dalam alkana, 

alkena dan kumpulan aromatik masing-masing. Gas yang beracun hanya akan 

dikeluarkan apabila nanokomposit dipanaskan hingga 460 °C. Dengan penambahan 

rGO dalam matrik LDPE, tingkah laku degradasi nanocomposites mengenal pasti 

melalui sinaran UV. Terdapat hanya sedikit atau tidak ada perbezaan pada sifat-sifat 

filem nipis selepas 360 jam radiasi UV-B. Berdasarkan analisis, kajian menunjukkan 

bahawa penambahan rGO ke atas LDPE akan meningkatkan sifat optik, mekanik, 

termal dan dielektrik. Ini telah meluaskan aplikasi LDPE/rGO yang berpotensi 

berfungsi sebagai bahan pembungkus. 
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SYNTHESIS, CHARACTERIZATION AND PROPERTIES OF 

LOW DENSITY POLYETHYLENE FILLED WITH REDUCED 

GRAPHITE OXIDE 

ABSTRACT 

Graphite based materials have become promising candidates in polyolefin 

nanocomposites in widening the application such as a packaging material. However, the 

utilization of these combination exhibits a doubt on how was the effect once heat is 

applied onto the nanocomposites. Herein, a systematic study has been carried out to 

investigate the effect of reduced graphite oxide (rGO) towards low density polyethylene 

(LDPE). A simple solvent casting method was carried out in fabricating low density 

polyethylene / reduced graphite oxide (LDPE/rGO) nanocomposites with the filler 

contents of 0.05 – 1 wt%. Without any modification between LDPE and rGO, several 

characterizations have been implemented towards the nanocomposites. Optical 

properties through UV-visible spectroscopy were effectively identifying the 

transparency of the nanocomposites, where the transparency decreased with the 

increased of rGO. The tensile test was also carried out in order to determine the tensile 

properties of the fabricated film. Thin film with 0.3 wt% of rGO content has showed 

highest tensile strength compared to the rest of the nanocomposites film. Gas barrier 

together with the dielectrical properties of the nanocomposites were studied in depth. 

Transmission electron microscopy (TEM) was employed to observe the dispersion and 

morphology of the rGO in LDPE. Further, thermal decomposition of the 

nanocomposites was investigated through thermogravimetric analysis (TGA). Kinetic 

studies on the degradation nanocomposites had concluded that Flynn-Wall-Ozawa 

(FWO) model is one step higher compared to Kissinger (K) model. In order to identify 

the elements that decomposed, gas chromatography (GC) and mass spectroscopy (MS) 

coupled with TGA were used to separate the evolved compounds into alkane, alkene 

and aromatic groups, respectively. Where, toxic gaseous will only being released out 

when the nanocomposites was heated up to 460 °C. With the addition of rGO in the 

LDPE matrix, the degradation behaviour of the nanocomposites was identifying 

through UV radiation. There is only slight difference on the thin film’s properties after 

360 hours of UV-B radiation. Based on the analysis, the studies clearly indicated that 

the feasibility of incorporating rGO into the LDPE matrix had improved the optical, 

mechanical, thermal and dielectric properties. This has widened the application of 

LDPE/rGO nanocomposites in serving as a packaging material. 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



1 

CHAPTER 1 : INTRODUCTION 

1.1 Nanocomposites: Current Status, Challenges and Future  

Nanocomposites briefly defined as nanofillers bonded to a matrix, which have 

been reported since past decades has increased an interested for commercial use. Fillers 

play an important role in modifying the desirable properties in composites and can 

adversely affect some properties of the neat matrix with the main aim to reduce the cost 

of the composites. In conventional composites, fillers are usually added into matrix as 

reinforcement to rebuild the properties of the composites. The most widely employed 

composites nowadays in industrial sectors are those with micron-sized particles or 

fibers as reinforcement. In fact, traditional micro composites might have achieved the 

optimizing properties in terms of physical and mechanical properties (Pezzin, Amico, 

Coelho, & de Andrade, 2011). Therefore, about twenty years ago, researchers proved 

that novel materials could be produced with tailored properties using nanofillers. 

Current trend of fillers used is available on nanoparticles, nanoplatelets, nanofibers, 

carbon nanotubes, and more recently on graphite (Pezzin et al., 2011).  

Substitution of the traditional micro-reinforced materials using polymer 

nanocomposites has attracted most of the researchers nowadays. Indeed, the 

combination of nanomaterials with thermoplastic or thermoset polymers lead to very 

interesting mechanical or physical properties. According to Mohammed (2016) 

different particle size of titanium dioxide has been implemented into thermoset 

materials such as epoxy with the purpose to study its physical properties. Wear rate and 
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hardness test on the polymer nanocomposite has showed better properties compared to 

composites filled with micron size filler. Besides, comparison has been made between 

nano and sub-micrometer zinc oxide with an organophilic surface layer as fillers in 

poly(methyl methacrylate) based on its UV absorber and thermal stabilizer. Nano sized 

zinc oxide showed effective UV absorber than submicrometer zinc oxide. Therefore, 

Anžlovar, Crnjak Orel, and Žigon (2008) concluded that the average particle size is an 

important parameter for optimizing the composites properties.  

Although nanotechnology is now revolutionizing the world of materials and has 

very high impact in developing a new generation of composites with enhanced 

functionality and wide range of applications. But investment in state of the equipment 

and the enlargement of core research team's is another bottleneck to bring out 

innovative technologies on nanocomposites. A part of that, nano fillers selection based 

on the requirement needed such as an interfacial interaction or compatibility with the 

polymer matrix and the processing technique which aimed for the proper uniform 

dispersion and distribution of nano-particles or nano-particles aggregates within the 

polymer matrix is another problem should be considered too (Müller et al., 2017) .  

Thus, extension of this nanotechnology using additional types of polymer 

system would likely to be a prerequisite aim as the future trends for nanocomposites 

materials. New compatibility strategies between nano fillers and polymer matrix are 

also one of the interests in the development of properties enhancement for polymer 

nanocomposites. 
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1.2 Graphite Oxide based Thermoplastic Nanocomposites  

Graphite oxide based fillers in polymer nanocomposites has hold potential for 

various application. Thermoplastic polymer as matrix with graphite based filler include 

polypropylene (PP), polymethylpentene (PMP), polybutene-1 (PB-1), polystyrene (PS), 

poly(methyl methacrylate) (PMMA) and polycarbonate (PC) (Ma, Siddiqui, Marom, & 

Kim, 2010). To achieve large property of enhancements in polymer nanocomposites, it 

is important to focus on the preparation method. Layered structure graphite oxide must 

be exfoliated and well dispersed in the polymer matrix. Upon achieving this criterion, 

ultrasonication have been wisely use extensively to produce highly exfoliated 

nanoplatelets for nanocomposites. However, it is proved that graphite oxide can be 

easily dissolved in a variety of solvent such as dimethylformamide (DMF) and 

tetrahydrofuran (THF), which will further help to improve interfacial interaction with 

polymer matrix. 

Studies on poly(propylene carbonate) (PPC) reinforced graphite oxide was 

reported by J. Gao et al. (2011) using solvent mixing method during preparation. As 

expected, the mechanical properties of PPC/GO nanocomposites have been highly 

improved together with tensile strength and Young's modulus by adding of only 1wt% 

graphene oxide. These properties are comparable to those of polyethylene and poly (L-

lactic) acid as matrix (Chaudhry & Mittal, 2013; Pinto, Cabral, Tanaka, Mendes, & 

Magalhães, 2013). Other than that, Kuila et al. (2012) claims that linear low density 

polyethylene filled modified graphene oxide using dodecyl amide (DA) with the 

purpose to achieve better dispersion in the polymer matrix due to the nucleophilic 

addition of organic molecules to the surface of graphene is an effective way to the bulk 
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production of surface modified graphene (Bourlinos et al., 2003; Stankovich et al., 

2010) were also made some improvement in the storage moduli and thermal stability 

than the neat LLDPE. In addition, graphene and silica hybrid fillers to PP-based 

nanocomposites has increased the tensile strength by 13.8% when the filler content was 

fixed at 0.25 wt% (Kamal, Khan, Haider, Alghamdi, & Asiri, 2017). A previous study 

used octadecylamine-modified graphene oxide into PP and found that the layered 

morphology exhibited better thermal stability and mechanical properties compared to 

the neat PP (H. X. Zhang et al., 2017). However, the incorporation of carbonaceous 

materials into LDPE has received less attention. Bu, Huang, Li, and Jiang (2016) have 

filled the antioxidant functionalized reduced graphene oxide (rGO) to LDPE and found 

that functionalized rGO could enhance the dielectric constant as well as improve the 

dielectric loss tangent of nanocomposites. An improvement in the thermal behavior of 

the composites was noticeable when 3 wt% functionalized graphene filler content was 

loaded to the linear LDPE matrix (Kuila et al., 2011). However, the physicochemical 

properties of incorporation of rGO into the LDPE matrix with respect to the packing 

materials including optical, tensile, thermal and dielectrical properties are yet to be well 

understood. In addition, the surface modification of fillers shoots up the cost of 

nanocomposites and longer time is needed during fabrication process, which may 

hamper the industrial adaption (Tanahashi, 2010).  

With these, studies on graphite oxide based thermoplastic are piling up highly 

desirable demand to develop novel LDPE/rGO nanocomposites without any surface 

modification for multifaceted applications. 
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1.3 Problem Statement 

The current trend of packaging materials use biopolymer as matrix in packaging 

application has become potentially renewable alternative to petroleum-based plastics 

due to the long term benefits of reducing global warming pollution and the dependence 

on fossil fuels. Although bio-based polymer matrix sounds "green" but according to the 

Life Cycle Analysis of biopolymer, bioplastic has resulted in more pollution or energy 

consumption imposing higher costs to the society than the conventional petroleum 

based polymer matrix. Bioplastic that designed to be composted, not recycle has 

become one of the issues that concern nowadays (S. Lee & Xu, 2005).  

Among the list of the polyolefin materials that is being used in the packaging 

application such as high density polyethylene (HDPE), linear low density polyethylene 

(LLDPE) and low density polyethylene (LDPE), the LDPE is chosen as the polymer 

matrix for packaging application. By comparing the characteristics between these 

polyolefin materials, low density polyethylene (LDPE) with its unique properties such 

as having the most excessive branching in its structural has provided a good flow 

properties that can make it particularly for plastic film applications, high ductility, good 

chemical resistance and excellent water resistance has also become the reason why 

LDPE is the most outstanding characteristics among the polyolefin materials (Fayyaz, 

Muhamad, & Sulong, 2018). Unfortunately, LDPE is poor in both gas barrier and less 

tensile strength. In order to overcome the above mentioned drawback, incorporating 

layered structure graphite oxide into the LDPE matrix, which served as packaging 

material was studied.  
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To overwhelm gas barrier of the selected polymer matrix, two dimensional 

carbon based filler was selected as it contains unique characteristics. Besides, sheets 

structure filler was highly introduced in the nanocomposites system. Although there are 

various types of two dimensional carbon based materials, such as graphene, graphene 

oxide, graphite oxide, etc. And, graphene oxide can be exfoliating well if the polymer 

matrix used is hydrophilic in nature. But, along with the study, hydrophobic 

polyethylene which has totally opposite nature with graphene oxide is being selected as 

the matrix used. Thus, reduction process was applied onto the graphene oxide so that 

reduced graphite oxide can be used as the filler in the nanocomposites. Although there 

are numbers of researchers have been studying on the characteristics between carbon 

based filler and polymer matrix, yet limited amount towards the unmodified filler filled 

polymer matrix and its degradation behaviour of the composites materials is still remain 

unknown.  

Aside from examine the effect of reduced graphite oxide that incorporated into 

LDPE matrix that focus as packaging material, the degradation behaviour of the 

nanocomposites was taken into account in order to obtain a reliable material in 

packaging application. With these, two different degradation aspects were observed 

from thermal and ultraviolet light at wavelength 305 nm. 

1.4 Objectives of study 

The aim of this work focuses on preparation and characterization of graphite 

oxide nanoplatelet as filler that incorporate into the low density polyethylene thin film 

nanocomposite. Emphasis is given on the synthesis of the graphite oxide and reduced 
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