

IMPROVED MICRO GENETIC ALGORITHM FOR MULTIOBJECTIVE KURSAWE FUNCTION AND LOW PASS FILTER CIRCUIT OPTIMIZATION

by

LIM WEI JER (1130110664)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Microelectronic Engineering

> **School of Microelectronic Engineering UNIVERSITI MALAYSIA PERLIS**

> > 2015

	DECLARATION OF THESIS	
Authors' full name :	LIM WEI JER	
Date of Birth :	9 SEPTEMBER 1987	
Title :	IMPROVED MICRO GENETIC ALGORITHM FOR MULTIOBJECTIVE KURSAWE FUNCTION AND LOW PASS FILTER CIRCUIT OPTIMIZATION	
Academic Session :	2012 – 2014	
I hereby declare that the the	esis becomes the property of Universiti Malaysia Perlis (UniMAP)	
and to be placed at the librar	y of UniMAP. This thesis is classified as:	
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*	
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*	
OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)	
I, the author, give permission	n to the UniMAP to reproduce the thesis in whole or in part for the	
purpose of research or acac	lemic exchange only (except during a period of years, if so	
requested above).		
temis	Certified by:	
SIGNATURE	SIGNATURE OF SUPERVISOR	
LIM WEI JER	DR ASRAL BIN BAHARI JAMBEK	
IC NO: 870907-02-6065		
Date:	Date:	

GRADUATE SCHOOL

UNIVERSITI MALAYSIA PERLIS

PERMISSION TO USE

In presenting this thesis in fulfillment of a post graduate degree from Universiti Malaysia Perlis, I agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in their absence, by Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my supervisor's written permission. It is also understood that due recognition shall be given to me and to Universiti Malaysia Perlis for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or make other use of material in whole or in part of this thesis are to be addressed to: risiter

Dean of Centre for Graduate Studies

Universiti Malaysia Perlis

No. 112 & 114, Tingkat 1, Blok A, Taman Pertiwi Indah

Jalan Kangar-Alor Setar, Seriab

01000 Kangar

Perlis Indera Kayangan

Malaysia

ACKNOWLEDGEMENTS

It is my profound pleasure to thanks all those who helped me out to finish my MSc report.

I would like to thank to my supervisor Dr. Asral Bin Bahari Jamek for his continuous encouragement, extensive support, freedom and trust that enabled this research to run smoothly. I am greatly indebted to him without whose invaluable guidance and encouragement this report could not have been completed

I would also like to express my gratitude to my ex-supervisor, Dr. Neoh Siew Chin whose support, encouragement, and stimulating suggestions helped me in all the time during preparation for this report. She always showed keen interest in the research process and while encouraging me to explore new ideas freely.

I am also very grateful to my mentors Mr. Tan Choo Jun for his expert advice in matters relating to Multiobjective Evolutionary Algorithms and Applications knowledge and process. Thanks again for his corporation and contribution in helping me to accelerate the progress of the project until it completed.

I am indebted to my colleagues and friends Ong Tee Say, Khor Kang Nan, Moganraj, Shakirina, Aaron, They Yee Chin, for their help on completing my research study and their continued support during all phases of this research.

Dast but not least, I would like to thank to my family for the sacrifices they made to support me in undertaking my MSc studies and pay the most gratitude especially to my parent who always supports me and encourages me.

TABLE OF CONTENTS

8

8

9

DECLARAT	ION OF THESIS	i
COPYRIGH	Г	ii
ACKNOWL	EDGEMENTS	iii
TABLE OF O	CONTENTS	iv
LIST OF TA	BLES	viii
LIST OF FIG	GURES	Х
LIST OF AB	BREVIATIONS	xii
LIST OF SY	MBOLS	xiv
ABSTRAK		XV
ABSTRACT	of its	xvi
CHAPTER 1	CONTENTS BLES GURES BREVIATIONS MBOLS : INTRODUCTION	
1.1	Introduction	1
1.2	Overview of Evolutionary Computation	1
1.3	Problem Statement and Motivations	5
1.4	Objectives of this Study	7

1.5 Project Scope 1.6 Research Contribution 1.7 Organization of the thesis

CHAPTER 2: LITERATURE REVIEW

2.1	Introd	uction	11
2.2	Backg	round of Evolutionary Algorithms	11
	2.2.1	Terminologies used in Evolutionary Algorithms	12
	2.2.2	Binary Tournament Selection Operator	15
	2.2.3	TwoPoint Crossover Operator	15
	2.2.4	SBX Crossover Operator	16

	2.2.5	Polynomial Mutation Operator	17
	2.2.6	Chromosome	18
2.3	Multi-	Objective Optimization Problem	19
	2.3.1	Definition of Multi-Objective Optimization Problem	19
	2.3.2	Pareto Terminology	20
2.4	Multi-	Objective Evolutionary Algorithm	22
	2.4.1	Non-Dominated Sorting Genetic Algorithm II (NSGA-II)	22
	2.4.2	Strength Pareto Evolutionary Algorithm 2 (SPEA2)	27
	2.4.3	Fast Pareto Genetic Algorithm (FPGA)	32
		Fast Pareto Genetic Algorithm (FPGA)2.4.3.1 Ranking and fitness assignment	34
		2.4.3.2 Elitism and population regulation	35
		2.4.3.3 Search stopping criteria	36
	2.4.4	Micro Genetic Algorithm (MGA)	37
		2.4.4.1 Adaptive Grid	40
2.5	Multi-	-Objctive Benchmark Test Functions	41
	2.5.1	Kursawe Multi-Objective Problem	41
	2.5.2	Zitzler-Deb-Thiele (ZDT) Multi-Objective Problem	43
2.6	MOE	A Indicator	46
	2.6.1	Generational distance	46
*.	2.6.2	Spacing	46
2.7	Circui	t Design Optimization	47
\bigcirc	2.7.1	Active Filter	49
		2.7.1.1 Active Low Pass Filter	50
2.8	Circui	it Simulator	51
	2.8.1	LTSPICE	51
	2.8.2	NGSPICE	52

CHAPTER 3: METHODOLOGY

3.1	Introduction	54
3.2	Development of Improved Micro Genetic Algorithm (IMGA)	55

	3.2.1 IMGA Elitism Strategy	55
	3.2.2 Crowding Distance	57
	3.2.3 Strength Fitness Assignment	58
3.3	Proposed Improved Micro Genetic Algorithm (IMGA)	59
3.4	Circuit Optimizer (Cmizer)	64
	3.4.1 Netlist	68
	3.4.2 Parameter Setting For The Embedded Algorithm In Cmizer	69
3.5	Low Pass Filter	71
3.6	Conclusion	75
	: RESULTS AND DISCUSSIONS	
4.1	Introduction	76
4.2	IMGA Experimental Setting in Kursawe Benchmark Study	77
4.3	Results and Discussion for Kursawe Benchmark Study	78
4.4	IMGA Experimental Setting in ZDT Benchmark Study	82
4.5	Results and Discussion for ZDT Benchmark Study	83
4.6	Results and Discussion on Circuit Optimization	88
	4.6.1 Fifth Order Active Low Pass Filter	88
	4.6.2 Ninth Order Multiple Feedback Chebyshev Low Pass Filter	92
4.7	Conclusion	96
	.xel	
CHAPTER 5	: CONCLUSIONS AND FUTURE WORK	
- Ku		
(5.1	Introduction	98
5.2	Work contribution	98
5.3	Future work	100

5.4 Conclusion 101

REFERENCES

102

APPENDIX A

Engineer's validation analysis	109
APPENDIX B Engineering Student's validation analysis	110
APPENDIX C	
Circuit validation	111
APPENDIX D	
Cmizer website	120
LIST OF PUBLICATIONS	123
Circuit validation APPENDIX D Cmizer website LIST OF PUBLICATIONS LIST of publications Circuit validation	
O THIN	

vii

LIST OF TABLES

NO		PAGE
3.1	Evolutionary setting for different evolutionary algorithms in Cmizer	71
3.2	Fifth order active low pass filter output objectives specification	73
3.3	Ninth-order multiple feedback low pass filter output objectives specification	73
3.4	Fifth order active low pass filter input parameters specification	73
3.5	Ninth-order multiple feedback low pass filter input parameters specification	74
4.1	MGA and IMGA parameters setting for Kursawe test function	78
4.2	Generational distance	80
4.3	Generational distance results at 12000 iterations of 10 random experiments	80
4.4	Spacing Spacing	80
4.5	Computational setting of algorithms for ZDT test function	83
4.6	Simulation results for fifth order active low pass filter optimized results based on five random seeds experiments	89
4.7	Average fifth order active low pass filter specifications obtained by engineer	89
4.8	Optimized design variables from the best tradeoff result of IMGA	92
4.9	Optimized design objectives from the best tradeoff result of IMGA	92
4.10	Simulation results of ninth order multiple feedback chebyshev low pass filter from the five random seeds experiments	93

- 4.11 Evaluation result of ninth order multiple feedback chebyshev low pass filter by engineer
- 4.12 Optimized design objectives of ninth order multiple feedback chebyshev low pass filter by the best tradeoff result of IMGA
- 4.13 Optimized design variables of ninth order multiple feedback chebyshev low pass filter suggested by best tradeoff result of IMGA

othis tem is protected by original copyright

94

96

96

LIST OF FIGURES

NO		PAGE
2.1	Flow chart of conventional evolutionary algorithms	14
2.2	Two point crossover	16
2.3	Chromosome representation	18
2.4	Objective space	21
2.6	NSGA-II Non-dominated and Crowding Distance Sorting	24
2.6	Dominance ranking	24
2.7	Fast non-dominated sorting in NSGA-II	26
2.8	Crowding distance pseudo code	27
2.9	Crowding distance	27
2.10	SPEA2 Pseudo code	29
2.11	Archive truncation method by SPEA2	31
2.12	FPGA Pseudo code	33
2.13	Micro Genetic Algorithm flow chart	38
2.14	Adaptive grid of MGA	41
2.15	Kursawe test function trend	42
2.16	Low pass filter characteristic	51
2.17	LTspice's GUI	52
2.18	NGSPICE's GUI	53
3.1	Proposed Improved Micro Genetic Algorithm elitism	56
3.2	(IMGA elitism) Proposed IMGA flow chart	60
3.3	Pseudo code of Proposed IMGA	61
3.4	Overall Cmizer operation flow	66

3.5	List of requirement information from the user	67
3.6	Configuration text from the selected optimizer	68
3.7	Log file	68
3.8	Sample of netlist	69
3.9	Schematic of fifth order active low pass filter	72
3.10	Schematic of ninth-order multiple feedback low pass filter	72
3.11	Flow of low pass filter circuit optimization	74
4.1	Generational distance for all the 10 random experiments	81
4.2	Pareto Optimal Front suggested by IMGA	81
4.3(a)-4.3(c)	The populations with experiment algorithm (IMGA, NSGA- II and SPEA2) with True pareto front on ZDT1	85
4.4(a)-4.4(c)	The populations with experiment algorithm (IMGA, NSGA- II and SPEA2) with True pareto front on ZDT2	85
4.5(a)-4.5(c)	The populations with experiment algorithm (IMGA, NSGA- II and SPEA2) with True pareto front on ZDT3	86
4.6(a)-4.6(c)	The populations with experiment algorithm (IMGA, NSGA-II and SPEA2) with True pareto front on ZDT4	86
4.7(a)-4.7(c)	The populations with experiment algorithm (IMGA, NSGA-II and SPEA2) with True pareto front on ZDT6	87
4.8	Average value of algorithm and engineer's result in fifth order active low pass filter	91
4.9	Average value of algorithm and engineer's result in ninth order multiple feedback chebyshev low pass filter	95

LIST OF ABBREVIATIONS

CMOS Complementary Metal	Oxide Semiconductor
ComPop Composite population	
EA Evolutionary Algorithm	m
EC Evolutionary Computa	ation
EP Evolution Programmir	ng wildi
ES Evolution Strategies	6087
FPGA Fast Pareto Genetic Al	lgorithm
FPTA Field Programmable T	
GA Genetic Algorithm	2
GD Generational Distance	Y
GP Genetic Programming	
GUI Graphic User Interface	
HMGA Hybrid Micro Genetic	Algorithm
IGA Interactive Genetic Al	gorithm
IMGA Improved Micro Gene	tic Algorithm
maxPOPsize Maximum population	size
MMGA Modified Micro Genet	tic Algorithm
MMIC Monolithic Microwave	e Integrated Circuit
MO Multiobjective optimiz	zation
MOEA Multi-Objective Evolu	tionary Algorithm
MOGA Multi-Objective Genet	tic Algorithm
MOO Multi-objective optimi	ization

NPGA Niched-Pareto Genetic Algorithm

NSGA Nondominated Sorting Genetic Algorithm

NSGA-II Nondominated Sorting Genetic Algorithm II

numObjs Number of objectives

numVar Number of variables

OLPSO Orthogonal Learning Particle Swarm Optimization joinal copyright

PAES Pareto Archived Evolution Strategy

Initial population PP

PPN New population

PPR Pareto production ratio

Particle Swarm Optimization PSO

SM Space Mapping

Small medium enterprise SME

SOP Single Objective Optimization

Spacing SP

SPEA

SPEA2

Strength Pareto Evolutionary Algorithm

Strength Pareto Evolutionary Algorithm 2

ZDT Zitzler-Deb-Thiele

SBX Simulated Binary Crossover

LIST OF SYMBOLS

dB	Decibel
Hz	Frequency in hertz
anom	Output Gain
fc	Cutoff frequency
arip	Passband ripple
t	Current generation
t + 1	Passband ripple Current generation Next generation Spread factor Mutation distribution index
β	Spread factor
δ	Mutation distribution index
nc	distribution index for SBX
Ω	Feasible region
PF	Pareto Front
I	Solution set
\mathbb{P}_t	Population set
\mathbb{Z}_t	Archive set
R(i)	Raw fitness
D(i)	Distance value
a_t	Constant with positive integer variable
b _t	Constant with positive real variable
c _t	Constant with positive integer variable
d_t	Constant with positive real variable
NPt	Number of non-dominated solutoins

Mikro Genetik Algoritma Diperbaiki untuk Fungsi Berbilang Objektif Kursawe dan ZDT dan Pengoptimuman Litar Penapis Pas Rendah

ABSTRAK

Walaupun Algoritma Evolusi (EAs) telah dilaksanakan untuk menyelesaikan Masalah Berbilang Matlamat (MOPs), penumpuan EAs kepada Pareto optimum depan masih merupakan salah satu isu yang membimbangkan. Demi meningkatkan kemantapan EAs, hibrid algoritma diwujudkan untuk mencari penyelesaian yang lebih baik untuk MOPs. Fokus utama pada penyelidikan terletak pada integrasi elitisme yang baru dalam Mikro Genetik Algoritma (MGA). Elitisme yang dicadangkan dalam penyelidikan ini untuk mewujudkan Mikro Genetik Algoritma Diperbaiki (IMGA). Dalam penyelidikan ini, Kursawe dan ZDT fungsi telah dipilih sebagai penanda aras untuk penaksiran pada IMGA. Kejituan dan keberkesanan IMGA dinilai berdasarkan beberapa penunjuk kualiti seperti generasi jarak dan non-dominated optimum jarak. IMGA yang dicadangkan dibandingkan dengan Non-dominated Sorting Genetik Algoritma II (NSGA-II), Strength Pareto Evolusi Algoritma 2 (SPEA2), MGA and Fast Pareto Genetik Algoritma (FPGA). Keputusan taksiran daripada IMGA membukti bahawa IMGA mempunyai kelebihan daripada MGA dalam Kursawe fungsi dengan mencapai 3.571E-4 untuk generasi jarak dan 2.026E-2 untuk non-dominated optimum jarak, manakala IMGA masih mempunyai ruang peningkatan semasa berurusan dengan ZDT fungsi. Selepas penilaian pada ujian fungsi, IMGA yang dicadangkan digunakan untuk kajian kes praktikal pada pengoptimuman reka bentuk litar. Dua litar aktif penapis pas rendah yang berlainan bilangan masukan parameter telah dikaji. Litar dioptimumkan untuk mencapai objektif pada gandaan keluaran, frekuensi potongan dan riak passband dimana semua objektif ini adalah tidak selaras untuk pengoptimum serentak kerana prestasi salah satu objektif akan dikurangkan pada masa yang sama objektif lain dioptimasikan. Penilaian pada pengoptimum litar dijalankan bersama jurutera dari industri dimana masa dan pencapaian pada objektif digunakan untuk perbandingan dengan IMGA dan juga algoritma yang lain. Pemerhatian daripada analisis keputusan menunjukkan IMGA menggunakan masa yang lebih singkat berbanding jurutera iaitu 17.12 minit untuk perintah kelima aktif penapis pas rendah dan 35.54 minit untuk perintah kesembilan pelbagai maklum balas chebyshev penapis pas rendah. IMGA juga mengoptimumkan objektif litar perintah kelima aktif penapis pas rendah yang diingini iaitu 0.967 V/V untuk gandaan 106.796Hz for frekuensi potongan dan 0.073dB for riak passband. IMGA juga mengoptimakan penyelesaian untuk perintah kesembilan pelbagai maklum balas chebyshev penapis pas rendah dengan nilai 26.24dB, 1017.73Hz dan 0.0858dB untuk gandaan, frekuensi potongan dan riak passband. Secare keseluruhan, penyelidikan ini membuktikan IMGA merupakan salah satu alternative dalam menyelesaikan MOPs.

IMPROVED MICRO GENETIC ALGORITHM FOR MULTIOBJECTIVE KURSAWE FUNCTION AND LOW PASS FILTER CIRCUIT OPTIMIZATION

ABSTRACT

Although Evolutionary Algorithms (EAs) have been widely implemented for solving Multiobjective Optimization Problems (MOPs), the convergence of EAs towards Pareto optimal front is still an issue of concern. In order to enhance the robustness of EAs, hybrid algorithms are commonly developed to identify better solutions for MOPs. The prime focus of this research is placed on the integration of new proposed elitism in conventional Micro Genetic Algorithm (MGA). The proposed elitism has been studied in this research to develop Improved Micro Genetic Algorithm (IMGA). In this research, Kursawe and ZDT test functions are chosen as the benchmark studies for the assessment on IMGA. The accuracy and effectiveness of IMGA are evaluated based a number of quality indicators such as generational distance and non-dominated optimal spacing. The proposed IMGA is compared with Non-dominated Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2), MGA and Fast Pareto Genetic Algorithm (FPGA). The assessment results show that IMGA can surpass the MGA in Kursawe test function by achieved 3.571E-4 for generational distance and 2.026E-2 for spacing. Meanwhile for ZDT benchmark, IMGA solved and suggested the optimal Pareto front for all the ZDT test functions. After having the benchmark evaluation, the proposed IMGA is applied to a practical case study on circuit design optimization. Two different circuit designs of active low pass filter that comprise of different number of input parameters are studied. The circuits are optimized to achieve objectives on output gain, cutoff frequency and passband ripple which are incommensurable for simultaneous optimization such that the performance of one objective decreases while optimizing another. Evaluation on circuit optimization has been conducted with a group of industrial engineers whereby the time and achievement of the objectives are compared with the proposed IMGA and a few existing algorithms. Observation from the result analysis shows that IMGA consumed lesser time compared to engineers result where 17.120 minutes for fifth order active low pass filter and 35.540 minutes for ninth order multiple feedback chebysheve low pass filter, while engineer used upto 35 minutes and 101 minutes for both circuits. IMGA also optimized the circuit output parameters to desired values especially for fifth order active low pass filter, 0.967 V/V for gain 106.796Hz for cutoff frequency and 0.073dB for passband ripple. IMGA also find the optimized solution for the ninth order multiple feedback chebyshev low pass filter with values 26.240dB, 1017.730Hz and 0.085dB for gain, cutoff frequency and passband ripple corresponding. Overall, this research shows that IMGA is a potential alternative for solving MOPs.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Multiobjective optimization is closely related to all engineering disciplines. It is a challenging task especially when dealing with real-world applications. The work presented in this thesis concerns the development of a novel multiobjective evolutionary algorithm for solving benchmark as well as practical circuit design optimization problem. This chapter gives an overview on evolutionary computation (EC) and reveals problem statement that motivates our research. Our research objectives, scopes, and contribution are explained in separated sections following the problem statement.

1.2 Overview of Evolutionary Computation

Since year 1960's, an algorithm imitating living beings has been created for solving complicated optimization problems and this technique is known as EC (Gen et al., 2000). The goal of evolutionary computation is to create an effective computing system for problem solving by using natural behavioral selection and learning process. Thus, the EC has led to the development of evolutionary algorithms (EAs). The four best known algorithms in this class include genetic algorithms (Holland, 1975), evolution strategies (Beyer, 2001), evolutional programming (Fogel, 1992), and genetic

programming (Koza, 1991). Together, these algorithms form the backbone of the field of evolutionary algorithm.

- i. Genetic algorithm (GA) is the original form of evolutionary computation that employs evolutionary operators to change and improve a population of possible solutions to a problem (Holland, 1975)
- ii. Evolution strategies (ES) is similar to the genetic algorithm, but it differs in the method of selection and mutation activity (Beyer, 2001)
- Evolution programming (EP) does not rely on the complex macromutations for successful optimization. (Fogel, 1992)
- iv. Genetic programming (GP) is similar to the genetic algorithm, but with the extension of genetic forms using trees and graphs expression (Iba et al., 2012).

In general, optimization refers to seek the solution over a set of possible choices to optimize certain criteria. Single objective optimization problem (SOP) always consider only one criterion whereas multiobjective optimization problem (MOP) always appear to have more than one criterion that must be treated simultaneously (Coello et al., 2007). Optimum results in MOP are referred as Pareto optimal set which consists of nondominated solutions found in the search space corresponding to the objectives considered. There are various types of EAs that have been proposed and examined in MOPs. MOPs often involve incommensurable or conflicting objectives which will decrease the performance of one objective while optimizing the other objective. In this case, EAs will guide the search toward the true Pareto front in the MOPs.

Multiobjective Evolutionary Algorithms (MOEAs) can generally be divided into two generations. Niched-Pareto Genetic Algorithm (NPGA), Multi-Objective Genetic Algorithm (MOGA), and Nondominated Sorting Genetic Algorithm (NSGA) are some of the first generation MOEAs.

- NSGA proposed by Srivinas et al (1994) uses a layered-based classification suggested by Goldberg et al. (1988), sharing dummy fitness values among the layer of nondominated individuals to keep the diversity of the population. The population is ranked before the selection is performed. However, repetitive Pareto ranking decreases the efficiency of NSGA.
- ii) NPGA (Horn et al., 1994) used Pareto dominance scheme in the tournament selection. The comparison is performed on two randomly chosen individuals where the nondominated individuals are always selected in the tournament and fitness sharing is used to decide the result of tournament if there is a tie in comparison.
- iii) MOGA (Fonseca et al., 1993), a rank-based fitness assignment method is implemented in which the selection procedure is guided by rank values in the population.

The second generation MOEAs consist of Strength Pareto Evolutionary Algorithm (SPEA), Pareto Archived Evolution Strategy (PAES), Nondominated Sorting Genetic Algorithm II (NSGA-II), and Strength Pareto Evolutionary Algorithm 2 (SPEA2).

- i) SPEA (Zitzler et al., 1999) introduces an external population and preserves population diversity using Pareto dominance relationship. The drawback of external population is the search process is time consuming with the growing size of the external population. Thus a pruning technique applied to external nondominated population to sustain the size below certain threshold.
- SPEA2 (Zitzler et al., 2001), is an enhanced version of SPEA with three important aspects: 1) Individual domination using fine-grained fitness assignment. 2) More precise guidance in the search by using nearest neighbor density estimation. 3) New archive truncation methods to preserve the boundary of the Pareto optimal set.
- PAES which is proposed by Knowles et al. (2000), employs elitism based archive approach that allow single parent to generate single offspring. Crowding procedure is applied to maintain the diversity of the Pareto optimal set. Although there are some similarities between PAES and Micro Genetic Algorithm (MGA), the addition of population in PAES claimed to be computational expensive. Considering such issue, MGA uses replaceable and non-replaceable memory to maintain the population diversity (Coello et al., 2005).

iv) NSGA-II (Deb et al., 2002) is developed as an enhanced version of NSGA which uses elitism in $(\mu+\lambda)$ (where μ denoted archive size and λ the population size) selection and crowd comparison operator. Crowding distance is used to calculate the distance between the individual with its neighbor. NSGA-II prefers to select the nondominated solution. If two solutions are in the same nondominated rank, the less crowded region is preferred.

1.3 Problem Statement and Motivations

Multiobjective optimization (MO) has become popular since year 1980's and has been found to be profoundly useful in handling MOPs (Knowles et al., 2008). A lot of MOEAs have been created and proposed in various fields. Each MOEAs have advantages and disadvantages and there are notably successful MOEAs designed for dealing with many different challenges. As mentioned in Section 1.2, each algorithm has its special features such as crowding distance operation, external memory (archive) to save nondominated solutions, and strength fitness assignment. Researchers believe that a good coverage of the trade-off surface from a Pareto optimal set needs to strike a balance among convergence, diversity and spread (Durillo et al., 2011)

Although multiobjective problems could be solved by at least a type of evolutionary algorithm, there is no individual evolutionary algorithm that could be claimed to be the best in solving all multi-objective problems. Considering different advantages in different algorithms, there are motivations on the development of hybrid evolutionary algorithm to integrate several evolutionary strategies for improvements in optimization performance. As a result, this study investigates several unique features of available evolutionary algorithms and innovates a new model to enhance good coverage of Pareto optimality for multiobjective optimization problem.

ZDT (Zitzler-Deb-Thiele) and Kursawe test function are two well-known benchmark studies used to evaluate multi-objective evolutionary algorithms. Up to now, there are many research conducted to improve the search of Pareto optimality using these test functions as benchmarks testing. For instance, Coello (2001) has proposed a micro evolutionary algorithm to solve Kursawe test function (Coello et al., 2007). Due to the intrinsic mathematical properties, these functions are employed to reveal the challenging issues of MOPs. According to Zitzer et al. (2000), ZDT test function can cause difficulty of Pareto convergence whereas Kursawe test function has a nonconnected Pareto front with concave and convex regions. Considering these challenges, both ZDT and Kursawe functions are used as the benchmark evaluations for our research validation.

Besides benchmark studies, practical case study is also important to give more convincing research assessment. In the electronic industries, the rapid change of customer requirement for different electronic applications leads to the requirement of rapid circuit design in order to fulfil the application specifications. Conventionally, circuit design engineers fine tune the circuit parameter to achieve the required specifications by experience and trial-and-error approach. The frequent tuning of circuit parameter can be tedious and time consuming especially for fresh engineers and the situation become worse when complicated circuits that involved many topologies and parameters are dealt. In addition, it is common that a circuit is designed to fulfil a number of objectives such as passband ripples, gain, and cutoff frequency. As a result, a flexible multiobjective circuit optimizer that could assist the tuning of circuit performance is very much required in the circuit industries.

Based on the above mentioned challenges and motivations, we develop a improved evolutionary algorithm, Improved Micro Genetic Algorithm (IMGA), by integrating a number of evolutionary strategies from the previous research considering the strength of different algorithms. Next, our proposed optimization model then applied on ZDT and Kursawe benchmark functions to investigate the capability to obtain better Pareto optimality. Finally, the model is used to develop a multi-objective evolutionary circuit optimizer, so called Cmizer, to assist practical circuit design parameter tuning. byorioir

Objectives of this Study 1.4

This research aims to achieve the following objectives:

To determine and extract the important search strategies of different i. evolutionary algorithms and develop a novel hybrid evolutionary optimization model.

To investigate the capability of the proposed model in achieving Pareto optimality.

- To develop a multi-objective evolutionary circuit optimizer for practical iii. circuit design assistance with integration of plug-and-play feature and user-friendly interface.
- To investigate the performance of the developed circuit optimizer. iv.