

Bio-Inspired Method for Improving Routing Protocol Performances in Vehicular Ad-Hoc Network

Mohamed Elshaikh Elobaid Saidahmed (1340210877)

byfight

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

DI	ECLARATIO	N OF THESIS	
Author's full name :	MOHAMED E	LSHAIKH ELOBAID SAIDAHMED	
Date of birth :	2 JUNE 1980)	
Title :	BIO-INSPIRE ROUTING VEHICULAR	D METHOD FOR IMPROVING PROTOCOL PERFORMANCES IN AD-HOC NETWORK	
Academic Session :	01-2013 – 01-	, chi	
-	I hereby declare that the thesis becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed at the library of UniMAP. This thesis is classified as :		
	(Contains conf Act 1972)*	(Contains confidential information under the Official Secret Act 1972)*	
	•	(Contains restricted information as specified by the organization where research was done)*	
X OPEN ACCESS	Ŭ A	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)	
I, the author, give perm	ission to the UniMAP	to reproduce this thesis in whole or in part	
for the purpose of rese	for the purpose of research or academic exchange only (except during a period of		
years, if so requ	ested above).		
it en		Certified by:	
SIGNAT	TURE	SIGNATURE OF SUPERVISOR	
		DR. ONG BI LYNN	
(NEW IC NO. /PAS	SSPORT NO.)	NAME OF SUPERVISOR	
Date :		Date :	

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

In the Name of Allah, The Most Beneficent, The Most Merciful: "My Lord, enable me to be grateful for Your favor which You have bestowed upon me and upon my parents and to do righteousness of which You approve. And admit me by Your mercy into [the ranks of] Your righteous servants. (An-Naml:19) ".

First and foremost, I would like to express my gratitude to my PhD supervisor Dr. Ong Bi Lynn and Co-supervisor Dr. Mohd Nazri Bin Mohd Warip for the support and trust they had given to me throughout this journey.

Secondly, thank you friends for all the joy we had together. Especially to whom always beside me giving me support and coloring my days.

Last and not least, I would like to say thank you for those who no words can describe their love and support. My beloved one Mother, Father, Ila, Muriyah and Fatimah.

TABLE OF CONTENTS

DECLARATION OF THESIS	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	XX
ABSTRAK	1
ABSTRACT	3
CHAPTER 1: INTRODUCTION	4
LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRAK ABSTRACT CHAPTER 1: INTRODUCTION 1.1 Research Background 1.2 Problem Statements 1.3 Research Objectives	4
1.2 Problem Statements	8
1.3 Research Objectives	9
1.4 Contributions	10
1.5 Scope of Research	10
1.6 Thesis Outline	11
CHAPTER 2: LITERATURE REVIEW	13
2.1 Introduction	13
2.2 Evolution of VANET Architecture	13
2.3 VANET's Routing Protocols Classification	17
2.4 Bio-inspired Routing in VANET	18
2.4.1 The evolutionary algorithms	21
2.4.2 Swarm intelligence algorithms	27

2.4.2.1 Ant Colony Optimization (ACO)	27
2.4.2.2 Particle Swarm Optimization (PSO)	30
2.5 Geographical Routing in VANET	32
2.5.1 Greedy perimeter stateless routing (GPSR)	34
2.5.1.1 Contention-Based Forwarding (CBF)	38
2.5.2 Street aware protocols (SAP)	40
2.5.3 Infrastructure assisted protocols (IAP)	44
 2.5.2 Street aware protocols (SAP) 2.5.3 Infrastructure assisted protocols (IAP) 2.5.4 Connectivity Aware Protocols (CAP) 2.5.4 L Vehicle Assisted Data Delivery (VADD) 	47
2.5.4.1 Vehicle Assisted Data Delivery (VADD)	49
2.5.5 Real-Time Connectivity Awareness (RTCP)	50
2.6 Topological Routing in VANET	54
2.6.1 Proactive Routing Protocols (PRP)	55
2.6.2 Reactive Routing Protocol (RRP)	56
2.6.3 Hybrid Routing Protocols	58
2.7 Summary of reviewed works	59
2.8 Related Works	65
2.9 Chameleon Method	65
2.10Taguchi Method	67
2.11Differential Evolution Method	77
2.12Summary	93
CHAPTER 3: RESEARCH METHODOLOGY	94
3.1 Introduction	94

3.2 Description of the Research Flow	95
3.3 Chameleon Method Routing Protocol (CM-Routing)	102
3.3.1 Optimization Mechanism Design	103
3.3.2 CM-AODV	113
3.3.3 CM-GPSR	118
3.4 Optimization Methods	123
3.5 Routing Protocol's Parameters	125
 3.4 Optimization Methods 3.5 Routing Protocol's Parameters 3.5.1 Selection of Routing Protocol's Parameters 3.6 Network Performances Evaluation 3.6.1 Throughput 3.6.2 Delay 3.6.3 Packet Delivery Ratio (PDR) 	127
3.6 Network Performances Evaluation	129
3.6.1 Throughput	129
3.6.2 Delay	130
3.6.3 Packet Delivery Ratio (PDR)	130
3.6.4 Mobility	131
3.6.5 Traffic Generation	131
3.6.6 Packet Size	132
3.6.7 Simulation Pause Time	133
3.7 Network Test-bed Design and Implementation	133
3.7.1 VANET Simulation Scenarios	134
3.7.2 Network Protocol Stack	135
3.7.3 Mobility Modules	139
3.8 Results Validation and Verification Method	142
3.8.1 Validation Comparison	142

3.8.2 Simulation Model Validation	143
3.9 Summary	143
CHAPTER 4: RESULTS AND DISCUSSION	145
4.1 Introduction	145
4.2 Analysis of Routing Parameters Impacts on VANET Scenarios Performances	148
4.2.1 MaxJitter	148
 4.2.1 MaxJitter 4.2.2 Beacon/Hello Interval 4.2.3 Route Validity Time 	151
4.2.3 Route Validity Time	154
4.3 Evaluation of CM-AODV and CM-GPSR in VANET	157
4.3.1 Traffic Generation	157
4.3.1.1 Throughput Comparison of AODV, GPSR, CM-AODV and CM-GPSF	R 157
4.3.1.1 PDR Comparison of AODV, GPSR, CM-AODV and CM-GPSR	159
4.3.1.1 Delay Comparison of AODV, GPSR, CM-AODV and CM-GPSR	160
4.3.2 Packet Size	161
4.3.2.1 Throughput comparison of AODV, GPSR, CM-AODV and CM-C	PSR
against packet size.	162
4.3.2.2 PDR Comparison of AODV, GPSR, CM-AODV and CM-GPSR	163
4.3.2.3 Delay comparison of AODV, GPSR, CM-AODV and CM-GPSR	164
4.3.3 Mobility	165
4.3.3.1 Throughput Comparison of AODV, GPSR, CM-AODV and CM-GPSR	8 165
4.3.3.2 PDR Comparison of AODV, GPSR, CM-AODV and CM-GPSR	166
4.3.3.3 Delay Comparison of AODV, GPSR, CM-AODV and CM-GPSR	167

4.3.4.1 Throughput Comparison of AODV, GPSR, CM-AODV and CM-GPS	SR 169
4.3.4.2 PDR Comparison of AODV, GPSR, CM-AODV and CM-GPSR	170
4.3.4.3 Delay Comparison of AODV, GPSR, CM-AODV and CM-GPSR	171
4.3.5 Comparison Between CM-Routing Protocols And Intelligent-OLSR	172
4.3.5.1 Throughput comparison	173
4.3.5.2 PDR Comparison	178
4.3.5.3 Delay Comparison	183
4.3.6 Throughput Evaluation of TOM and DEM in VANET Scenarios	188
4.3.7 Delay Evaluation of TOM and DEM in VANET Scenarios	195
4.3.8 PDR Evaluation of TOM and DEM in VANET Scenarios	201
4.4 Summary	207
CHAPTER 5: CONCLUSION	208
5.1 Conclusion	208
5.2 Achievements	210
5.3 Results Conclusion	211
5.4 Future Works	215
REFERENCES	216
APPENDIX A	233
APPENDIX B	236
APPENDIX C	238
APPENDIX D	240

APPENDIX F

242

245

orthis item is protected by original copyright

ix

LIST OF TABLES

Table 2.1: Layered Architecture for DSRC.	15
Table 2.2: Comparison between Three VANET Scenarios.	17
Table 2.3: Comparison of the Reviewed VANET Routing Protocols.	60
Table 2.4: AODV inner-parameters levels.	71
Table 2.5: GPSR inner-parameters levels.	72
Table 2.5: GPSR inner-parameters levels. Table 2.6. Orthogonal Array for AODV Experiments Design. Table 2.7. Orthogonal Array of CPSP Experiments Design.	72
Table 2.7. Orthogonal Array of GPSR Experiments Design.	73
Table 2.8: Delay results of the OA experimental Design.	74
Table 2.9: AODV parameters constrains.	85
Table 2.10: GPSR parameters constrains.	85
Table 2.11: Example Initial Individuals for GPSR in Highway Scenario.	86
Table 2.12: Example of Mutated Individuals for individuals in Table 3.10 with F=0.9.	88
Table 3.1: AODV inner-parameters.	125
Table 3.2: GPSR inner-parameters.	126
Table 3.3: VANET Scenarios Key Simulation Parameters.	135
Table 3.4: Burst Application Parameters.	136
Table 4.1. The Simulation Parameters of VANET Scenarios.	146
Table 4.2: Routing Protocols Parameters (profile parameters) ranges.	147
Table 4.3: Routing parameters comparison's values.	148
Table 4.4: Traffic Generation values in Time interval and data per node in a second.	157
Table 4.5: Vehicles speeds in highway and city.	165
Table 4.6: I_OLSR Profile Parameters Values.	172

Table 5.1: Profiles configuration values of the evaluated protocols.211Table 5.2: Summary of the evaluation on routing parameters effects in VANET212performances (H for high and L for Low).212Table 5.3: Summary of the observed performances improvements of CM-AODV and CM-213GPSR as an averaged percentage against AODV and GPSR.213Table 5.4: Performances improvement of TOM and DEM profiles of AODV and GPSR incity (C) and highway (H) against different Traffic generations (TG), Packet sizes (PS),Mobility speeds (MO) and Pause times (PT).214

enerations (TG), Pe .- umes (PT). othis termis protected by original contractions (TG), Pe

LIST OF FIGURES

Figure 1.1: VANET Architecture.	6
Figure 2.1: C2C-CC architecture (Manifesto 2007).	14
Figure 2.2: VANET scenarios.	16
Figure 2.3: Taxonomy of VANET Routing Protocols Classification.	20
Figure 2.4: Smart Flooding Mechanism flowchart.	25
Figure 2.5: Particle Swarm Optimization Algorithm Flowchart.	31
Figure 2.6: pPSO Mechanism Interaction Diagram.	32
Figure 2.7: Geographical Protocols Taxonomy and Relation Diagram dot lines represent	
direct and indirect relationship between protocols.	34
Figure 2.8: Greedy forwarding failure case.	36
Figure 2.9: The right-hand rule.	37
Figure 2.10: The concept of SAR	42
Figure 2.11: The Chameleon Lizard Behavior.	66
Figure 2.12: Example of the chameleon method for vehicle on different scenarios.	67
Figure 2.13: Taguchi Optimization Method (TOM) processes and Steps.	68
Figure 2.14: Taguchi Process Diagram (P-Diagram).	70
Figure 2.15: Taguchi Delta Analysis for GPSR Delay in City and Highway Scenarios.	75
Figure 2.16: Graph presentation of the SNR average for GPSR parameters.	76
Figure 2.17: Differential Evolution Processes and steps.	79
Figure 2.18: DEM General Process Flow Diagram.	79
Figure 2.19: Non-Linear Equation Solver - Newton's Method Algorithm Pseudo. Code.	82
Figure 2.20: Initialization of the NP individuals Pseudo code.	85

Figure 2.21: The Mutation Algorithm's Pseudo Code.	87
Figure 2.22: The Crossover Algorithm's Pseudo Code.	89
Figure 2.23: Example of the crossover in GPSR highway scenario for the first iteration.	90
Figure 2.24: Example of the selection operation for GPSR Highway Scenario for NP=7	. 91
Figure 2.25: DEM Algorithm's Pseudo Code.	92
Figure 3.1: Two stages optimization of the CM-Routing Protocol.	95
Figure 3.2: Research Methodology Flow Diagram.	96
Figure 3.3: Protocol's Inner-parameters selection Flowchart.	97
Figure 3.4: Parameters Optimization Process Flowchart.	98
Figure 3.5: Changlun City Map (2016google 2016).	98
Figure 3.6: CM-Method Flowchart.	100
Figure 3.7: CM-Routing Mechanism Overall Process Follow Diagram.	103
Figure 3.8: Optimization Control Message Structure.	104
Figure 3.9: Pseudo Code of the Receive OCM Message at OBU.	106
Figure 3.10: Receive Profile Process Pseudo Code in the OBU.	107
Figure 3.11: Process follow of the Optimization in The Road Side Unit (RSU).	108
Figure 3.12: Example of OCM Message for AODV with id=231 and k=2.	109
Figure 3.13: The results table of the Optimization Method Structure.	109
Figure 3.14: REP_receive Method for the RSU Pseudo Code	111
Figure 3.15: The Overall Flowchart of the Optimization implementation On RSU.	113
Figure 3.16: AODV Receive Data Message from Upper Layer Process Flowchart.	114
Figure 3.17: AODV Process Messages by Type Flowchart.	116
Figure 3.18: Pseudo Code for Selection of Parent RSU from the AODV Routing Table.	117
Figure 3.19: The CM-AODV Process Flowchart in the OBU Side.	118

Figure 3.20: GPSR Protocol Send Packet Process Flowchart.	120
Figure 3.21: GPSR Beaconing Process Flow Diagram.	121
Figure 3.22: OCM Profile REQ and OCM profile REP Messages Structure.	122
Figure 3.23: CM-GPSR Overall Process Follow Diagram.	123
Figure 3.24: Extraction for the City Scenario of Changlun map.	135
Figure 3.25: Internal Structure of Wireless Node with CM-AODV Routing protocol.	136
Figure 3.26: Snapshot of the Wireless Module Internal Structure.	138
Figure 3.27: Linear Mobility Configurations in a Running Scenario.	140
Figure 3.28: Demonstration of a Linear Mobility for a Running Simulation Scenario.	140
Figure 3.29: Rectangular Mobility Configurations in a Running Scenario.	141
Figure 3.30: Changlun Map with mobility trails	141
Figure 4.1: Changlun City Map Extraction	146
Figure 4.2: Throughput Comparison between VANET scenarios vs. MaxJitter.	149
Figure 4.3: PDR Comparison between VANET scenarios vs. MaxJitter.	150
Figure 4.4: Delay Comparison between VANET scenarios vs. MaxJitter.	151
Figure 4.5: Throughput Comparison of VANET scenarios vs. Beacon/Hello Interval.	152
Figure 4.6: Delay Comparison of VANET scenarios vs. Beacon/Hello Interval.	153
Figure 4.7: PDR Comparison between VANET scenarios vs. Beacon/Hello Interval.	154
Figure 4.8: Throughput Comparison of VANET scenarios vs. Route Validity Time.	155
Figure 4.9: Delay Comparison between VANET scenarios vs. Route Validity Time.	156
Figure 4.10: PDR Comparison between VANET scenarios vs. Route Validity Time.	156
Figure 4.11: Throughput comparison of AODV, GPSR, CM-AODV and CM-GPSR for	or
different traffic generations.	158

xiv

Figure 4.12: PDR comparison of AODV, GPSR, CM-AODV and CM-GPSR for differen	ıt
traffic generations.	160
Figure 4.13: Delay comparison between AODV, GPSR, CM-AODV and CM-GPSR for	
different traffic generations.	161
Figure 4.14: Throughput comparison between AODV, GPSR, CM-AODV and CM-GPSI	R
for different Packet Sizes.	162
Figure 4.15: PDR comparison between AODV, GPSR, CM-AODV and CM-GPSR for	
different Packet Sizes.	163
Figure 4.16: Delay comparison between AODV, GPSR, CM-AODV and CM-GPSR for	
different Packet Sizes.	164
Figure 4.17: Throughput comparison between AODV, GPSR, CM-AODV and CM-GPSI	R
for different Mobility Speeds.	166
Figure 4.18: PDR comparison between AODV, GPSR, CM-AODV and CM-GPSR for	
different Mobility Speeds.	167
Figure 4.19: Delay comparison between AODV, GPSR, CM-AODV and CM-GPSR for	
different Mobility Speeds. 1	168
Figure 4.20: Throughput comparison between AODV, GPSR, CM-AODV and CM-GPSI	R
for different pause times.	169
Figure 4.21: PDR comparison between AODV, GPSR, CM-AODV and CM-GPSR for	
different pause times.	170
Figure 4.22: Delay comparison between AODV, GPSR, CM-AODV and CM-GPSR for	
different pause times.	171
Figure 4.23: Throughput comparison between CM-AODV, CM-GPSR and IOLSR for	
different traffic generations.	174

Figure 4.24: Throughput comparison between CM-AODV, CM-GPSR and IOLSR for	
different packet sizes.	175
Figure 4.25: Throughput comparison between CM-AODV, CM-GPSR and IOLSR for	
different mobility speeds.	176
Figure 4.26: Throughput comparison between CM-AODV, CM-GPSR and IOLSR for	
different pause times.	177
Figure 4.27: Comparison between the average throughputs obtained against different tra	affic
generations, packet sizes, mobility speeds and pause times in city and highway.	178
Figure 4.28: PDR comparison between CM-AODV, CM-GPSR and IOLSR for differen	ıt
traffic generations.	179
Figure 4.29: PDR comparison between CM-AODV, CM-GPSR and IOLSR for differen	ıt
packet sizes.	180
Figure 4.30: PDR comparison between CM-AODV, CM-GPSR and IOLSR for differen	ıt
mobility speeds.	181
Figure 4.31: PDR comparison between CM-AODV, CM-GPSR and IOLSR for differen	ıt
pause times.	182
Figure 4.32: Comparison between the average PDR observations against different traffic	с
generations, packet sizes, mobility speeds and pause times in city and highway.	183
Figure 4.33: Delay comparison between CM-AODV, CM-GPSR and IOLSR for differe	nt
traffic generations.	184
Figure 4.34: Delay comparison between CM-AODV, CM-GPSR and IOLSR for differe	ent
packet sizes.	185
Figure 4.35: Delay comparison between CM-AODV, CM-GPSR and IOLSR for different	ent
mobility speeds.	186

xvi

Figure 4.36: Delay comparison between CM-AODV, CM-GPSR and IOLSR for different	ent	
pause times.	187	
Figure 4.37: Comparison between the average delay observations against different traffic		
generations, packet sizes, mobility speeds and pause times in city and highway.	188	
Figure 4.38: Throughput and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios.	189	
Figure 4.39: Throughput and Variation comparison between GPSR, GPSR:TOM and		
GPSR:DEM in City and Highway scenarios.	190	
Figure 4.40: Throughput and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for different Packet Sizes.	191	
Figure 4.41: Throughput and Variation comparison between GPSR, GPSR:TOM and		
GPSR:DEM in City and Highway scenarios for different Packet Sizes.	191	
Figure 4.42: Throughput and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for different Mobility Speeds.	192	
Figure 4.43: Throughput and Variation comparison between GPSR, GPSR:TOM and		
GPSR:DEM in City and Highway scenarios for different Mobility Speeds.	193	
Figure 4.44: Throughput and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for different Pause Times.	194	
Figure 4.45: Throughput and Variation comparison between GPSR, GPSR:TOM and		
GPSR:DEM in City and Highway scenarios for different Pause Times.	194	
Figure 4.46: Delay and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for Different Traffic Generations.	195	
Figure 4.47: Delay and Variation comparison between GPSR, GPSR:TOM and		
GPSR:DEM in City and Highway scenarios for different Traffic Generations.	196	

Figure 4.48: Delay and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for Different packet Sizes.	197	
Figure 4.49: Delay and Variation comparison between GPSR, GPSR:TOM and		
GPSR:DEM in City and Highway scenarios for different Packet Sizes.	197	
Figure 4.50: Delay and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for Different Mobility Speeds.	198	
Figure 4.51: Delay and Variation comparison between GPSR, GPSR:TOM and		
GPSR:DEM in City and Highway scenarios for different Mobility Speeds.	199	
Figure 4.52: Delay and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for Different Pause Times.	200	
Figure 4.53: Delay and Variation comparison between GPSR, GPSR:TOM and		
GPSR:DEM in City and Highway scenarios for different Pause Times.	200	
Figure 4.54: PDR and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for Different Traffic Generations.	201	
Figure 4.55: PDR and Variation comparison between GPSR, GPSR:TOM and GPSR:DEM		
in City and Highway scenarios for different Traffic Generations.	202	
Figure 4.56: PDR and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for Different Packet Sizes.	203	
Figure 4.57: PDR and Variation comparison between GPSR, GPSR:TOM and GPSR:	DEM	
in City and Highway scenarios for different Packet Sizes.	203	
Figure 4.58: PDR and Variation comparison between AODV, AODV:TOM and		
AODV:DEM in City and Highway scenarios for Different Mobility Speeds.	204	
Figure 4.59: PDR and Variation comparison between GPSR, GPSR:TOM and GPSR:DEM		
in City and Highway scenarios for different Mobility Speeds.	205	

Figure 4.60: PDR and Variation comparison between AODV, AODV:TOM andAODV:DEM in City and Highway scenarios for Different Pause Times.206Figure 4.61: PDR and Variation comparison between GPSR, GPSR:TOM and GPSR:DEM206in City and Highway scenarios for different Pause Times.206

orthis term is protected by original copyright

LIST OF ABBREVIATIONS

RYION

- ACAR Adaptive CAR
- ACO Ant Colony Optimization
- ACO-ER Efficient Routing Algorithm based-on ACO
- AGF Advanced Greedy Forwarding
- AMR Adaptive Message Routing
- AODV Ad Hoc On-demand Distance Vector
- A-STAR Anchor-Based Structure and Traffic-aware Routing
- AWCP Adaptive Weighted Clustering Protocol
- BAHG Back-bone assisted Hop Greedy
- BEA-OLSR Best Energy-aware OLSR
- BER Bit Error Rate
- BLA Bee Life Algorithm
 - Bio-inspired Optimization Algorithm for Vehicle Routing Problem
 - .6

BOA-VRP

- Car to Car Communication Consortium
- CAP Connectivity-aware Routing Protocols
- CAR Connectivity-aware Routing
- CBF Contention-based Forwarding
- CF Control Factor
- C-GPSR Chameleon Method GPSR
- CM Chameleon Method

- CR Crossover Factor
- **Distributed Coordination Function** DCF
- **Differential Evolution** DE
- DEM **Differential Evolution Method**
- DREAM Distance Routing Effective Algorithm for Mobility
- Distance-Sequence Distance Vector Routing Protocol DSDV alcopy
- Dynamic Source Routing DSR
- DSRC **Dedicate Short Range Communication**
- DTN Delay Tolerant Network
- DV Distance Vector
- DYMO Dynamic MANET On-demand
- FCC Federal Communication Commission
- FL **Fuzzy Logic**
- Genetic Algorithm GA
 - Geographical Stateless VANET Routing
- Gabril Graph GG

GeoSVR

- Grid Location Service GLS
- GPCR Greedy Perimeter Forwarding Routing
- GPS Global Position System
- GPSR Greedy Perimeter Stateless Routing
- GRANT Greedy Routing with Abstract Neighbor Table
- GRP Geographical Routing Protocol

GSR	Greedy and Stateless Routing
GySTAR	Improved Greedy TAR
I2I	Inter Infrastructure
IAP	Infrastructure Assisted Protocol
IETF	International Engineering Task Force
IGRP	Intersection-based Geographical Routing
IOLSR	Intelligent Optimized Link State Routing
IP	Internet Protocol
IRTIV	Intelligent Routing Using Real-time Traffic Information
	in VANET
IZRP	Intra Zone Routing Protocol
LF	Loss Function
LHS	Left Hand Side
LL	Lower Limit
LOUVRE	Landmark Overlays for URBAN Vehicular Routing Environments
LS	Link State
MAC	Medium Access Control
MANET	Mobile Ad-Hoc network
MAODV	Multi-cast AODV
MAV-AODV	Multi-cast with ACO Based-on MAODV
MO PSO	Multi-Objective PSO
MODE	Multi-Objective Optimization Differential Evolution

MPR	Multi point relay
MURU	Multi-hop Routing For Urban VANET
NVTime	Neighbor Validity Time
OA	Orthogonal Array
OBSG	Optimization Broadcasting scheme for VANET with GA
OBU	Onboard Unit
OCM	Optimization Control Message
OF	Onboard Unit Optimization Control Message Objective Function Option Optimization Target Packet Delivery Ratio
OPT	Option
ОТ	Optimization Target
PDR	Packet Delivery Ratio
pPSO	Parallel PSO
PRP	Proactive Routing Protocols
PSO	Particle Swarm Optimization
QoS	Quality of Service
RBVT	Road-based routing Using Vehicular Traffic
REP	Reply
RER	Route Reply
RERQ	Route Request
RERR	Route Error
RFC	Request for comment
RHS	Right Hand Side
RNG	Relative neighborhood Graph

RRP	Reactive Routing Protocols
RSU	Road Side Unit
RTCP	Real-time connectivity Awareness
RTT	Round Trip Time
SADV	Static node Assisted Dissemination Protocol for VANET
SAP	Street-aware Routing Protocols
SAR	Spatially-aware Routing Smart Forwarding Swarm Intelligent
SF	Smart Forwarding
SI	Swarm Intelligent
SIFT	Simple Forwarding Trajectory
SLAB	Statistical Location-Assisted Broadcast
SNR	Signal-to-Noise Ratio
STAR	Spatial and Traffic-aware Routing
TARCO	Traffic-aware Routing Protocol
TC	Topology Control
TO-GO	Topology Assisted Geographical Routing
TOM	Taguchi Optimization Method
UL O	Upper Limit
USDOT	United State Department of Transportation
UVAR	UAV-Assisted VANET Routing Protocol
V2I	Vehicle to Infrastructure
V2V	Vehicle to Vehicle
VADD	Vehicle Assisted Data Delivery