

CHARACTERIZATION AND PROPERTIES OF NATURAL RUBBER/STYRENE BUTADIENE RUBBER/RECYCLED ACRYLONITRILE BUTADIENE RUBBER (NR/SBR/rNBR) BLENDS

NIK ZAKARIA BIN NIK YAHYA (1330410944)

ed by lo

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Materials Engineering

School of Materials Engineering UNIVERSITI MALAYSIA PERLIS

2016

ACKNOWLEDGEMENT

The present work was completed between January 2013 and December 2015 at Center of Excellence Geopolymer and Green Technology (CEGeoGTech), School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), Perlis and School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), Penang. The work had been funded by Knowledge Transfer Programme (KTP) research grant by the Higher Education Department, Ministry of Higher Education (MOHE) and technically supported by Top Glove Corporation Berhad.

Alhamdulillah, praise and thanks to Allah for always blessing me in so many ways, and for allowing me to reach one of my goals. My special thank goes to my parents, Haji Nik Yahya Nik Daud and Hajjah Wan Zainab Wan Yusoff for all the love and support that they gave me, and my family members for always motivating and cheering me up in the moment I need the most. Thanks to Ms. Shakira Yamanludin for the morale support and encouragment she gave during those difficult times.

I would like to express my sincere appreciation to my supervisors, Dr. Nik Noriman Zulkepli and Prof. Dr. Hanafi Ismail for their helpful guidance. In addition, I would like to thank Dr. Rosniza Hamzah, Mr. Lokman Hakim Ibrahim, Mr. Ahmad Azrem Azmi, Mr. Salihin Zakaria, Mr. Suharuddin Sulong, Mr. Affendi Derman, all Polymer Recycling Group (PolyReG) and CEGeoGTech members for their assistance and helpful insights during my laboratory works session. I learnt a lot from them and it must be difficult without their helps.

Finally, I would like to express thanks to Muhammad Ridhwan Jamalul Nasir, Hazwan Subli, Munirah Rohaizad, Noor Hafizah Zahari, Fatin Hanif, Afiratul Adilah Adnan, Hisyam Mokhtar, my housemates Fuadi Pargi, Izzuddeen Yazid, Zawawi Mahim and all postgraduate colleagues in School of Materials Engineering for being good laboratory mates and helping me with the characterizations and testings. May Allah bless us all.

Nik Zakaria bin Nik Yahya March 2016

TABLE OF CONTENT

	PAGE
THESIS DECLARATION	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	viii
LIST OF TABLES	xii
LIST OF ABBREVIATIONS AND SYMBOLS	xiv
LIST OF NOMENCLATURES	xvii
ABSTRAK	xiv
ABSTRACT	XX
LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS AND SYMBOLS LIST OF NOMENCLATURES ABSTRAK ABSTRACT	1
1.1 Recycling Scenario in Malaysia	1
1.1.1 Polymer Recycling	3
1.1.2 Rubber Waste Recycling	4
1.2 Research Background	5
1.3 Problem Statement	7
1.4 Research Objectives	8
1.5 Scope of Research	9
1.6 Thesis Outline	10

CHAF	PTER 2:	LITERAT	URE REVIEW	11
2.1	Rubber	Industry in	Malaysia	11
2.2	Rubber	Recycling:	Current Approaches and Utilization	13
	2.2.1	Terminolo	ogy of Rubber Recycling	14
	2.2.2	Size Redu	action and Grinding	17
	2.2.3	Properties	s of Rubber Blends Containing Recycled Rubber	19
		2.2.3.1	The Influence of Recycled Rubber on Curing Characteristics	19
		2.2.3.2	The Influence of Recycled Rubber on Mechanical Properties	21
	2.2.4	Applicatio	ang ubber	23
2.3	Rubber	Compound	ing	25
	2.3.1	Natural R	ubber	26
	2.3.2	Styrene B	utadiene Rubber	29
	2.3.3	Acrylonit	ile Butadiene Rubber	30
		2.3.3.1	Nitrile Glove	31
		2.3.3.2	Recycled Acrylonitrile Butadiene Rubber	32
2.4	Vulcani	zation and (Crosslinking of Rubber	36
	2.4.1	Sulfur Vu	lcanization System	36
C	2.4.2	Effects of	Sulfur Vulcanization in Recycled Rubber Blends	40
2.5	Elastom	er Blend		41
	2.5.1	Compatib	ilization of Elastomer Blend	43
	2.5.2	Epoxidize	d Natural Rubber	45
2.6	Reinford	cement of R	lubbers	47
	2.6.1	Reinforcin Filler	ng Filler, Non-Reinforcing Filler and Organic	48

2.6.1.1	Carbon Black	49
2.6.1.2	Calcium Carbonate	51
2.6.1.3	Rice Husk	52

CHAI	PTER 3:]	RESEARCH METHODOLOGY	54
3.0	Introduc	ction	54
3.1	Raw Ma	aterials	55
	3.1.1	Natural Rubber Styrene Butadiene Rubber	55
	3.1.2	Styrene Butadiene Rubber	55
	3.1.3	Recycled Acrylonitrile Butadiene Rubber	56
	3.1.4	Sulfur Vulcanization Compounding Ingredients and Other Additives	57
	3.1.5	Epoxidized Natural Rubber (ENR 50) as Compatibilizer	58
	3.1.6	Reinforcing Filler (Carbon Black)	59
	3.1.7	Non-Reinforcing Filler (Calcium Carbonate)	59
	3.1.8	Organic Filler (Rice Husk)	59
3.2	Blend P	reparation and Formulations	60
	3.2.1	NR/SBR/rNBR Blends with Different Blend Ratio	60
Ĉ	3.2.2	NR/SBR/rNBR Blends with Different rNBR Particle Sizes	60
C	3.2.3	NR/SBR/rNBR Blends with Different ENR 50 Contents	62
	3.2.4	Filled-NR/SBR/rNBR Blends with Different Filler Loadings	63
	3.2.5	Rubber Mixing and Compounding	64
3.3	Charact	erization of rNBR and NR/SBR/rNBR Blends	66
	3.3.1	Curing Characteristics of the Blends	66
	3.3.2	Fourier Transform Infra-Red (FTIR) Spectroscopy	66

	3.3.3	Mechanical	and Physical Properties of the Rubber Blends	66
		3.3.3.1	Tensile Properties	66
		3.3.3.2	Crosslink Density	67
		3.3.3.3	Hardness Test	68
		3.3.3.4	Rebound Resilience Test	68
	3.4.4	Morpholog	y Studies	69
3.5	Experii	mental Chart		70
CHA	APTER 4:	RESULTS A	ND DISCUSSION	72
4.1	Charact	erization of R	ecycled Acrylonitrile Butadiene Rubber (rNBR)	72
	4.1.1	Particle Size	e Analysis	72
	4.1.2	Fourier Trar	nsform Infrared (FTIR) Spectroscopy Analysis	75
4.2			ent Blend Ratio on Characteristics and R/rNBR Blends	77
	4.2.1	Curing Cha	racteristics	77
	4.2.2	Tensile and	Physical Properties	80
	4.2.3	Morphology	v Analysis	86
	4.2.4	Fourier Trar	nsform Infrared Analysis	90
4.3			ent rNBR Particle Sizes on Characteristics and R/rNBR Blends	93
	4.3.1	Curing Char	racteristics	93
	4.3.2	Tensile and	Physical Properties	94
	4.3.3	Morphology	y Analysis	99
	4.3.4	Fourier Trar	nsform Infrared Analysis	102

4.4		fects of Epoxidised Natural Rubber (ENR 50) Addition as a tibilizer on Characteristics and Properties of NR/SBR/rNBR	104
	4.41	Curing Characteristics	104
	4.4.2	Tensile and Physical Properties	105
	4.4.3	Morphology Analysis	111
	4.4.4	Fourier Transform Infrared (FTIR) Spectroscopy Analysis	113
4.5		fects of Carbon Black, Calcium Carbonate and Rice Husk on teristics and Properties of NR/SBR/rNBR Blends	116
	4.5.1	Curing Characteristics	116
	4.5.2	Tensile and Physical Properties	119
	4.5.3	Curing Characteristics Tensile and Physical Properties Morphology Analysis	125
CHA	PTER 5	CONCLUSIONS AND RECOMMENDATIONS	128
5.1	Conclu	sions	128
5.2	Recom	mendations for Future Research	130
REFI	ERENCI	ES	131
APPE	ENDIX -	A	147
APP	ENDIX -	B	149
APP)) ENDIX (151

LIST OF FIGURES

NO.		PAGE
2.1	The summary of reclamation of rubbers by process	16
2.2	The molecular structure of cis-1,4 polyisoprene	27
2.3	The molecular structure of SBR	30
2.4	The molecular structure of NBR	31
2.5	The sulfur crosslink structures of rubber vulcanizates	39
2.6	The molecular structure of ENR	46
3.1	The rejected nitrile gloves used as rNBR	56
3.2	The flow chart of the study on characteristics and properties of NR/SBR/rNBR blends	71
4.1	Particle size distribution of rNBR(S3)	72
4.2	The image of rNBR(S1) in sheet form	73
4.3	The microscopy image of rNBR(S2)	74
4.4	The scanning electron microscope image of rNBR(S3), at 30x magnification	74
4.5	The FTIR spectrum of rNBR	76
4.6	The chemical structure of CBS	76
4.7	The effect of different blend ratio on tensile strength of NR/SBR/rNBR blends	81
4.8	The effect of different blend ratio on elongation at break (E_B) of NR/SBR/rNBR blends	82
4.9	The effect of different blend ratio on stress at 100% elongation (M_{100}) of NR/SBR/rNBR blends	83

4.10	The effect of different blend ratio on crosslink density of NR/SBR/rNBR blends	84
4.11	The effect of different blend ratio on hardness of NR/SBR/rNBR blends.	85
4.12	The effect of different blend ratio on rebound resilience of NR/SBR/rNBR blends	86
4.13	The SEM images of NR/SBR/rNBR blends, of different blend ratio (a) 50/50/00, (b) 50/00/50 and (c) 00/50/50, at 50x magnification	87
4.14	The SEM images of NR/SBR/rNBR blends, of different blend ratio (a) 50/50/00, (b) 50/00/50 and (c) 00/50/50, at 300x magnification	88
4.15	The SEM images of NR/SBR/rNBR blends, of different blend ratio, (a1) 50/30/20, (a2) 30/50/20, (b1) 50/10/40 and (b2) 10/50/40, at 50x maginification	89
4.16	The SEM images of NR/SBR/rNBR blends, of different blend ratio, (a1) 50/30/20, (a2) 30/50/20, (b1) 50/10/40 and (b2) 10/50/40, at 300x maginification	90
4.17	The FTIR spectra of NR/SBR/rNBR blends at blend ratio (a) 50/50/00, (b) 50/30/20, (c) 50/00/50, (d) 40/50/10 and (e) 00/50/50	92
4.18	The proposed structure of NR/SBR/rNBR blends	92
4.19	The effect of different rNBR particle sizes on tensile strength of NR/SBR/rNBR blends	96
4.20	The effect of different rNBR particle sizes on stress at 100% elongation (M_{100}) of NR/SBR/rNBR blends	96
4.21	The effect of different rNBR particle sizes on elongation at break (E_B) of NR/SBR/rNBR blends	97
4.22	The effect of different rNBR particle sizes on crosslink density of NR/SBR/rNBR blends	98
4.23	The effect of different rNBR particle sizes on hardness of NR/SBR/rNBR blends	98
4.24	The effect of different rNBR particle sizes on rebound resilience of NR/SBR/rNBR blends	99

4.25	The SEM images of NR/SBR/rNBR blends with different rNBR particle sizes: (a) S1, (b) S2 and (c) S3 at 300x magnification	100
4.26	The SEM images of NR/SBR/rNBR blends with different rNBR particle sizes: (a) S1, (b) S2 and (c) S3 at 500x magnification.	101
4.27	The FTIR spectra of NR/SBR/rNBR blends with rNBR particle sizes (a) S1, (b) S2 and (c) S3	103
4.28	The effect of ENR 50 loading on tensile strength of NR/SBR/rNBR blends	106
4.29	The effect of ENR 50 loading on elongation at break (E _B) of NR/SBR/rNBR blends	107
4.30	The effect of ENR 50 loading on stress at 100% elongation (M ₁₀₀) of NR/SBR/rNBR blends	109
4.31	The effect of ENR 50 loading on crosslink density of NR/SBR/rNBR blends	109
4.32	The effect of ENR 50 loading on hardness of NR/SBR/rNBR blends	110
4.33	The effect of ENR 50 loading on rebound resilience of NR/SBR/rNBR blends	111
4.34	The SEM images of NR/SBR/rNBR blends; (a) without compatibilizer, (b) 1 phr of ENR 50 and (c) 10 phr of ENR 50; at 100x magnification	112
4.35	The FTIR spectra of NR/SBR/rNBR blends with ENR 50 content; (a) without ENR 50, (b) 1 phr of ENR 50 and (c) 10 phr of ENR 50	114
4.36	The proposed structure of ENR 50-compatibilized NR/SBR/rNBR blends	115
4.37	The effects of different filler loadings on tensile strength of NR/SBR/rNBR blends	120
4.38	The effects of different filler loadings on stress at 100% elongation (M_{100}) of NR/SBR/rNBR blends	121
4.39	The effects of different filler loadings on elongation at break (E_B) of NR/SBR/rNBR blends	122

4.40	The effect of different filler loadings on crosslink density of NR/SBR/rNBR blends	123
4.41	The effects of different filler loadings on hardness of NR/SBR/rNBR blends	124
4.42	The effect of different filler loadings on rebound resilience of NR/SBR/rNBR blends	125
4.43	The SEM images of filled NR/SBR/rNBR blends; (a) CB at 5 phr, (b) CB at 50 phr, (c) CaCO ₃ at 5 phr, (d) CaCO ₃ at 50 phr, (e) RH at 5 phr and (f) RH at 50 phr; at 300x magnification	133
	copyil9:	
	orioinal	
	ected by	
	The SEM images of filled NR/SBR/rNBR blends; (a) CB at 5 phr, (b) CB at 50 phr, (c) CaCO ₃ at 5 phr, (d) CaCO ₃ at 50 phr, (e) RH at 5 phr and (f) RH at 50 phr; at 300x magnification	
ć	Thiste	
C	<i>U</i>	

LIST OF TABLES

NO.	Title	PAGE
2.1	The effects of NBRv and NBRr on the curing characteristics of NR/NBRv and NR/NBRr blends	20
2.2	Tensile properties of SBR/NBRv and SBR/NBRr blends	21
2.3	Classification of accelerators	37
2.4	Compositions of CV, semi-EV and EV systems	38
2.5	Vulcanizate structure of vulcanization systems	38
2.6	Effects of CB particle sizes at 50 phr on the tensile strength of SBR	50
3.1	Description of Standard Malaysian Rubber (SMR L)	55
3.2	Description of SBR-1502	56
3.3	Description of compounding ingredients and additives	58
3.4	The properties of Epoxyprene 50	58
3.5	The formulation of NR/SBR/rNBR blends with different blend ratio	61
3.6	The formulation of NR/SBR/rNBR blends with different rNBR particle sizes	62
3.7	The formulation of NR/SBR/rNBR blends with different ENR 50 loadings	63
3.8	The formulation of NR/SBR/rNBR blends with different filler loadings	64
3.9	Mixing and compounding procedure	65
4.1	The effect of different blend ratio on curing characteristics of NR/SBR/rNBR blends	78

4.2	The effects of different rNBR particle sizes on curing characteristics of NR/SBR/rNBR blends	94
4.3	Curing characteristics of ENR 50 compatibilized NR/SBR/rNBR blends	104
4.4	The effect of different filler loadings on scorch time (t_2) and cure time (t_{90}) of NR/SBR/rNBR blends	118
8.2	The effect of different filler loadings on minimum torque (M_L) and maximum torque (M_H) of NR/SBR/rNBR blends	118
othi	The effect of different filler loadings on minimum torque (ML) and maximum torque (MH) of NR/SBR/rNBR blends	

LIST OF ABBREVIATIONS AND SYMBOLS

μm	micrometer
ASTM	American Society for Testing and Materials
ATR	Attenuated Total Reflection
СВ	Carbon Black
cm	centimeter
CRM	Crumb Rubber Materials
CV	centimeter Crumb Rubber Materials Conventional Vulcanization Elongation at Break Epoxidized Natural Rubber
E _B	Elongation at Break
ENR	Epoxidized Natural Rubber
EV	Efficient Vulcanization
FTIR	Fourier Transform Infrared
GRG	General Rubber Goods
GTR	Ground Tire Rubber / Ground Tyre Rubber
IRG	Industrial Rubber Goods
ISNR	Indian Standard Natural Rubber
Kg/m3	relative density
M ₁₀₀	Modulus at 100% Elongation
MA	Maleic Anhydride
M_{H}	Maximum Torque
M_L	Minimum Torque
mm	millimeter
MPa	Megapascal
MRB	Malaysian Rubber Board

MREPC	Malaysian Rubber Export Promotion Council
NBRv	Virgin Acrylonitrile Butadiene Rubber
nm	nanometer
NR	Natural Rubber
phr	part per hundred rubber
PP-g-MA	Polypropylene-grafted-Maleic Anhydride
PRI	Plastic Retention Index
Qm	total swollen weight Research & Development
R&D	Research & Development
R-EPDM	Recycled Ethylene Propylene Diene Monomer
RHC	Rubber Hydrocarbon
RHP / RH	Rice Husk Powder / Rice Husk
rNBR	Recycled Acrylonitrile Butadiene Rubber
RSS	Ribbed Smoke Sheet
SBR-r	Recycled Styrene Butadiene Rubber
SEM	Scanning Electron Microscope
Semi-EV	Semi Efficient Vulcanization
SIR	Standard Indonesian Rubber
SMRCV	Standard Malaysian Rubber Constant Viscosity
SMR GP	Standard Malaysian Rubber General Purpose
SMR L	Standard Malaysian Rubber Light Color
SMR	Standard Malaysian Rubber
SR	Synthetic Rubber
St	Styrene
STR	Standard Thailand Rubber

t ₂	Scorch Time
t90	Cure Time
TARRC	Tun Abdul Razak Research Center
TCR	Trelleborg Cold Reclaiming
TPV	Thermoplastic Vulcanizate
TSR	Technical Specified Rubber
USA	United States of America
Vr	volume fraction of the swollen rubber molar volume of the solvent
Vs	molar volume of the solvent

une solvent copie

LIST OF NOMENCLATURES

ACN	Acrylonitrile group
BR	Polybutadiene Rubber
CaCO ₃	Calcium Carbonate
CR	Chloroprene Rubber
DTDM	4,4'-dithibismorpholine
EPDM	Ethylene Propylene Diene Monomer
EVA	Ethylene Propylene Diene Monomer Ethylene Vinyl Acetate Polyisoprene Rubber
IR	Polyisoprene Rubber
NBR	Acrylonitrile Butadiene Rubber
PP	Polypropylene
PS	Polystyrene
SBR	Styrene Butadiene Rubber
TMTD	tetramethylthiuram disulphide
TMTPA	trimethylolpropane triacrylate
TOR .	Trans-Polyoctylene Rubber
TOR THIS HE	

Pencirian dan Sifat-Sifat Adunan Getah Asli/ Getah Stirena Butadiena/Getah Nitril Butadiena Kitar Semula (NR/SBR/rNBR)

ABSTRAK

Penggunaan getah kitar semula dalam adunan-adunan getah telah menjadi kaedah paling mudah dan kos yang efektif dalam mengitar semula produk getah terbuang. Peningkatan permintaan terhadap sarung tangan lateks nitril dan penggunaan yang tinggi dalam pasaran kini telah menyebabkan banyaknya sarung tangan nitril terpakai dan terbuang dihasilkan setiap hari. Oleh itu, sisa sarung tangan nitril, terutamanya yang cacat dan buangan daripada proses-proses pengeluaran, telah digunakan semula untuk membangunkan adunan getah pertigaan baru daripada getah asli/getah stirena butadiena/getah akrilonitril butadiena kitar semula (NR/SBR/rNBR). Pertamanya, adunan-adunan NR/SBR/rNBR disediakan pada nisbah adunan berbeza, iaitu 50/50/00, 50/40/10, 50/30/20, 50/20/30, 50/10/40, 50/00/50, 40/50/10, 30/50/20, 20/50/30, 10/50/40 dan 00/50/50 (bsg/bsg/bsg) menggunakan penggiling bergulung dua pada suhu bilik, dan ciri-ciri dan sifat-sifat adunan-adunan tersebut dikaji dan dibandingkan. Peringkat seterusnya dalam kajian ini bertujuan utama untuk memperbaiki sifat-sifat regangan dan fizikal adunan dengan menyiasat kesan saiz butiran getah akrilonitril butadiena kitar semula (rNBR) yang berbeza, penyerasian dengan getah asli terepoksida (ENR 50) sebagai ejen penyerasi dan penggabungan jenis pengisi-pengisi yang berbeza terhadap adunan-adunan. Adalah penting untuk diambil perhatian tentang kehadiran pemecut tidak bertindak balas dalam rNBR, dikesan melalui analisis FTIR. Secara umumnya, peningkatan kandungan rNBR di dalam adunan (dan pengurangan salah satu juzuk getah dara), sifat-sifat regangan dan fizikal adunan NR/SBR/rNBR merosot. Walaubagaimanapun, kekuatan regangan tertinggi diperoleh daripada nisbah adunan optimum iaitu 50/30/20. Hal ini dipastikan dengan kajian SEM yang menunjukkan interaksi lemah antara rNBR dan getah dara, apabila kandungan rNBR meningkat. Kesan saiz butiran rNBR berbeza dikaji, menggunakan nisbah adunan optimum 50/30/20. Butiran rNBR terkecil S3 (1.5-800 µm) dalam adunan NR/SBR/rNBR menunjukkan sifat regangan paling rendah dibandingkan butiran rNBR lebih besar S2 (1.0-2.5 mm) dan S1 (10-15 cm). Walaubagaimanapun, adunan NR/SBR/rNBR(S3) mempamerkan masa skorj dan masa pematangan (t₉₀) paling cepat, berbanding adunan-adunan (t_2) NR/SBR/rNBR(S2) dan NR/SBR/rNBR(S1). Penambahan ENR 50, sehingga 10 bsg, memberi kesan kurang ketara pada sifat-sifat regangan dan fizikal adunan-adunan pertigaan NR/SBR/rNBR. Penambahan kandungan ENR 50 di dalam adunan telah meningkatkan kekuatan regangan secara tidak ketara, dengan penambahan lanjutan kandungan ejen penyerasi, melebihi 10 bsg, dijangka memberi penambahbaikan terhadap kekuatan regangan. Ini disokong dengan sifat-sifat fizikal dan analisis morfologi adunanadunan tersebut. Kesan butiran-butiran rNBR di dalam adunan dihadkan dalam kehadiran ENR 50. Walaubagaimanapun, kebolehprosesan adunan menjadi lebih mudah dengan penambahan ENR 50. Akhir sekali, pengisi-pengisi seperti hitam karbon (CB), kalsium karbonat (CaCO₃) dan sekam padi (RH) diisikan ke dalam adunan-adunan, dibezakan kandungan dari 5 hingga 50 bsg. Penambahan pengisi, sehingga 50 bsg, meningkatkan kekerasan adunan. Pada bebanan pengisi yang sama, adunan NR/SBR/rNBR terisi CB menunjukkan kekuatan tensil dan kekerasan paling tinggi, berbanding adunan terisi CaCO₃ dan RH, membuktikan kesan penguatan CB berbanding pengisi lain, terutama pada bebanan lebih tinggi. Tork minimum (M_L) dan tork maksimum (M_H) adunan NR/SBR/rNBR terisi meningkat dengan peningkatan bebanan pengisi dan meningkatkan kelikatan adunan. Peningkatan paling ketara dalam ketumpatan sambung silang adunan NR/SBR/rNBR terisi CB, berbanding CaCO₃ dan RH, membuktikan interaksi pengisi-pengisi dan pengisi-matrik yang lebih baik dipamerkan oleh pengisi penguat itu. Kajian ini mendedahkan bahawa adunan NR/SBR/rNBR boleh menjadi alternatif yang baik dan versatil untuk aplikasi luar, kerana mempunyai kekuatan regangan dan sifat fizikal yang baik, sesuai untuk memenuhi keperluan aplikasi.

orthis item is protected by original copyright

Characterization and Properties of Natural Rubber/Styrene Butadiene Rubber/Recycled Acrylonitrile Butadiene Rubber (NR/SBR/rNBR) Blends

ABSTRACT

Utilization of recycled rubber in rubber blends preparation has provided the simplest and most cost-effective method in recycling discarded rubber products. The increasing demand for nitrile latex glove and it high consumption in current market resulted in abundance of used and waste nitrile gloves generated daily. Hence, discarded nitrile gloves, particularly the defects and rejects from the production processes, were utilized to develop new ternary rubber blends of natural rubber/styrene butadiene rubber/recycled acrylonitrile butadiene rubber (NR/SBR/rNBR). Firstly, NR/SBR/rNBR blends were prepared at different blend ratio of 50/50/00, 50/40/10, 50/30/20, 50/20/30, 50/10/40, 50/00/50, 40/50/10, 30/50/20, 20/50/30, 10/50/40, 00/50/50 (phr/phr/phr) by using tworoll mills at room temperature, and the characteristics and properties of the blends were investigated and compared. The next stages of the study are mainly aim to improve the tensile and physical properties of the blends by investigating the effect of different recycled acrylonitrile butadiene rubber (rNBR) particle sizes, compatibilization with epoxidized natural rubber (ENR 50) as compatibilizer and incorporation of different type of fillers on the blends. It is important to note the presence of unreacted accelerator in rNBR, detected from FTIR analysis. Generally, as the increasing rNBR loading in the blends (and the decreasing one of the virgin rubber constituent), the tensile and physical properties of NR/SBR/rNBR blends deteriorated. However, the highest tensile strength obtained by the optimum blend ratio of 50/30/20. This result was confirmed by the SEM study that show poor interaction between rNBR and virgin rubbers as the rNBR loading increased. The effect of different rNBR particle sizes was investigated, by using the optimum blend ratio of 50/30/20. The smallest rNBR particles S3 (1.5-800 µm) in NR/SBR/rNBR blends shows the lowest tensile properties compared larger rNBR particles S2 (1.0-2.5 mm) and S1 (10-15 cm). However, NR/SBR/rNBR(S3) blends exhibited shortest scoreh time (t_2) and cure time (t_{90}) compared to NR/SBR/rNBR(S2) and (S1) blends. The addition of ENR 50, up to 10 phr, had insignificant effects on the tensile and physical properties of NR/SBR/rNBR ternary blends. The increasing ENR 50 content in the blends had insignificantly increased the tensile strength, with further addition of the compatibilizer, exceeding 10 phr, is expected to further improve the tensile strength. This is supported by the physical properties and morphology analysis of the blends. The effects of rNBR particles in the blend had restricted in the presence of ENR 50. However, the processability of the blends become easier with the addition of ENR 50. Lastly, fillers like carbon black (CB), calcium carbonate (CaCO₃) and rice husk (RH) was incorporated into the blends, varies from 5 to 50 phr. The addition of fillers, up to 50 phr, increased the hardness of the blends. At the same filler loading, CB-filled NR/SBR/rNBR blends exhibited highest tensile strength and hardness compared to CaCO₃-filled and RHfilled blends, proving its reinforcing effect compared to other fillers, especially at higher filler loading. Minimum torque (M_L) and maximum torque (M_H) of filled NR/SBR/rNBR blends increased with increasing filler loading and increased the viscosity of the blends. The most significant increase in crosslink density of CB-filled NR/SBR/rNBR blends, compared to CaCO₃ and RH, proved the better filler-filler and filler matrix interaction possesed by the reinforcing filler. The present work reveals that NR/SBR/rNBR blends

could be a good and versatile alternative for outdoor applications, due to its good tensile and physical properties, suitable to meet the demands of the applications.

othis item is protected by original copyright

CHAPTER 1

INTRODUCTION

1.1 Recycling Scenario in Malaysia

Solid waste generation and management has become major social and environmental issues in many developing countries in Asia, including Malaysia. Rapid economic growth, urbanization and changing trend of waste generation in these countries highlights the importance of an efficient solid waste management in order to overcome the mounting problem on landfills and solid waste disposal centers (Budhiarta, Siwar & Basri, 2012; Marshall & Farahbakhsh, 2013; Rockson, Kemausuor, Seassey & Yanful, 2013; Terazano et al., 2005). Poor waste management can cause health and environmental problems, thus intensive research and development has been extensively carried out in order to implement the cost effective and compatible solution for good solid waste management (Henry, Yongsheng & Jun, 2006; Nemerow, Agardy, Sullivan & Salvato; 2009; Othman, Noor, Abba, Yusuf & Hassan, 2013; Wilson, 2007).

Recycling is defined as a process of separating and converting waste into usable products that benefits people, which includes the effort of recovering and reusing waste from various sources (de Oliveira Simonetto & Borenstein, 2007). Recycling is purposely practiced to conserve energy and to reduce the burden of waste materials on the environment, as it helps lower greenhouse gas emissions, reduce water and air pollutions as well as environmental and economic costs, reduce health risks, save natural resources and save space in the landfills (Bolaane, 2006; Kinnaman, 2006; Martin, Williams & Clark; 2006; van den Bergh; 2008).

The recycling practices have been done for so many years; even before the term had existed and the importance and benefits of recycling has been publicly stressed in last few decades (Palliser, 2011). People in yesteryears had reused materials and refashioned them into new needed items, which is considered as simple recycling. Since then, the recycling practices has vastly developed, specifically on the class of materials that can be recycled and new technologies on recycling had been introduced.

Malaysian government has recognized the importance of solid waste recovery, especially from the industrial sites, which allows the industries to reduce manufacturing costs, increase efficiency of resources utilization, promotes environmental friendly product design and reduce negative impacts on environment and human health, thus provides alternative resources and reduces dependency on natural resource such as petroleum for plastics (Mohamed, 2009; Dewulf & van Langenhove, 2005; Pongracz & Pohjola, 2004), For all the benefits and advantages of it, the recovery and recycling of industrial solid waste, like the scrap iron, steel, aluminium, carton boxes, paper, glass, plastics and rubber, has become an important support industry for developing and industrial countries like Malaysia and seen to be the best alternative for managing the solid waste in factories and plants (Mohamed, 2009). Industrial waste recovery has been identified as an emerging economic activity and has become an important support industry for the past decade to ensure the sustainability of the manufacturing industries. Polymeric materials, such as plastics and elastomers, has been one of the most generated solid wastes in Malaysia, from both municipal and industrial sites, and this fact highlighted the need for these materials to be recycled extensively.

1.1.1 Polymer Recycling

Polymer recycling can be classified into two; industrial scrap recycling and postconsumer recycling. The former has been long practiced by many groups, primarily involves recovering and reusing polymer wastes that resulting from manufacturing operations, which is a simpler than the post-consumer recycling. Industrial scrap recycling is motivated by economics, which collectors collected a particular type of polymer wastes in a central location before recycling process take place (Stein, 1992). However, post-consumer recycling is a much complicated and difficult process, due to the problem in sorting out the various type of consumed polymer products into a specific type of polymer after consumption (Stein, 1992). This problem could lead to deterioration in the properties of polymer product for the next life cycle. Separation of plastics before recycling is not impossible to be implemented, but the first step to achieve it is by educating the local community about the importance of recycling and how it can be effectively done.

Polymer recycling and recovery also can be differentiated by terminology used to describe it. Primary recycling can be describe as mechanical reprocessing of polymer waste into a product with equivalent properties, or also called as close-loop recycling. This is the most practical when the polymer constituent can be effectively separated from contamination and can be stabilized against degradation during reprocessing. Secondary recycling is much similar to the primary recycling, only for deterioration in