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Jalur Lebar Penyebaran Rat a menggunakan Teras Fiber Krystal Fotonik 

berliang untuk Pemandu Gelombang THz yang rendah kerugian 

 

ABSTRAK 

 

Secara kasar, radiasi teraheartz (THz) ditakrifkan diantara frekuensi band 0.1 ke 10 

THz. Ia merapatkan jurang antara gelombang mikro dan panjang gelombang optik dan 

telah menarik minat pengkaji kerana berpotensi untuk digunakan dalam spektroskopi, 

pengimejan bukan invasif, penderian bioperubatan, astronomi, keselamatan kawasan 

sensitif seperti memantau ubat-ubatan, bahan letupan atau senjata dengan cara yang 

bukan pemusnah , penghibridan DNA dan komunikasi. Sebahagian besar daripada 

sistem THz sedia ada bersaiz besar dan bergantung kepada penyebaran di ruang terbuka 

sahaja kerana kurangnya pemandu gelombang yang mampu membuat penghantaran 

yang rendah kerugiannya dalam spektrum THz. Justeru, kajian terhadap pemandu 

gelombang THz yang berjaya yang memiliki kadar kerugian rendah, nilai komersil yang 

baik, berkesan dan fleksibel merupakan sesuatu yang tidak dapat dielakkan. Dalam 

kajian ini, kemajuan dan ciri-ciri sebuah teras dielektrik berliang dikaji untuk 

mendapatkan pemandu gelombang THz yang sesuai untuk aplikasi komunikasi. Sejenis 

reka bentuk teras fiber berliang hibrid yang novel telah dicipta menggunakan bahan 

TOPAS. Ciri-ciri perambatan bagi teras fiber yang berbeza keliangan dan diameter telah 

dikaji dengan peratusan luas teras yang berbeza. Kesan memutarkan susunan segi tiga 

lubang udara di dalam kawasan teras hibrid keatas perambatan telah dikaji bagi reka 

bentuk yang dicadang. Hasil simulasi menunjukan bahawa EML yang rata-ratanya 

rendah bernilai 0.0398±0.000416 cm
-1

 terhasil daripada terahertz (THz) antara 1.5 ke 5 

dengan pembendung yang boleh diabaikan dan kerugian lipatan sebanyak 17.89% 

daripada luas teras jumlah fiber. Selain dari itu pemandu gelombang yang di hasilkan 

juga menghasilkan penyebaran rata pada 0.4±0.042 ps/THz/cm pada kekerapan 1.25 ke 

5.0 THz. Reka bentuk baru yang dilaporkan dan hasil yang berinovasi yang mempunyai 

ciri khas telah menunjukan bahawa fiber teras berliang yang dicadangkan memiliki 

potensi yang perlu diberi perhatian untuk aplikasi komunikasi. 
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Broadband Dispersion Flattened Porous Core Photonic Crystal Fiber for Low 

Loss THz Wave Guiding  

 

ABSTRACT 

 

Terahertz (THz) radiation can be loosely defined in the frequency domain from 0.1 to 

10 THz bands. It bridges the gap between microwave and optical wavelength and has 

already confined the researcher interest due its potential applications in spectroscopy, 

non-invasive imaging, biomedical sensing, astronomy, security sensitive areas such as 

monitoring drugs, explosives or weapons in a non-destructive manner, hybridization of 

DNA and communications. A large number of the existing THz system are bulky and 

rely on free space propagation due to the lack of low-loss transmission waveguides in 

the THz spectrum. Therefore, the investigation of low-loss, commercially feasible, 

efficient and flexible waveguides for the exultant execution of THz scheme becomes 

incapable of being disregarded. In this research, performance and properties of a porous 

core dielectric fiber has been studied to find a suitable THz waveguide for 

communication applications. A novel type of hybrid core porous fiber design has been 

developed using TOPAS material. Propagation characteristics for different fiber core 

porosity and core diameter have been studied with different percentages of core areas. 

The effects of rotating the triangular air hole arrangements in the hybrid core region on 

propagation have been studied for the proposed design. Simulation results show a flat 

low EML of 0.0398±0.000416 cm
-1

 from 1.5 to 5 terahertz (THz) range with negligible 

confinement and bending loss with 17.89% core area of the total fiber. Also the reported 

waveguide exhibits a near zero flat dispersion at 0.4±0.042 ps/THz/cm in the frequency 

range from 1.25 to 5.0 THz. The reported novel design and innovative results with 

special features have indicated the noteworthy potentiality of the proposed porous core 

fiber as a reliable THz waveguide for communication applications. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Introduction 

 

Terahertz (THz) frequency regime can be generally defined in the frequency 

domain from 0.1 to 10 THz in the electromagnetic spectrum (Lee, 2009; Xi-Cheng 

Zhang, 2010). This particular band is often referred to as “THz gap” due to its historical 

difficulty to exploit for practical applications. THz frequency range is lying between 

electrical and optical frequencies, each of which utilizes very different hardware. As a 

result the development of affordable technologies for THz regime has been slower than 

other frequency bands. Fig. 1.1 explains the position of THz regime in the 

electromagnetic spectrum. 

 

 

Figure 1.1: THz band in electromagnetic spectrum. 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



2 
 

Researchers‟ interests for THz regime come from the vast potential applications 

of this frequency domain in spectroscopy (Xi-Cheng Zhang, 2010), non-invasive 

imaging (Q. Chen, Z.P. Jiang, G.X. Xu, X.C. Zhang, 2000), biomedical sensing (He, 

2008), astronomy (Ho, 2008), security sensitive areas such as monitoring drugs 

(Strachan, 2005), explosives or weapons in a non-destructive manner (Cook, 2005), 

hybridization of DNA (M. Nagel, Bolivar, P. H., Brucherseifer, M., Kurz, H., 

Bosserhoff, A., & Büttner, R., 2002) and communications (Hasan, 2014). However, 

adapting the technologies for THz regime has been proven difficult due to the absent of 

a suitable transmitting medium. At present, the existing THz systems are bulky and 

mostly depend on propagation via free space or air. Thus, researchers are focusing their 

interest on finding a low loss waveguide for the terahertz frequency regime. 

Waveguides are physical structures that are used to propagate waves; such as, 

electromagnetic waves or sound waves etc. In case of electromagnetic waves this is an 

alternative to free space propagation. Waveguides are made from different materials, 

like metal or dielectric materials and they may come in different shapes and sizes (S. 

Atakaramians, Shahraam Afshar, Tanya M Monro, Derek Abbott, 2013). The primary 

application of a waveguide is to propagate a signal with minimum power loss. The host 

material and structure of a waveguide can be organized to meet different applications. 

Number of investigations has been reported in the past years to develop a proper 

waveguide for different applications using THz frequency radiation. In this thesis, 

porous core photonic crystal fibers are studied to investigate its performance as a 

suitable waveguide for THz regime in communication applications.  
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1.2 Research Background 

 

Numbers of waveguides for THz regime have been proposed in the past few 

years; such as, metallic wires (M. Wächter, 2007), dielectric metal-coated tubes 

(Bowden, 2007), all-dielectric sub-wavelength polymer fibers (A. Hassani, 2008), 

dielectric sub-wavelength waveguide (G. Emiliyanov, J. Jensen, O. Bang, P. Hoiby, L. 

Pedersen, E. Kjær, and L. Lindvold, 2007), solid dielectric core with a sub wavelength 

hole in middle (J. S. Melinger, 2009), porous structure of sub wavelength air hole 

(Alexandre Dupuis, 2010), Bragg fibers (C. Markos, 2013) etc. However, most of the 

proposed waveguides in the past are unable to fulfil the low loss transmission medium 

requirement for THz regime. For example, metal waveguides have unstable guidance, 

high bending loss and low coupling efficiency (Wang Kanglin, 2004). In case of 

dielectric rod waveguides, absorption loss by surrounding air, bending and confinement 

losses are vital drawbacks (H. W. Chen, 2009). In the solid core waveguides, THz 

propagation suffers from a large material absorption loss (J. S. Melinger, 2009). Also in 

other proposed wave guides material absorption loss is an issue (Y. Y. Wang, 2011). 

For these shortcomings, a considerable portion of THz system depends on free space 

propagation due to the absence of a good low loss waveguide in the THz spectrum. 

In order to compress the propagation loss further, scientists are considering 

photonic crystal fibers (PCFs) (Kaijage Shubi, 2009), hollow-core fibers (Jessienta 

Anthony, 2011) and polymer porous fibers (Liang, 2013) as THz waveguides (S. 

Atakaramians, Shahraam Afshar, Tanya M Monro, Derek Abbott, 2013). The sub-

wavelength polymer porous fiber has shown better results in THz transmission for its 

advantages of lower material absorption loss (Uthman, 2012), high birefringence for 
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sensing applications (Na-na Chen, Jian Liang, and Li-yong Ren, 2013) and tuneable 

dispersion  for communication applications (Rana, 2014) etc. 

To date many researchers have reported low loss porous core PCFs with 

remarkable guiding properties regarding EML, birefringence and dispersion. Liang et 

al. (Liang, 2013) proposed a porous core fiber with a material absorption loss of 0.432 

cm
-1

 for communication applications in 2013. Their proposed waveguide resulted in a 

flat dispersion range of 0.17 THz with an absolute dispersion variation that is less than 

2.5 (ps/THz/cm). 

In 2014, Rana et al. (Rana, 2014) proposed a porous core fiber with material 

absorption loss of 0.05 cm
-1

 at 1 THz operating frequency, however the design showed 

no dispersion flattened properties. In 2014, Imran et al. (Hasan, 2014) proposed an 

octagonal porous core with an absorption loss of 0.056 cm
-1 

and near zero flat dispersion 

of ±0.18 ps/THz/cm with dispersion range of 0.8 THz. 

In 2015 Islam et al. proposed a THz waveguide with an absorption loss of 0.07 

cm
-1

 with zero flat dispersion of ±0.5 ps/THz/cm with a range of 0.3 THz (R. Islam, S. 

Habib, GKM. Hasanuzzaman, R. Ahmad, S. Rana and S.F. Kaijage, 2015). Same year, 

Islam et al. (R. Islam, Hasanuzzaman GKM, Habib Selim, Rana Sohel, Khan MAG, 

2015) proposed another porous fiber design using hexagonal structure. They reported a 

low material absorption loss of 0.066 cm
-1

 at the operating frequency of 1 THz. A near 

zero flat dispersion of ± 0.12 ps/THz/cm at 1.06 ps/THz/cm in the frequency range of 

0.5–1.08 THz was reported in that design. However, none of the previous porous core 

waveguides showed a wide frequency range of flat material absorption loss with near 

zero flat dispersion characteristics. 
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