

# Development and Characterisation of Hybrid Napier/Glass Fibre Reinforced Epoxy Composites

# MOHD RIDZUAN BIN MOHD JAMIR (1441411504)

ted toy origin

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering

## School of Mechatronic Engineering UNIVERSITI MALAYSIA PERLIS

2016

## **UNIVERSITI MALAYSIA PERLIS**

|                                                    |                       | DECLARATION OF THESIS                                                                                      |  |
|----------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------|--|
|                                                    |                       |                                                                                                            |  |
| Author's full name                                 | :                     | MOHD RIDZUAN BIN MOHD JAMIR                                                                                |  |
| Date of birth                                      | :                     | 26 <sup>TH</sup> MARCH 1985                                                                                |  |
| Title                                              | :                     | DEVELOPMENT AND CHARACTERISATION OF                                                                        |  |
|                                                    |                       | HYBRID NAPIER/GLASS FIBRE REINFORCED                                                                       |  |
|                                                    |                       | EPOXY COMPOSITES                                                                                           |  |
| Academic Session                                   | :                     |                                                                                                            |  |
| I hereby declare that the at the library of UniMAP | e thesis<br>9. This t | becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed hesis is classified as :      |  |
|                                                    | L                     | (Contains confidential information under the Official Secret Act 1972)*                                    |  |
|                                                    |                       | (Contains restricted information as specified by the organization where research was done)*                |  |
| OPEN ACCESS                                        |                       | I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text) |  |
| I, the author, give perm                           | nission               | to the UniMAP to reproduce this thesis in whole or in part for the purpose of                              |  |
| research or academic e                             | xchang                | e only (except during a period of years, if so requested above).                                           |  |
|                                                    | $\sim$                |                                                                                                            |  |
| .*6                                                |                       | Certified by:                                                                                              |  |
| in is i                                            |                       |                                                                                                            |  |
| SIGNA                                              | TURE                  | SIGNATURE OF SUPERVISOR                                                                                    |  |
|                                                    |                       | ASSOCIATE PROFESSOR IR. DR.                                                                                |  |
| 850326-<br>(NEW IC NO /                            | -14-54<br>PASSE       | 439 MOHD SHUKRY BIN ABDUL MAJID<br>NAME OF SUPERVISOR                                                      |  |
| Date :                                             |                       | Date :                                                                                                     |  |
|                                                    |                       |                                                                                                            |  |
|                                                    |                       |                                                                                                            |  |
|                                                    |                       |                                                                                                            |  |
|                                                    |                       |                                                                                                            |  |

**NOTES**: \* If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

#### ACKNOWLEDGEMENT

Praise to Allah, the Most Gracious and Most Merciful, for giving me the strength and guidance to complete this thesis. The research work which led to this thesis was conducted since 8<sup>th</sup> October 2014 at the Solid Mechanics Laboratory, School of Mechatronics, Universiti Malaysia Perlis. Firstly, I wish to acknowledge my sponsors, Ministry of Higher Education Malaysia (MOHE) and Universiti Malaysia Perlis (UniMAP) for providing the financial support that enabled me to conduct these studies.

My special thanks go to Ir. Dr. Mohd Shukry Bin Abdul Majid for his guidance and continual support throughout the course of this work. I equally appreciate his wisdom, tolerance, patience and challenging criticisms. I would also like to thank Dr. Mohd Afendi Bin Rojan for his expert views, advice and fruitful discussions throughout the completion of this project.

I am very grateful to all staff at School of Mechatronics, especially En. Muhamad Aliff bin Mad Yussof who helped with the experimental work. Many thanks also extended to Politeknik Sultan Abdul Halim Muadzam Shah (POLIMAS) especially to En. Mohd Zahri Bin Jaafar for his collaboration on this project.

And most importantly, I wish to express my special thanks to my wife, Azduwin Binti Khasri and my daughter, Dhia Adelia Binti Mohd Ridzuan for their support and encouragement throughout my project and thesis, as well as my parents, siblings and friends.

## TABLE OF CONTENTS



## **CHAPTER 2 LITERATURE REVIEW**

| 2.1 | Introduction   | 12 |
|-----|----------------|----|
| 2.2 | Natural Fibres | 13 |

|      | 2.2.1  | Napier grass                      | 18 |
|------|--------|-----------------------------------|----|
| 2.3  | Natura | Fibre Treatment                   | 19 |
| 2.4  | Synthe | tic fibres                        | 22 |
|      | 2.4.1  | Glass fibre                       | 23 |
| 2.5  | Matrix | Materials                         | 24 |
|      | 2.5.1  | Ероху                             | 26 |
| 2.6  | Hybrid | Composites                        | 27 |
| 2.7  | Vacuur | n Infusion Method                 | 29 |
| 2.8  | Mecha  | nical Properties                  | 30 |
|      | 2.8.1  | Tensile Properties                | 30 |
|      | 2.8.2  | Flexural Properties               | 32 |
|      | 2.8.3  | Impact Properties                 | 32 |
|      | 2.8.4  | Energy absorption                 | 33 |
| 2.9  | Theore | tical Models for Hybrid Composite | 35 |
| 2.10 | Effect | of Moisture Absorption            | 40 |
| 2.11 | Effect | of Thermal Properties             | 42 |
|      |        | ·ST                               |    |

# CHAPTER 3 MATERIALS AND METHOD

| 3.1 | Introdu | iction                                                                 | 45 |
|-----|---------|------------------------------------------------------------------------|----|
| 3.2 | Charac  | terisation of Single Napier Grass Fibre                                | 47 |
|     | 3.2.1   | Extraction of Napier Grass Fibre                                       | 47 |
|     | 3.2.2   | Alkali Treatment                                                       | 47 |
|     | 3.2.3   | Physical Test of Fibres                                                | 49 |
|     | 3.2.4   | Moisture Content (MC)                                                  | 50 |
|     | 3.2.5   | Single Fibre Tensile Testing                                           | 51 |
|     | 3.2.6   | Thermogravimetric Analysis (TGA) and Derivative Thermogravimetric(DTG) | 52 |

|     | 3.2.7               | Fourier Transform Infrared Spectroscopy (FTIR)                                 | 53 |
|-----|---------------------|--------------------------------------------------------------------------------|----|
|     | 3.2.8               | Scanning Electron Microscopy (SEM)                                             | 53 |
| 3.3 | Develop<br>Compos   | oment of Hybrid Napier/Glass Fibre Reinforced Epoxy sites                      | 54 |
|     | 3.3.1               | Materials                                                                      | 54 |
|     | 3.3.2               | Alkali Treatment                                                               | 55 |
|     | 3.3.3               | Fibre Preparation                                                              | 55 |
|     | 3.3.4               | Composite Fabrication                                                          | 56 |
| 3.4 | Compo               | sites Test Set Up                                                              | 58 |
|     | 3.4.1               | Tensile Test                                                                   | 58 |
|     | 3.4.2               | Flexural Test                                                                  | 59 |
|     | 3.4.3               | Drop Impact Test                                                               | 60 |
| 3.5 | Moistur             | re Absorption Test of Hybrid Composites                                        | 62 |
| 3.6 | Therma              | l Investigation of Hybrid Composites                                           | 63 |
|     | 3.6.1               | Thermogravimetric Analysis (TGA)                                               | 63 |
|     | 3.6.2               | Dynamic Mechanical Analysis (DMA)                                              | 63 |
|     | 3.6.3               | Tensile, Flexural and Drop Impact Testing at Elevated Temperature              | 64 |
| 3.7 | Observa<br>Electror | ation of Surface Morphology by Field Emission Scanning<br>n Microscopy (FESEM) | 65 |
| (   |                     |                                                                                |    |
| CHA | PTER 4              | RESULTS AND DISCUSSION                                                         |    |
| 4.1 | Introdu             | ction                                                                          | 66 |
| 4.2 | Charact             | erisation of Napier Grass Fibre as Reinforcing Materials                       | 66 |
|     | 4.2.1               | Alkali Treatment on the Fibre Surfaces                                         | 67 |
|     | 4.2.2               | Alkali Treatment on the Fibre Diameter                                         | 67 |
|     | 4.2.3               | Moisture Content (MC) of Fibre                                                 | 69 |
|     | 4.2.4               | Single Fibre Tensile Testing (ASTM D3822)                                      | 71 |

|     | 4.2.5             | Thermo-gravimetric Analysis (TGA) and Derivative of Thermo-gravimetric (DTG)                                                                                       | 73  |
|-----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | 4.2.6             | Fourier transform infrared spectroscopy (FTIR)                                                                                                                     | 77  |
|     | 4.2.7             | Morphological Observation                                                                                                                                          | 81  |
| 4.3 | Mechar<br>Epoxy ( | nical Properties of Hybrid Napier/Glass Fibre Reinforced Composites                                                                                                | 85  |
|     | 4.3.1             | Densities and Void Content                                                                                                                                         | 85  |
|     | 4.3.2             | Tensile Properties                                                                                                                                                 | 87  |
|     | 4.3.3             | Theoretical Models of Tensile Properties                                                                                                                           | 90  |
|     | 4.3.4             | Flexural Properties                                                                                                                                                | 96  |
|     | 4.3.5             | Fractured Surface Morphology                                                                                                                                       | 98  |
|     | 4.3.6             | Drop Impact Response                                                                                                                                               | 103 |
| 4.4 | Effects<br>Hybrid | of Moisture Absorption on Mechanical Properties of<br>Napier/Glass Fibre Reinforced Epoxy Composites                                                               | 109 |
|     | 4.4.1             | Effect of Glass Fibre Loading and Moisture Absorption<br>on the Mechanical Properties of the Hybrid Napier/glass<br>Fibre Reinforced Epoxy Composites              | 109 |
|     | 4.4.2             | Effect of the alkali treatment of Napier fibre and<br>moisture absorption on the mechanical properties of<br>hybrid Napier/glass fibre reinforced epoxy composites | 121 |
| 4.5 | Effects<br>Hybrid | of Elevated Temperature on the Mechanical Properties of Napier/Glass Fibre Reinforced Epoxy Composites                                                             | 141 |
|     | 4.5.1             | Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) analysis                                                                                   | 141 |
|     | 4.5.2             | Dynamic Mechanical Analysis (DMA)                                                                                                                                  | 145 |
|     | 4.5.3             | Tensile Properties                                                                                                                                                 | 150 |
|     | 4.5.4             | Flexural Properties                                                                                                                                                | 154 |
|     | 4.5.5             | Fracture Surface Morphology                                                                                                                                        | 158 |
|     | 4.5.6             | Drop Impact Response                                                                                                                                               | 167 |

| CHAPTER 5 | CONCLUSION | AND RECOMM | <b>IENDATION</b> |
|-----------|------------|------------|------------------|
|-----------|------------|------------|------------------|

| 5.1  | Conclus | sion                                                                                                            | 171 |
|------|---------|-----------------------------------------------------------------------------------------------------------------|-----|
|      | 5.1.1   | Mechanical Properties and Impact Behaviour of the<br>Hybrid Napier/glass Fibres Reinforced Epoxy<br>Composites  | 171 |
|      | 5.1.2   | Hybrid Napier/glass Fibres Reinforced Epoxy<br>Composites Under Elevated Temperatures and Moisture<br>Exposure. | 173 |
| 5.2  | Recom   | nendations for Future Studies                                                                                   | 176 |
| REFE | RENCE   | s                                                                                                               | 177 |
| LIST | OF PUB  | LICATIONS                                                                                                       | 193 |
| LIST | OF CON  | IFERENCES ATTENDED                                                                                              | 194 |
| LIST | OF AWA  | ARDS                                                                                                            | 195 |
|      | othis   | item is protected by                                                                                            |     |

## LIST OF TABLES

| NO. |                                                                                                                              | PAGE |
|-----|------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1 | Physical and mechanical properties of commercially important lignocellulosic fibre                                           | 16   |
| 2.2 | Chemical composition and structural parameters of common lignocellulosic                                                     | 17   |
| 3.1 | Physical properties of treated and untreated Napier fibres.                                                                  | 49   |
| 3.2 | Properties of fibres and epoxy resin                                                                                         | 54   |
| 3.3 | Composition and designation of the hybrid formulations                                                                       | 57   |
| 4.1 | Mechanical properties of alkali-treated and untreated Napier grass                                                           | 72   |
| 4.2 | Thermo-gravimetric analysis (TGA) of Napier grass fibre                                                                      | 76   |
| 4.3 | Densities and void content of hybrid Napier/glass fibre reinforced epoxy composites                                          | 86   |
| 4.4 | Properties of Napier fibre, glass fibre and epoxy resin                                                                      | 90   |
| 4.5 | Data comparison of tensile properties between ROHM and experimental of hybrid Napier/glass fibre reinforced epoxy composites | 94   |
| 4.6 | OPercentage (by volume) of the constituents of the hybrid composite samples                                                  | 110  |
| 4.7 | Moisture absorption properties of hybrid Napier/glass fibre-reinforced epoxy composites                                      | 111  |
| 4.8 | Thermogravimetric analysis (TGA) results obtained for hybrid Napier/glass fibre reinforced epoxy composites                  | 145  |
| 4.9 | $T_g$ values obtained from loss modulus curve                                                                                | 150  |

## LIST OF FIGURES

| NO.    | PA                                                                                                                 | GE |
|--------|--------------------------------------------------------------------------------------------------------------------|----|
| 2.1    | Classification of natural and synthetic fibres                                                                     | 14 |
| 2.2    | Vacuum infusion method                                                                                             | 30 |
| 3.1    | Flow chart for overall procedure                                                                                   | 46 |
| 3.2    | a) Napier grass and b) Napier grass crushes process, c) soaked<br>Napier grass, and d) the extracted Napier fibres | 48 |
| 3.3    | Sodium Hydroxide (NaOH) for fibre treatment                                                                        | 48 |
| 3.4    | Metallurgical microscope (MT8100)                                                                                  | 50 |
| 3.5    | Diameter measurement of a single Napier fibre using a standard metallurgical microscope                            | 50 |
| 3.6    | Humidity chamber                                                                                                   | 51 |
| 3.7    | Tab-shaped of paper on fibre                                                                                       | 52 |
| 3.8    | Thermogravimetric Analysis (TGA) and Derivative<br>Thermogravimetric                                               | 53 |
| 3.9    | a) Napier grass fibre, b) E-glass fibre and c) EpoxyAmite 100                                                      | 54 |
| 3.10 ( | Differences between a) untreated and b) treated Napier grass fibre                                                 | 55 |
| 3.11   | Vacuum infusion process used to fabricate hybrid Napier/glass fibre reinforced epoxy composite                     | 56 |
| 3.12   | Schematic of the vacuum infusion system                                                                            | 57 |
| 3.13   | Tensile test operation using the universal testing machine (SHIMADZU)                                              | 58 |

| 3.14 | Plate composite that was fully developed after the infusion and<br>had been cut into specimen in rectangular shape                    | 60 |
|------|---------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.15 | Flexural test operation using the universal micro tester (INSTRON 5848)                                                               | 60 |
| 3.16 | Drop impact tester device IMATEK IM10                                                                                                 | 61 |
| 3.17 | a) Clamped specimen, b) Impactor is adjusted to desired height, and c) Impact test on the specimen                                    | 61 |
| 3.18 | Pyris diamond DMA (Perkin Elmer) and specimens held in a dual cantilever arrangement                                                  | 64 |
| 3.19 | a) Instron environmental chamber; b) tensile testing and c) flexural testing of hybrid Napier/glass fibre reinforced epoxy composites | 65 |
| 4.1  | Physical appearance of Napier grass fibre                                                                                             | 68 |
| 4.2  | Variations in average diameter of fibres                                                                                              | 69 |
| 4.3  | Moisture content of Napier grass fibres                                                                                               | 70 |
| 4.4  | Stress-strain responses for selected untreated and alkali-treated Napier grass fibres.                                                | 73 |
| 4.5  | TGA-DTG curves (a) Untreated fibre, (b) 5 and 7% alkali-<br>treated fibre, (c) 10, 12, 15% alkali-treated fibre                       | 76 |
| 4.6  | FTIR (a) Untreated fibre, (b) 5 and 7% treated fibre, (c) 10, 12, and 15% treated fibre                                               | 80 |
| 4.7  | (a–f) Surface morphologies of untreated and alkali treated Napier grass fibres                                                        | 83 |
| 4.8  | (a–f) Cross-sectional morphologies of untreated and alkali treated Napier grass fibres                                                | 84 |
| 4.9  | Tensile properties of hybrid Napier/glass fibre reinforced epoxy composites                                                           | 89 |
| 4.10 | Comparison of tensile properties between ROHM and experimental                                                                        | 93 |

| 4.11 | Flowchart of the ROM and ROHM modelling for predicting the<br>elastic modulus and strength of the hybrid Napier/glass fibre<br>reinforced epoxy composites | 95  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.12 | Flexural properties of the hybrid Napier/glass fibre reinforced epoxy composite                                                                            | 97  |
| 4.13 | Field emission scanning electron microscope (FESEM) images<br>of hybrid Napier/glass fibre reinforced epoxy composite with<br>untreated fibres             | 100 |
| 4.14 | Field emission scanning electron microscope (FESEM) images<br>of hybrid Napier/glass fibre reinforced epoxy composite with<br>5% alkali-treated fibres     | 101 |
| 4.15 | Field emission scanning electron microscope (FESEM) images<br>of hybrid Napier/glass fibre reinforced epoxy composite with<br>10% alkali-treated fibres    | 102 |
| 4.16 | Load vs. displacement of hybrid Napier/glass fibre reinforced<br>epoxy composites at different energy levels (a) 7.5 J, b) 15 J and<br>c) 22.5 J           | 105 |
| 4.17 | Energy absorption of hybrid Napier/glass fibre reinforced epoxy composites at different energy levels.                                                     | 106 |
| 4.18 | Pictures of the front and back surface of hybrid Napier/glass fibre reinforced epoxy composites                                                            | 108 |
| 4.19 | Tensile strength of dry and wet samples                                                                                                                    | 114 |
| 4.20 | Tensile modulus of dry and wet samples                                                                                                                     | 114 |
| 4.21 | Flexural strength of dry and wet samples                                                                                                                   | 116 |
| 4.22 | Flexural modulus of dry and wet samples                                                                                                                    | 116 |
| 4.23 | Field emission scanning electron microscope images of the tensile and flexural fracture specimens under dry conditions                                     | 119 |
| 4.24 | Field emission scanning electron microscope images of the tensile, flexural fracture specimens and the effect of water molecules under wet conditions      | 121 |

| 4.25 | Moisture absorption curves of hybrid Napier/glass fibre reinforced epoxy composites                                                                | 122 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.26 | Variation of the tensile properties of hybrid Napier/glass fibre reinforced epoxy composites                                                       | 124 |
| 4.27 | Variation of the flexural properties of hybrid Napier/glass fibre<br>reinforced epoxy composites                                                   | 127 |
| 4.28 | FESEM images of the fracture specimens under wet conditions for hybrid composites with untreated Napier fibre                                      | 131 |
| 4.29 | FESEM images of fracture specimens and the effect of water<br>molecules under wet conditions for hybrid composites with 5%<br>treated Napier fibre | 133 |
| 4.30 | FESEM images of the fracture specimens and the effect of water molecules under wet conditions for 10% treated Napier fibres                        | 135 |
| 4.31 | Impact properties of hybrid Napier/glass fibre reinforced epoxy composites at different of immersion times                                         | 139 |
| 4.32 | Pictures of front and back surface of hybrid Napier/glass fibre<br>reinforced epoxy composites at 22.5J with different of<br>immersion times       | 140 |
| 4.33 | Thermogravimetric analysis (TGA) curves obtained for hybrid<br>Napier/glass fibre reinforced epoxy composites                                      | 144 |
| 4.34 | Derivative thermogravimetric (DTG) analysis curves obtained<br>for hybrid Napier/glass fibre reinforced epoxy composites                           | 144 |
| 4.35 | Storage modulus curves of the neat epoxy and the hybrid Napier/glass fibre reinforced epoxy composites                                             | 146 |
| 4.36 | Loss modulus curves of the neat epoxy and the hybrid Napier/glass fibre reinforced epoxy composites                                                | 148 |
| 4.37 | Damping curves of the neat epoxy and the hybrid Napier/glass fibre reinforced epoxy composites                                                     | 149 |
| 4.38 | Tensile stress-strain behaviour of hybrid Napier/glass fibre reinforced epoxy composites at elevated temperatures                                  | 153 |

| 4.39 | Flexural stress-strain behaviour of hybrid Napier/glass fibre reinforced epoxy composites at elevated temperature                                        | 158 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.40 | Field emission scanning electron microscope images of hybrid<br>Napier/glass fibre reinforced epoxy composites with untreated<br>Napier fibres           | 162 |
| 4.41 | Field emission scanning electron microscope images of the hybrid Napier/glass fibre reinforced epoxy composites with 5% alkali-treated Napier fibres     | 164 |
| 4.42 | Field emission scanning electron microscope images of hybrid<br>Napier/glass fibre reinforced epoxy composites with 10% alkali-<br>treated napier fibres | 166 |
| 4.43 | Impact properties of hybrid Napier/glass fibre reinforced epoxy composites at elevated temperature                                                       | 169 |
| 4.44 | Pictures of front and back surface of hybrid Napier/glass fibre<br>reinforced epoxy composites at elevated of temperature                                | 170 |
| Ć    | Thistem                                                                                                                                                  |     |

## LIST OF ABBREVIATIONS

| ASTM  | American Society for Testing and Materials |
|-------|--------------------------------------------|
| DMA   | Dynamic Mechanical Analysis                |
| DTG   | Derivative Thermogravimetric               |
| EFB   | Empty Fruit Bunch                          |
| FESEM | Field Emission of Electron Microscope      |
| FDT   | Final Degradation Temperature              |
| FTIR  | Fourier transform infrared spectroscopy    |
| IDT   | Initial Degradation Temperature            |
| MC    | Moisture Content                           |
| MAPP  | Maleic Anhydride Grafted Polypropylene     |
| RT    | Room Temperature                           |
| RH    | Relative Humidity                          |
| RTM   | Resin Transfer Moulding                    |
| ROM   | Rule of Mixture                            |
| ROHM  | Rule of Hybrid Mixture                     |
| SEM   | Scanning Electron Microscope               |
| TGA   | Thermogravimetric Analysis                 |
| NaOH  | Sodium Hydroxide                           |

## LIST OF SYMBOLS

| $V_f$                  | Fibre loading (volume fraction),  |
|------------------------|-----------------------------------|
| W <sub>f</sub>         | Fibre loading (weight fraction),  |
| Wm                     | Matrix loading (weight fraction), |
| $ ho_c$                | Composite density, and            |
| $ ho_m$                | Matrix density.                   |
| $v_{f1}$               | Volume fraction of fibre type 1   |
| V <sub>f2</sub>        | Volume fraction of fibre type 2   |
| <i>E</i> <sub>11</sub> | Longitudinal modulus              |
| $\sigma_{11}$          | Longitudinal tensile strength     |
| $\sigma_{f}$           | Ultimate fibre strength           |
| $\sigma_m$             | Ultimate matrix strength          |
| $E_f$                  | Fibre modulus                     |
| $E_m$                  | Matrix modulus                    |
| v <sub>m</sub>         | Matrix volume fraction            |
| $\rho_f$               | Fibre density                     |
| $\rho_m$               | Matrix density.                   |
| ε <sub>c</sub>         | Strain of the hybrid composites   |
| E <sub>c1</sub>        | Strain of the first system        |
| E <sub>c2</sub>        | Strain of the second system       |
| L                      | Span length                       |
| В                      | Width                             |

- D Thickness
- Y Poison ratio
- V Volume
- Mass of the sample after exposing it in humidity  $M_h$
- $M_d$ Mass of the dried sample.
- $T_g$ Glass transition temperature

othis tem is protected by original copyright

## Pembangunan dan Pencirian Hibrid Gentian Rumput Gajah/Kaca Epoksi Komposit

## ABSTRAK

Permasalahan alam sekitar yang serius sejak kebelakangan ini menyebabkan penyelidik terdorong untuk menyiasat penggunaan bahan yang mampan sebagai pengganti untuk komposit polimer yang diperbuat daripada gentian sintetik seperti kaca, karbon, dan aramid. Oleh itu ia telah meningkatkan minat penyelidik dalam pembangunan komposit daripada gentian semula jadi. Walau bagaimanapun, komposit daripada gentian semula jadi mempunyai beberapa kekurangan seperti ketahanan yang lemah dalam penyerapan kelembapan dan mempunyai kekuatan hentaman yang rendah. Bagi meningkatkan lagi sifat komposit daripada gentian semula jadi, gentian sintetik seperti kaca, karbon, dan aramid dikombinasikan dengan gentian semulajadi. Sifat mekanik hibrid gentian rumput gajah/kaca epoksi komposit dan, ketahanannya terhadap suhu tinggi dan pendedahan kelembapan telah dikaji dan disiasat. Gentian 5% alkaliterawat gentian rumput gajah telah menunjukkan tegasan tengangan yang maksimum. Hibrid komposit dengan 5% alkali-terawat gentian rumput gajah mempunyai tegangan dan kekuatan lenturan yang paling tinggi. Pemerhatian terhadap kesan permukaan hibrid komposit dengan gentian rumput gajah yang tidak terawat menunjukkan kurang permukaan yang rosak. Penyerapan kelembapan hibrid rumput gajah/kaca epoksi komposit meningkat dengan peningkatam masa rendaman. Apabila suhu menghampiri  $T_{e}$ , pada > 60 ° C, gentian akan terlekang dari ikatan matriks dan seterusnya mengurangkan tegangan dan kekuatan lenturan bahan. Kajian ini dijangka menyediakan bukti untuk menyokong pembangunan dan penggunaan bahan tersebut.

## Development and Characterisation of Hybrid Napier/Glass Fibre Reinforced Epoxy Composites

#### ABSTRACT

Owing to serious environmental concerns in recent years, researchers have been driven to investigate the use of sustainable materials as a substitute for common polymer composites manufactured with synthetic fibres, such as glass, carbon, and aramid. This has generated increased interests in the development of natural fibrereinforced composites. However, natural fibre composites have some limitations such as poor resistance to moisture absorption and possess lower impact strength. To further enhance the properties of natural fibre composites, reinforcements such as glass, carbon, and aramid fibres are hybridized into natural-fibre composites. The mechanical properties of hybrid Napier/glass fibre reinforced epoxy composites and, their durability under elevated temperatures and moisture exposure were characterised and investigated. The 5% alkali-treated fibre had achieved the maximum ultimate tensile stress of single fibre test. The hybrid composites with 5% alkali-treated Napier fibres exhibited the greatest tensile and flexural strengths. Observing the impacted surfaces, it can be noticed that the hybrid composites with untreated Napier fibres present less damage area. The moisture absorption of the hybrid Napier/glass fibres reinforced epoxy composites increased with the water-immersion period of the samples. As the temperature approached  $T_g$ , at >60 °C, the fibre would deboned from the matrix and consequently reduced the tensile and flexural strength of the material. This study is expected to provide evidence to support the development and application of this material.

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Overview

The current growth in environmental awareness has generated increasing interest in the use of natural fibres as alternative reinforcement materials for polymer composites. This is largely owing to their low environmental impact, low cost, and relatively good specific properties. Scientists have been striving to develop biodegradable composites using renewable agro-based materials (Kommula, Kanchireddy, Shukla, & Marwala, 2014). Natural fibres derived from plants demonstrate great potentials for use in plastic, automotive, and packaging industries because of their excellent characteristics such as low density, high specific stiffness, good mechanical properties, biodegradability, ecofriendliness, toxicologically harmless effect, good thermal and their acoustic insulation (Mohanty, Wibowo Misra, & Drzal, 2004; V. K. Thakur, Thakur, & Gupta, 2013b). In addition, these cellulosic fibres can reduce the overall material costs compared to the starting polymer (V. K. Thakur, Thakur, & Gupta, 2013a).

Comprehensive reviews conducted by a number of publications (Bongarde & Shinde, 2014; He et al., 2015; V. K. Thakur, Thakur, & Gupta, 2014; V. K. Thakur & Thakur, 2014, 2015; F. Wang, Shao, Keer, Li, & Zhang, 2015) had outlined the differences found in natural fibres with regards to their mechanical properties and their applications. Several authors documented the use of natural fibres such as bamboo (F. Wang et al., 2015), flax (Moothoo, Allaoui, Ouagne, & Soulat, 2014), coir (Varma, D.

S. Varma, M. Varma, 1986), arundo donax (giant reed) (Fiore, Scalici, & Valenza, 2014), okra (De Rosa, Kenny, Puglia, Santulli, & Sarasini, 2010), jute (Pal, 1984; Prashant, 1986), wheat straw (Lawther, Sun, & Banks, 1996; Sun, Lawther, & Banks, 1996) and alfa (Paiva, Ammar, Campos, Cheikh, & Cunha, 2007) as reinforcements in composite materials.

Nevertheless, there are concerns regarding the attributes of natural fibres such as their hydrophilic nature, high moisture absorption, poor reactivity, and poor compatibility with polymeric matrices, all of which influence their mechanical properties (Indran, Raj, & Sreenivasan, 2014; Obi Reddy, Uma Maheswari, Shukla, Song, & Varada Rajulu, 2013; M. K. Thakur, Gupta, & Thakur, 2014). The hydrophilic nature of natural fibre is known to produce weak interfacial adhesion in polymer-matrix composites (Girisha & Srinivas, 2012). The type of natural fibre can also affect the biological performance of the composites, for example, a composite manufactured from abaca fibre has a much greater moisture content compared to flax reinforced composites (Faruk, Bledzki, Fink, & Sain, 2012). These problems can be rectified through modifications such as alkali treatment to enhance the interfacial adhesion between the natural fibres and composite matrices, in addition to enhancing the mechanical, physical, and thermal properties of the fibres (Li, Tabil, & Panigrahi, 2007). Other modifications during acetylation can modify the surface of the fibres and enhance their hydrophobicity (Faruk et al., 2012).

Napier grass fibre, also scientific name known as *Pennisetum purpureum* is composed of 46% cellulose, 34% hemicellulose, and 20% lignin (Reddy, Maheswari, Shukla, & Rajulu, 2012). The purpose of the alkali treatment is to remove the hemicelluloses, split the fibres in the fibrils, and produce a closely packed cellulose chain owing to the release of the internal strain, which consequently improves the

mechanical properties of the fibre (Bledzki & Gassan, 1999). Following the alkali treatment, the fibrillation of the fibres also increases the effective surface area available for wetting by the resin and enhances the bonding between the fibre-matrix interfaces within the polymer composites. The alkali treatment also breaks the hydrogen bonds and increases the number of free hydroxyl groups of the fibre, thus increasing the fibre reactivity (Dipa Ray, Sarkar, Basak, & Rana, 2002).

The alkali treatments of various lignocellulosic fibres such as jute, hemp, kapok, sisal (Mwaikambo & Ansell, 2002), banana (Zuluaga et al., 2009), coir (Gu, 2009b), and Napier grass (Reddy, Maheswari, Reddy, & Rajulu, 2009b) have been previously investigated. Haameem et al. (2014) recently determined that the maximum ultimate tensile stress of Napier single fibres was achieved with 10% alkali treatment. However, this was contradictory to the results of Reddy et al. (2012) which determined that the maximum ultimate tensile stress of Napier fibre was achieved with 5% alkali treatment. The modulus of jute fibres improved by 12%, 68 %, and 79% following 4, 6, and 8 h of alkali treatments, respectively. The tenacity of the fibre improved by 46% following alkali treatments for 6 and 8 h and the breaking strain was reduced by 23% following an 8 h treatment (D. Ray, Sarkar, Rana, & Bose, 2001). Liu et al. (2006), Rao et al. (2010) and Thakur et al. (2013b) all demonstrated that the natural fibres exhibited great potential for use as an alternative to artificial glass and carbon fibres during the production of thermosetting or thermoplastic composites. The incorporation of two or more types of fibre into a single matrix has led to the development of hybrid composites. The performance of these hybrid composites are determined by many factors, such as the matrix, length and shape of individual fibres, fibre-matrix interface bonding, and volume fraction of the natural/synthetic fibres (Cicala et al., 2009; Júnior, Júnior, Amico, & Amado, 2012; Mishra et al., 2003). Previous studies had studied the effect of varying the amount of fibre loading on the mechanical properties of hybrid composites consisting of natural fibres and glass fibre. These included bamboo/glass (Rao, Kumar, & Reddy, 2011), sisal/glass (Mishra et al., 2003), kenaf/glass (Atiqah, Maleque, Jawaid, & Iqbal, 2014), okra/glass(Sule, 2014) and jute/glass (Braga & Magalhaes Jr., 2015) hybrid composites. Mishra et al. (2003) reported that the water uptake of hybrid composites is lower than that of un-hybridized composites (Mishra et al., 2003). Moreover, Ahmed and Vijayaragan (2008) revealed that the properties of jute composites can be considerably improved by the incorporation of glass fibres in the form of extreme glass plies. These studies concluded that superior properties were exhibited by the hybrid-reinforced composites, which consisted of natural fibres and synthetic fibres.

Behaviours such as moisture absorption and mechanical degradation of polymers and polymeric composites have been comprehensively investigated (Demirkoparan, Pence, & Wineman, 2010; Demirkoparan & Pence, 2007a, 2007b; Tsai, Pence, & Kirkinis, 2004; Venkateshwaran, ElayaPerumal, Alavudeen, & Thiruchitrambalam, 2011). The mechanical properties and moisture absorption of these materials were greatly influenced by the length of the fibres and the hybridisation ratios used for the reinforcement (Sule, 2014). Phan Braga and Magalhaes (2015) reported that jute/glass composites that contained a greater proportion of jute fibre absorbed more water than those that contained a greater proportion of glass. Khalid et al. (2007) analysed the effect of hybridisation on the mechanical and physical properties of oil palm empty fruit bunch (EFB)/glass-polyester hybrid composites (Khalil, Hanida, Kang, & Fuaad, 2007). The study showed that the hybrid composites exhibited superior properties to the EFBpolyester composites. Recently, it had been established that Napier grass fibres can potentially be used as a reinforcement material within polymer composites (Reddy, Maheswari, Reddy, & Rajulu, 2009a; Reddy et al., 2012; Ridzuan, Abdul Majid, Afendi, Kanafiah, & Nuriman, 2015; Ridzuan, Abdul Majid, Afendi, Azduwin, et al., 2015).

Despite their great potential, compared with synthetic fibres, such as glass and carbon, natural fibres have some limitations when used as reinforcement materials, such as they have lower modulus and strength, as well as higher moisture absorption. To overcome these drawbacks, potential solutions have been suggested, such as hybridisation with synthetic fibres and chemical modification of the natural fibres. Hybrid composites are materials that are fabricated by combining two or more different types of fibres within a common matrix. Hybrid composites are more advanced than other fibre-reinforced composites and have a wider range of potential applications. The properties of the hybrid composites are dependent on the fibre content, fibre orientation, fibre length, bonding between the matrix and fibre, and the arrangement of the fibres within the laminates. Previous studies on natural-synthetic fibres (Assarar, Zouari, Sabhi, Ayad, & Berthelot, 2015; Joshi, Drzal, Mohanty, & Arora, 2004; Kumar, Arumugam, Dhakal, & John, 2015). A previous study had described the potential advantages associated with natural-synthetic fibre hybridisation (M. Jawaid & Abdul Khalil, 2011).

The mechanical properties of a kenaf-aramid hybrid composite were examined by (Bakar, Hyie, Ramlan, Hassan, & Aidah, 2013). They studied the potential hybridisation of the long kenaf fibres with Kevlar. The mechanical properties of the woven jute/glass fabric hybrid composites were examined by (K. S. Ahmed, Vijayarangan, & Kumar, 2007). The mechanical properties of sisal fibre reinforced polyester composites were improved by adding carbon (Noorunnisa Khanam et al., 2010). Hani et al. (2011) investigated hybrid (woven coir/ Kevlar) composites and found that coconut coir could