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Mikro Genetik Algoritma Diperbaiki untuk Fungsi Berbilang Objektif Kursawe 
dan ZDT dan Pengoptimuman Litar Penapis Pas Rendah  

 

 

ABSTRAK 
 

Walaupun Algoritma Evolusi (EAs) telah dilaksanakan untuk menyelesaikan Masalah 
Berbilang Matlamat (MOPs), penumpuan EAs kepada Pareto optimum depan masih 
merupakan salah satu isu yang membimbangkan. Demi meningkatkan kemantapan EAs, 
hibrid algoritma diwujudkan untuk mencari penyelesaian yang lebih baik untuk MOPs. 
Fokus utama pada penyelidikan terletak pada integrasi elitisme yang baru dalam Mikro 
Genetik Algoritma (MGA). Elitisme yang dicadangkan dalam penyelidikan ini untuk 
mewujudkan Mikro Genetik Algoritma Diperbaiki (IMGA). Dalam penyelidikan ini, 
Kursawe dan ZDT fungsi telah dipilih sebagai penanda aras untuk penaksiran pada 
IMGA. Kejituan dan keberkesanan IMGA dinilai berdasarkan beberapa penunjuk kualiti 
seperti generasi jarak dan non-dominated optimum jarak. IMGA yang dicadangkan 
dibandingkan dengan Non-dominated Sorting Genetik Algoritma II (NSGA-II), 
Strength Pareto Evolusi Algoritma 2 (SPEA2), MGA and Fast Pareto Genetik 
Algoritma (FPGA). Keputusan taksiran daripada IMGA membukti bahawa IMGA 
mempunyai kelebihan daripada MGA dalam Kursawe fungsi dengan mencapai  3.571E-
4 untuk generasi jarak dan 2.026E-2 untuk non-dominated optimum jarak, manakala 
IMGA masih mempunyai ruang peningkatan semasa berurusan dengan ZDT fungsi. 
Selepas penilaian pada ujian fungsi, IMGA yang dicadangkan digunakan untuk kajian 
kes praktikal pada pengoptimuman reka bentuk litar. Dua litar aktif penapis pas rendah 
yang berlainan bilangan masukan parameter telah dikaji. Litar dioptimumkan untuk 
mencapai objektif pada gandaan keluaran, frekuensi potongan dan riak passband dimana 
semua objektif ini adalah tidak selaras untuk pengoptimum serentak kerana prestasi 
salah satu objektif akan dikurangkan pada masa yang sama objektif lain dioptimasikan. 
Penilaian pada pengoptimum litar dijalankan bersama jurutera dari industri dimana 
masa dan pencapaian pada objektif digunakan untuk perbandingan dengan IMGA dan 
juga algoritma yang lain. Pemerhatian daripada analisis keputusan menunjukkan IMGA 
menggunakan masa yang lebih singkat berbanding jurutera iaitu 17.12 minit untuk 
perintah kelima aktif penapis pas rendah dan 35.54 minit untuk perintah kesembilan 
pelbagai maklum balas chebyshev penapis pas rendah. IMGA juga mengoptimumkan 
objektif litar  perintah kelima aktif penapis pas rendah yang diingini iaitu 0.967 V/V 
untuk gandaan 106.796Hz for frekuensi potongan dan 0.073dB for riak passband. 
IMGA juga mengoptimakan penyelesaian untuk perintah kesembilan pelbagai maklum 
balas chebyshev penapis pas rendah dengan nilai 26.24dB, 1017.73Hz dan 0.0858dB 
untuk gandaan, frekuensi potongan dan riak passband. Secare keseluruhan, penyelidikan 
ini membuktikan IMGA merupakan salah satu alternative dalam menyelesaikan MOPs.  
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IMPROVED MICRO GENETIC ALGORITHM FOR MULTIOBJECTIVE 

KURSAWE FUNCTION AND LOW PASS FILTER CIRCUIT OPTIMIZATION 

 

ABSTRACT 

 

Although Evolutionary Algorithms (EAs) have been widely implemented for solving 
Multiobjective Optimization Problems (MOPs), the convergence of EAs towards Pareto 
optimal front is still an issue of concern. In order to enhance the robustness of EAs, 
hybrid algorithms are commonly developed to identify better solutions for MOPs. The 
prime focus of this research is placed on the integration of new proposed elitism in 
conventional Micro Genetic Algorithm (MGA). The proposed elitism has been studied 
in this research to develop Improved Micro Genetic Algorithm (IMGA). In this 
research, Kursawe and ZDT test functions are chosen as the benchmark studies for the 
assessment on IMGA. The accuracy and effectiveness of IMGA are evaluated based a 
number of quality indicators such as generational distance and non-dominated optimal 
spacing. The proposed IMGA is compared with Non-dominated Sorting Genetic 
Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2), MGA 
and Fast Pareto Genetic Algorithm (FPGA). The assessment results show that IMGA 
can surpass the MGA in Kursawe test function by achieved 3.571E-4 for generational 
distance and 2.026E-2 for spacing. Meanwhile for ZDT benchmark, IMGA solved and 
suggested the optimal Pareto front for all the ZDT test functions. After having the 
benchmark evaluation, the proposed IMGA is applied to a practical case study on circuit 
design optimization. Two different circuit designs of active low pass filter that comprise 
of different number of input parameters are studied. The circuits are optimized to 
achieve objectives on output gain, cutoff frequency and passband ripple which are 
incommensurable for simultaneous optimization such that the performance of one 
objective decreases while optimizing another. Evaluation on circuit optimization has 
been conducted with a group of industrial engineers whereby the time and achievement 
of the objectives are compared with the proposed IMGA and a few existing algorithms. 
Observation from the result analysis shows that IMGA consumed lesser time compared 
to engineers result where 17.120 minutes for fifth order active low pass filter and 
35.540 minutes for ninth order multiple feedback chebysheve low pass filter, while 
engineer used upto 35 minutes and 101 minutes for both circuits. IMGA also optimized 
the circuit output parameters to desired values especially for fifth order active low pass 
filter, 0.967 V/V for gain 106.796Hz for cutoff frequency and 0.073dB for passband 
ripple. IMGA also find the optimized solution for the ninth order multiple feedback 
chebyshev low pass filter with values 26.240dB, 1017.730Hz and 0.085dB for gain, 
cutoff frequency and passband ripple corresponding. Overall, this research shows that 
IMGA is a potential alternative for solving MOPs. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

Multiobjective optimization is closely related to all engineering disciplines. It is 

a challenging task especially when dealing with real-world applications. The work 

presented in this thesis concerns the development of a novel multiobjective evolutionary 

algorithm for solving benchmark as well as practical circuit design optimization 

problem. This chapter gives an overview on evolutionary computation (EC) and reveals 

problem statement that motivates our research. Our research objectives, scopes, and 

contribution are explained in separated sections following the problem statement.   

 

1.2 Overview of Evolutionary Computation 

 

Since year 1960’s, an algorithm imitating living beings has been created for 

solving complicated optimization problems and this technique is known as EC (Gen et 

al., 2000). The goal of evolutionary computation is to create an effective computing 

system for problem solving by using natural behavioral selection and learning process. 

Thus, the EC has led to the development of evolutionary algorithms (EAs). The four 

best known algorithms in this class include genetic algorithms (Holland, 1975), 

evolution strategies (Beyer, 2001), evolutional programming (Fogel, 1992), and genetic 
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programming (Koza, 1991). Together, these algorithms form the backbone of the field 

of evolutionary algorithm. 

 

i. Genetic algorithm (GA) is the original form of evolutionary computation that 

employs evolutionary operators to change and improve a population of possible 

solutions to a problem (Holland, 1975) 

 

ii. Evolution strategies (ES) is similar to the genetic algorithm, but it differs in the 

method of selection and mutation activity (Beyer, 2001) 

 

iii. Evolution programming (EP) does not rely on the complex macromutations for 

successful optimization.  (Fogel, 1992) 

 

iv. Genetic programming (GP) is similar to the genetic algorithm, but with the 

extension of genetic forms using trees and graphs expression (Iba et al., 2012).  

 

In general, optimization refers to seek the solution over a set of possible choices 

to optimize certain criteria. Single objective optimization problem (SOP) always 

consider only one criterion whereas multiobjective optimization problem (MOP) always 

appear to have more than one criterion that must be treated simultaneously (Coello et 

al., 2007).  Optimum results in MOP are referred as Pareto optimal set which consists of 

nondominated solutions found in the search space corresponding to the objectives 

considered. There are various types of EAs that have been proposed and examined in 

MOPs. MOPs often involve incommensurable or conflicting objectives which will 
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decrease the performance of one objective while optimizing the other objective. In this 

case, EAs will guide the search toward the true Pareto front in the MOPs.  

 

Multiobjective Evolutionary Algorithms (MOEAs) can generally be divided into 

two generations. Niched-Pareto Genetic Algorithm (NPGA), Multi-Objective Genetic 

Algorithm (MOGA), and Nondominated Sorting Genetic Algorithm (NSGA) are some 

of the first generation MOEAs.  

 

i) NSGA proposed by Srivinas et al (1994) uses a layered-based classification 

suggested by Goldberg et al. (1988), sharing dummy fitness values among the 

layer of nondominated individuals to keep the diversity of the population. The 

population is ranked before the selection is performed. However, repetitive 

Pareto ranking decreases the efficiency of NSGA.  

 

ii) NPGA (Horn et al., 1994) used Pareto dominance scheme in the tournament 

selection. The comparison is performed on two randomly chosen individuals 

where the nondominated individuals are always selected in the tournament and 

fitness sharing is used to decide the result of tournament if there is a tie in 

comparison.  

 

iii) MOGA (Fonseca et al., 1993), a rank-based fitness assignment method is 

implemented in which the selection procedure is guided by rank values in the 

population.  
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The second generation MOEAs consist of Strength Pareto Evolutionary 

Algorithm (SPEA), Pareto Archived Evolution Strategy (PAES), Nondominated Sorting 

Genetic Algorithm II (NSGA-II), and Strength Pareto Evolutionary Algorithm 2 

(SPEA2).  

 

i) SPEA (Zitzler et al., 1999) introduces an external population and preserves 

population diversity using Pareto dominance relationship. The drawback of 

external population is the search process is time consuming with the growing 

size of the external population. Thus a pruning technique applied to external 

nondominated population to sustain the size below certain threshold.  

 

ii) SPEA2 (Zitzler et al., 2001), is an enhanced version of SPEA with three 

important aspects: 1) Individual domination using fine-grained fitness 

assignment. 2) More precise guidance in the search by using nearest neighbor 

density estimation. 3) New archive truncation methods to preserve the boundary 

of the Pareto optimal set.  

 

iii) PAES which is proposed by Knowles et al. (2000), employs elitism based 

archive approach that allow single parent to generate single offspring. Crowding 

procedure is applied to maintain the diversity of the Pareto optimal set. Although 

there are some similarities between PAES and Micro Genetic Algorithm (MGA), 

the addition of population in PAES claimed to be computational expensive.  

Considering such issue, MGA uses replaceable and non-replaceable memory to 

maintain the population diversity (Coello et al., 2005). 
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iv) NSGA-II (Deb et al., 2002) is developed as an enhanced version of NSGA 

which uses elitism in (µ+λ) (where µ denoted archive size and λ the population 

size) selection and crowd comparison operator. Crowding distance is used to 

calculate the distance between the individual with its neighbor. NSGA-II prefers 

to select the nondominated solution. If two solutions are in the same 

nondominated rank, the less crowded region is preferred. 

 

1.3 Problem Statement and Motivations 

 

Multiobjective optimization (MO) has become popular since year 1980’s and 

has been found to be profoundly useful in handling MOPs (Knowles et al., 2008). A lot 

of MOEAs have been created and proposed in various fields. Each MOEAs have 

advantages and disadvantages and there are notably successful MOEAs designed for 

dealing with many different challenges. As mentioned in Section 1.2, each algorithm 

has its special features such as crowding distance operation, external memory (archive) 

to save nondominated solutions, and strength fitness assignment. Researchers believe 

that a good coverage of the trade-off surface from a Pareto optimal set needs to strike a 

balance among convergence, diversity and spread (Durillo et al., 2011) 

 

Although multiobjective problems could be solved by at least a type of 

evolutionary algorithm, there is no individual evolutionary algorithm that could be 

claimed to be the best in solving all multi-objective problems. Considering different 

advantages in different algorithms, there are motivations on the development of hybrid 

evolutionary algorithm to integrate several evolutionary strategies for improvements in 

optimization performance.  As a result, this study investigates several unique features of 
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available evolutionary algorithms and innovates a new model to enhance good coverage 

of Pareto optimality for multiobjective optimization problem.  

 

ZDT (Zitzler-Deb-Thiele) and Kursawe test function are two well-known 

benchmark studies used to evaluate multi-objective evolutionary algorithms. Up to now, 

there are many research conducted to improve the search of Pareto optimality using 

these test functions as benchmarks testing. For instance, Coello (2001) has proposed a 

micro evolutionary algorithm to solve Kursawe test function (Coello et al., 2007). Due 

to the intrinsic mathematical properties, these functions are employed to reveal the 

challenging issues of MOPs. According to Zitzer et al. (2000), ZDT test function can 

cause difficulty of Pareto convergence whereas Kursawe test function has a non-

connected Pareto front with concave and convex regions. Considering these challenges, 

both ZDT and Kursawe functions are used as the benchmark evaluations for our 

research validation.  

 

Besides benchmark studies, practical case study is also important to give more 

convincing research assessment. In the electronic industries, the rapid change of 

customer requirement for different electronic applications leads to the requirement of 

rapid circuit design in order to fulfil the application specifications. Conventionally, 

circuit design engineers fine tune the circuit parameter to achieve the required 

specifications by experience and trial-and-error approach.  The frequent tuning of circuit 

parameter can be tedious and time consuming especially for fresh engineers and the 

situation become worse when complicated circuits that involved many topologies and 

parameters are dealt.  In addition, it is common that a circuit is designed to fulfil a 

number of objectives such as passband ripples, gain, and cutoff frequency. As a result, a 
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flexible multiobjective circuit optimizer that could assist the tuning of circuit 

performance is very much required in the circuit industries.   

 

Based on the above mentioned challenges and motivations, we develop a 

improved evolutionary algorithm, Improved Micro Genetic Algorithm (IMGA), by 

integrating a number of evolutionary strategies from the previous research considering 

the strength of different algorithms. Next, our proposed optimization model then applied 

on ZDT and Kursawe benchmark functions to investigate the capability to obtain better 

Pareto optimality. Finally, the model is used to develop a multi-objective evolutionary 

circuit optimizer, so called Cmizer, to assist practical circuit design parameter tuning.  

 

1.4 Objectives of this Study 

 

This research aims to achieve the following objectives: 

i. To determine and extract the important search strategies of different 

evolutionary algorithms and develop a novel hybrid evolutionary 

optimization model. 

ii. To investigate the capability of the proposed model in achieving Pareto 

optimality. 

iii. To develop a multi-objective evolutionary circuit optimizer for practical 

circuit design assistance with integration of plug-and-play feature and 

user-friendly interface. 

iv. To investigate the performance of the developed circuit optimizer. 
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