

AMC-INTEGRATED RECONFIGURABLE BEAMFORMING ANTENNA BY USING RF MEMS by ovioinal copyright AP

HERWANSYAH BIN LAGO

(1440811249) A thesis submitted In fulfillment of the requirements for the degree of **Doctor of Phillosophy Communication Engineering**

SCHOOL OF COMPUTER AND COMMUNICATION ENGINEERING **UNIVERSITI MALAYSIA PERLIS**

UNIVERSITI MALAYSIA PERLIS

DECLARATION OF THESIS		
Author's full some	HERWANSY	AH BIN LAGO
Date of birth	26 AUGUST 1	990
Title :	AMC-INTEGI	RATED RECONFIGURABLE BEAMFORMING
	ANTENNA B	Y USING RF MEMS
Academic Session :	2016/2017	×
I hereby declare that the th	nesis becomes the prop	perty of Universiti Malaysia Perlis (UniMAP) and to be placed
at the library of OnlimAF. In		
CONFIDENTIAL	(Contains confide	ential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restrie research was do	cted information as specified by the organization where ne)*
√ OPEN ACCESS	I agree that m copy or on-line o	y thesis is to be made immediately available as hard pen access (full text)
I, the author, give permiss	sion to the UniMAP to	reproduce this thesis in whole or in part for the purpose of
research or academic exch	nange only (except dur	ng a period of years, it so requested above).
	.19	Certified by:
	tell	
SIGNATU	RE	SIGNATURE OF SUPERVISOR
900826-12-	6157	Assoc. Prof. Ir Dr MOHD FAIZAL JAMLOS
(NEW IC NO. / PA	SSPORT NO.)	NAME OF SUPERVISOR
Date :		Date :

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

Specially dedicated to my beloved parents, brothers, sisters, lecturers and friends

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, the Most Merciful. Alhamdulillah, thanks to Allah SWT for His blessing, I was able to complete this project successfully.

There are many individuals whom I would like to thank for their support and guidance that made it possible for me to successfully complete this doctor of philosophy research work. First of all, I would like to express my sincere gratitude and indebtedness to my beloved family for giving me life in the first place and for unconditional support and encouragement to pursue my studies in doctor of philosophy.

The special thank goes to my helpful supervisor, Assoc. Prof Ir Dr Mohd Faizal Jamlos. The supervision, excellent ideas and constant support from him truly help the progression and smoothness of my research work. The co-operation is much indeed appreciated and I am so honored to have him as my supervisors. My appreciation also goes to my co-supervisors, Dr. Soh Ping Jack, Dr. Mohamad Rijal Bin Hamid and Dr. Muhammad Imran Bin Ahmad for their help and ideas in my research work.

Last, but not least, I would like to express my gratitude to all my colleagues specially to Advanced Communication Engineering Centre (ACE) group members, who helped me a lot during my research work.

TABLE OF CONTENT

		PAGE
DECLA	ARATIONS	ii
DEDIC	ATION	iii
ACKN	OWLEDGEMENTS	iv
TABLE	C OF CONTENT	v
LIST O	FFIGURES	viii
LIST O	FTABLES	xiii
LIST O	FSYMBOLS	xiv
LIST O	FABBREVIATIONS	XV
ABSTR	AK	xvii
ABSTR	ACT	xviii
		25 7 111
CHAP	TER 1: INTRODUCTION	
1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Scope of work	6
1.5	Contributions of the Thesis	8
1.6	Thesis Outline	9
CHAP	TER 2 : LITERATURE REVIEW	
2.1	Introduction	11
2.2	Detection and Ranging Technology	11
2.3	Printed Antenna for Ranging and Detection Application: A Review	12
2.4	Reconfigurable Antenna	16
2.4.1	Reconfigurable Frequency	16
2.4.2	Reconfigurable Polarization	18

2.4.3	Reconfigurable Radiation Pattern	20
	2.4.3.1 RF PIN Diode	22
	2.4.3.2 RF FET	23
	2.4.3.3 RF MEMS	24
2.5	Metamaterials	28
2.5.1	Artificial Dielectric	30
2.5.2	Frequency Selective Surface	31
2.5.3	Electronic Band Gap	31
2.5.4	Negative Index Material	32
2.5.5	Artificial Magnetic Conductor	32
2.6	AMC-Based Reconfigurable Beam Pattern Antennas: A Review	36
2.7	Tilting Angle Enhancement via Parasitic on the Reconfigurable Beamforming Antenna	
2.8	Summary	43
СНАРТ 3.1	TER 3: METHODOLOGY	45
3.2	Methodology	46
3.2.1	Design Specification	49
3.2.2	Analytical Calculation of Antenna and Artificial Magnetic Conducto	or 50
3.2.3		
	Simulation Using Electromagnetic (EM) Computation	53
3.2.4	Simulation Using Electromagnetic (EM) Computation	53 54
3.2.4	Simulation Using Electromagnetic (EM) Computation Antenna Design Evolution 3.2.4.1 Beam-Reconfigurable E-Shaped Dipole Antenna Using AMC and MEMS	53 54 56
3.2.4	 Simulation Using Electromagnetic (EM) Computation Antenna Design Evolution 3.2.4.1 Beam-Reconfigurable E-Shaped Dipole Antenna Using AMC and MEMS 3.2.4.2 AMC-Integrated Reconfigurable Beamforming Folded Dipole Antenna 	53 54 56 62
3.2.4	 Simulation Using Electromagnetic (EM) Computation Antenna Design Evolution 3.2.4.1 Beam-Reconfigurable E-Shaped Dipole Antenna Using AMC and MEMS 3.2.4.2 AMC-Integrated Reconfigurable Beamforming Folded Dipole Antenna 3.2.4.3 Reconfigurable Beamforming on AMC Integrated Crescent Array Antenna 	53 54 56 62 67
3.2.4	 Simulation Using Electromagnetic (EM) Computation Antenna Design Evolution 3.2.4.1 Beam-Reconfigurable E-Shaped Dipole Antenna Using AMC and MEMS 3.2.4.2 AMC-Integrated Reconfigurable Beamforming Folded Dipole Antenna 3.2.4.3 Reconfigurable Beamforming on AMC Integrated Crescent Array Antenna Antenna Fabrication 	53 54 56 62 67 75
3.2.4 3.2.5 3.2.6	 Simulation Using Electromagnetic (EM) Computation Antenna Design Evolution 3.2.4.1 Beam-Reconfigurable E-Shaped Dipole Antenna Using AMC and MEMS 3.2.4.2 AMC-Integrated Reconfigurable Beamforming Folded Dipole Antenna 3.2.4.3 Reconfigurable Beamforming on AMC Integrated Crescent Array Antenna Antenna Fabrication Experimental Setup and Measurement 	53 54 56 62 67 75 78

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Introduction	82
4.2	Beam-Reconfigurable E-shaped Folded Printed Dipole Antenna	83
4.2.1	E-shaped Printed Dipole on Hybrid Substrate	84
4.2.2	AMC Unit Cell	85
4.2.3	Beam-Reconfigurable E-Shaped Dipole Antenna Using AMC and MEMS	89
4.3	AMC-Integrated Reconfigurable Beamforming Folded Dipole Antenna	97
4.3.1	AMC Design	97
4.3.2	AMC Based Folded Dipole Antenna	101
4.3.3	AMC-Integrated Reconfigurable Folded Dipole Antenna (ARFD)	102
4.3.4	AMC-Integrated Reconfigurable Folded Dipole Antenna with Parasitic (ARFD-P)	104
4.4	Reconfigurable Beamforming on AMC Integrated Crescent Array Antenna	108
4.4.1	AMC Unit Cell	109
4.4.2	AMC Based Crescent Array Antenna	111
4.4.3	Reconfigurable Beam Direction on AMC-Integrated Crescent Array Antenna by Using RF MEMS	113
4.4.4	Reconfigurable Beam Direction on AMC-Integrated Crescent Array Antenna with Parasitic	119
4.5	Comparison with State of the Art	123
4.6	Summary	125
	ED 5. CONCLUSION AND DECOMMENDATION	
	ER 5: CONCLUSION AND RECOMMENDATION	10.4
5.1	Conclusion	126
5.2	Future Works	128
REFER	ENCES	130
APPENI	DIX A	138
APPENDIX B		140

LIST OF FIGURES

NO.		PAGE
1.1	Scope of work block diagram	6
2.1.	Waves and frequency range for detection and ranging applications	12
2.2.	(a) Configuration and (b) fabricated of the proposed element antenna	13
2.3.	(a) Configuration and (b) fabricated of the proposed antenna	14
2.4.	(a) Dimensions and (b) prototype of the proposed antenna	15
2.5.	(a) Photography fabricated antenna and (b) detail dimension of the array structure	16
2.6.	(a) Configuration of the reviewed antenna and orientation of the PIN diode, (b) simulated and measured reflection coefficient for the different States of the antenna	18
2.7.	Reconfigurable polarization antenna with ability to change from CPW to slot-line transition. (a) Geometry and (b) electrical-field distribution of the reviewed antenna	19
2.8.	(a) Top view of the rotated E-shaped patch antenna, (b) magnified view of the RF MEMS switch implementation on the antenna and (c) stack-up of the linear array	20
2.9	The reconfigurable Vee-dipole antenna	21
2.10.	(a) Prototype and (b) measurement setup of the prototype antenna	21
2.11.	(a) Front and (b) back view of the reviewed wideband antenna structure	23
2.12	Schematic of the (a) reconfigurable aperture antenna architecture and (b) front and back view of the switches layout on the antenna	24
2.13.	Structure and dimension of the proposed antenna	25
2.14.	Radiation patterns at 11.2 GHz; (a) E-plane, (b) H-plane	25
2.15.	Photograph of the switched beam antenna integrated with RF- MEMS based SPDT switch on quartz substrate	26
2.16.	Reconfigurable single-arm rectangular spiral antenna	27
2.17.	Slot-loaded Yagi patch antenna	27

2.18.	(a) Fabricated reconfigurable parasitic-slot antenna array and (b) principle of the switched-loads parasitic	28
2.19.	Metamaterials classification	30
2.20.	Presented antenna on AMC surface	34
2.21.	Presented AMC topology	35
2.22.	Topology of wearable antenna	36
2.23.	Reconfigurable antenna mounted on top AMC	37
2.24.	(a) Geometry of an AMC structure. (b) Proposed antenna mounted on an AMC structure	37
2.25.	Geometry of proposed pattern reconfigurable antenna	38
2.26.	Geometry of AMC-based square loop antenna	39
2.27.	(a) Top view prototype and (b) side view of reconfigurable parasitic array with bias circuit	40
2.28.	Configuration of the reconfigurable spiral antenna on AMC structure	40
2.29.	(a) Schematic and (b) fabricated of pattern reconfigurable metasurface antenna	41
2.30.	Physical structure of (a) wide angle scanning reconfigurable beam steering antenna and (b) electronically reconfigurable beam steering antenna	42
2.31.	Physical structure of reconfigurable planar antenna array with parasitic	43
3.1.	Flowchart for the project	48
3.2	Flowchart of the antenna design	55
3.3.	Evolution of the radiating E-shaped printed dipole on a hybrid substrate	57
3.4.	AMC unit cell (a) setup, (b) AMC structures with proposed JSC Slot	59
3.5.	Simulated simple microstrip antenna	60
3.6.	Simulated E-shaped folded dipole antenna on AMC plane	60

3.7.	Topology of the proposed beam-reconfigurable E-shaped folded printed dipole antenna (unit in mm). (a) 3-D view, (b) Top view, (c) AMC plane, (d) side view	62
3.8.	JSC slot AMC (a) layer structure, and (b) unit cell	63
3.9.	E-shaped folded dipole on AMC plane	64
3.10.	Evolution of the AMC based folded dipole antenna	64
3.11.	Topology of the proposed AMC-integrated reconfigurable beamforming folded dipole antenna (units in mm). (a) 3-D view, (b) Top view (c) AMC plane	66
3.12.	The topology of the AMC-integrated reconfigurable folded dipole with parasitic elements, ARFD-P	67
3.13.	Simulated AMC unit cell (a) structure and (b) dimensions	68
3.14.	Simulated AMC integrated array antenna structure	69
3.15.	(a) Evolution of the AMC based crescent array antenna design and it's (b) dimension	71
3.16.	Simulated (a) front view, (b) AMC plane and (c) perspective view of the reconfigurable beamforming of AMC integrated crescent array antenna	73
3.17.	The topology of the AMC integrated crescent array antenna with parasitic	74
3.18.	Etching machine	76
3.19.	(a)UV machine and (b) negative board photoresist dry film	76
3.20.	(a) Bonding machine and (b) wire bond	76
3.21	Workflow of fabrication process	77
3.22.	Reflection coefficient measurement setup	78
3.23.	Calibration kit	79
3.24.	Radiation pattern measurement setup	80
4.1.	(a) Reflection coefficient and (b) gain and efficiency results of the simulated Design 1, 2, 3 and 4 on a hybrid substrate	85
4.2.	Simulation results of (a) phase response of simulated AMC structures and (b) permittivity and permeability of simulated JSC slot	86

4.3.	Simulated (a) reflection coefficient and (b) gain and efficiency of the antennas	88
4.4.	Simulated (a) E-shaped folded dipole antenna on AMC and (b) reflection coefficient and gain of the antenna. Note: Solid line (black): reflection coefficient; Dashed line (red): gain	89
4.5.	The three investigated AMC configurations and their resulting reflection coefficients (same for State 1 and State 2 of the MEMS switches)	90
4.6.	Simulated radiation patterns for two states of the proposed antenna loaded with $2x3$, $4x3$ and $6x3$ (<i>xz</i> -plane)	91
4.7.	Comparison between ideal and MEMS case in term of (a) radiation and total efficiency and (b) gain and FBR. (The results are for both states)	94
4.8.	The fabricated prototype (a) top view, (b) AMC plane and (c) perspective view	95
4.9.	(a) Simulated and measured antenna reflection coefficients and radiation patterns in (b) cartesian and (c) 3D plot at <i>xz</i> -plane	96
4.10.	Reflection magnitude (dashed line) and phase response (solid line) of the AMC plane	98
4.11.	Simulated (a) reflection coefficient and (b) gain and total efficiency of the simple rectangular microstrip antennas without and with AMC	99
4.12.	Simulated reflection coefficient and gain results of the E-shaped folded dipole antenna on AMC plane. Note: Solid (black) line for reflection coefficient; dashed (red) line for the gain	100
4.13.	(a) Reflection coefficient and (b) gain and efficiency results of the simulated Design 1, 2, and 3	102
4.14.	(a) Reflection coefficients results and (b) radiation patterns for two modes and (b) simulated z-component of electric field for the right element activated at 9.41 GHz	104
4.15	Simulated z-component of electric field for the right element activated at 9.41 GHz	105
4.16.	Photographs of the manufactured (a) ARFD-P structure and (b) AMC plane	106
4.17.	Simulated and measured (a) reflection coefficients of the ARFD-P and radiation patterns in (b) cartesian and (c) 3D in <i>xz</i> -plane for two modes of the ARFD-P at 9.41 GHz	107
4.18.	Simulated (a) response and (b) permittivity and permeability of the AMC unit cell	110

4.19.	Simulated reference antenna (a) reflection coefficient and (b) radiation pattern results (Black solid line: AMC integrated array antenna; red dash line: reference antenna)	111
4.20.	(a) Reflection coefficient and (b) gain and efficiency results of the simulated Design 1, 2, 3 and 4	113
4.21.	Simulated (a) reflection coefficient, (b) gain and efficiency and (c) polar pattern at <i>xz</i> -plane of the crescent array antenna with and without AMC	116
4.22.	Photographs of (a) top layer and (b) AMC plane of the fabricated crescent array antenna with AMC plane	116
4.23.	Simulated and measured results of (a) reflection coefficient and <i>xz</i> - plane radiation pattern in (b) cartesian and (c) 3D plot at 9.41 GHz of the reconfigurable beamforming of AMC integrated crescent array antenna	119
4.24	Prototype of the reconfigurable beamforming on AMC integrated crescent array antenna with parasitic	120
4.25	Simulated and measured (a) reflection coefficients of the ARFD-P and radiation patterns in (b) cartesian and (c) 3D plot at <i>xz</i> -plane for two modes of the reconfigurable beamforming on AMC integrated crescent array antenna with parasitic at 9.41 GHz	122
	this item is protected by	

LIST OF TABLES

NO.]	PAGE
2.1.	Categorization of metamaterials	29
3.1.	Reconfigurable Antenna Design Specifications	49
4.1.	Unit Cell Bandwidth and Loss Comparison	87
4.2.	The Effect of Different AMC Configurations on the Antenna Performance at 9.41 GHz	92
4.3.	Summary of PDMS Layer Effect on Antenna Performance	92
4.4.	Summary of proposed Antenna Performance	97
4.5.	Summary of the performance of proposed ARFD and ARFD-P antennas	108
4.6.	Comparison with Previous Reported Radiation Pattern Reconfigurable Antennas Implemented on Metasurfaces	124

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

AMC	Artificial Magnetic Conductor
AUT	Antenna Under Test
CST	Computer Simulation Technology
dB	Decibel
DNG	Double Negative
DPS	Double Negative
ENG	Epsilon Negative
FBR	Front to Back Ratio
FET	Field Effect Transistor
FSS	Frequency Selective Surface
EBG	Electromagnetic Band Gap
GHz	Giga Hertz
HPBW	Half Power Beam Width
MEMS	Micro Electro Mechanical System
MHz	Mega Hertz
mm	Millimeter
MNG	Mu-Negative
PEC	Perfect Electric Conductor
РМС	Perfect Magnetic Conductor

RF Radio Frequency

SAR Specific Absorption Rate

orthis item is protected by original copyright

Antena Pembentukan Alur Boleh Konfigur Bersepadu AMC Menggunakan RF MEMS

ABSTRAK

Tesis ini tertumpu kepada pembangunan kawalan pembentukan alur pada pengalir magnet tiruan (AMC) bersepadu dengan antena tampalan menggunakan frekuensi radio (RF) MEMS berfungsi untuk aplikasi-aplikasi pengesan dan penilaian jarak. Kawalan alur antena sangat bermanfaat dalam pembangunan pesat sistem komunikasi tanpa wayar. Idea utama pengawalan rasuk antena adalah membantu untuk mengurangkan jumlah antena yang diperlukan untuk menguasai satu sudut atau kawasan tertentu manakala pengintegrasian AMC adalah membantu untuk mengecilkan saiz antena di samping memperbaiki prestasinya. Tiga reka bentuk antena yang baru telah dicadangkan di dalam tesis ini; antena cetakan dwikutub yang dilipat berbentuk E mengawal pembentuk radiasi dengan menggunakan AMC dan RF MEMS, pembentuakan radiasi dengan menggunakan parasit dan RF MEMS ke atas AMC bersepadu dengan antena dwikutub yang dilipat dan kawalan pembentuakan radiasi pada AMC bersepadu bersama antena berbentuk sabit dengan susunan tertentu telah direka dengan menggunakan perisian simulasi 3D. Untuk mengkaji dan mengesahkan keupayaan kawalan dengan menggunakan RF MEMS sebagai mekasnisma pensuisan, antena-antena yang disimulasi telah difabrikasi dan diuji. Antena-antena ini adalah usaha yang pertama dalam merealisasikan gabungan antara RF MEMS bersama AMC yang disatukan dengan antena jenis tampalan. Dua suis dan kemasukan galangan kirakira 50 Ω pada 9.41 GHz telah digunakan pada semua reka bentuk antena yang dicadangkan. Walau bagaimanapun hanya satu suis diaktifkan dalam satu masa di mana suis yang diaktifkan akan membenarkan arus RF melaluinya manakala suis yang dinyahaktifkan akan menyekat arus RF. Antena cetakan dwikutub yang dilipat berbentuk E mampu mencapai kawalan pembentukan radiasi sebanyak ±30° dengan galangan jalur lebar yang lebih luas sebanyak 920 MHz. Pengintegrasian parasit ke atas dwikutub yang dilipat telah mencondongkan pembentukan radiasi dan gandaan yang tinggi masing-masing sebanyak ±58° dan 8.08 dB. Di samping itu, gabungan antara satah AMC dengan antena berbentuk sabit yang telah disusun dengan susunan tertentu telah mencapai gandaan dan pencondongan bentuk radiasi masing-masing sebanyak 10.5 dB dan 63°. Berdasarkan keupayaan yang telah ditunjuk dan dibincangkan, kesemua antenna ini mempunyai potensi yang besar untuk aplikasi-aplikasi penilai jarak dan pengesan yang pintar.

AMC-Integrated Reconfigurable Beamforming Antenna By Using RF MEMS

ABSTRACT

The research work in this dissertation mainly focuses on the development of reconfigurable beamforming on AMC- integrated patch antenna by using RF MEMS for detection and ranging applications. Reconfigurable-beam antenna is useful in the rapid growth of the wireless communication system. The main idea of reconfigurable-beam antenna is assist to reduce the number of required antenna to cover a specific angle or area while AMC integration helps to miniaturize the antenna size and improving its performance. This thesis proposed three new antenna designs; beam-reconfigurable Eshaped folded printed dipole antenna using metasurface and Radio Frequency (RF) MEMS, AMC-integrated reconfigurable beamforming folded dipole antenna with parasitic and RF MEMS and reconfigurable beamforming on AMC-integrated crescent array antenna that have been designed by using 3D simulator software. To investigate and validate the reconfigurable ability that uses RF MEMS as the switching mechanism, the simulated antennas have been fabricated and measured. These antennas are the first effort in realizing a combination of RF MEMS onto the AMC-integrated patch antenna. Two switches and input impedance approximately 50Ω at 9.41 GHz are applied on all proposed antenna designs. However, only one switch is activated in one time where the activated switch will allow RF current pass through while deactivated switch will block the RF current. The E-shaped folded printed dipole antenna is capable to achieve beam steering ±30° with wider impedance bandwidth of 920 MHz. The integration of parasitic onto folded dipole has awakening the wider beam tilting and high gain of $\pm 58^{\circ}$ and 8.08 dB, respectively. Further, the combination of AMC plane and the crescent array antenna has realized a high gain and tilting angle of 10.5 dB and 63°, respectively. With all demonstrated and discussed capabilities, these antennas have big potential in realizing a smart ranging and detection application. othisitem

CHAPTER 1

INTRODUCTION

copyrigh

1.1 Introduction

The development of reconfigurable antennas receive much attention to fulfilling different application nowadays. One of the attractive application is an antenna for detection and ranging application. This application system uses the radio wave to determine the range, altitude, and the direction of the speed of an object ("Radar Basics," n.d.). The Radar is popular to be used by several nations during World War II. Nowadays, the used of ranging and detection system are highly diverse due to its capability. Due to the eye limitation especially at night, raining and foggy day, the detection and ranging system is used to locate any moving or motionless object.

Generally, the antenna for ranging and detection applications is operated in specific frequency bands such as L-band, S-band, X-band and etc. Each of the operating band has its own advantages and disadvantages. For example, the lower frequency capable of a longer range detection due to the greater wavelength compare to a higher frequency. However, the antenna which operates in the lower band will be bigger in size. In addition, the higher band is widely used compared to the lower band since it can provide better resolution ("Radar Basics," n.d.). Normally, a waveguide and reflector type antenna is used as the antenna for detection and ranging applications due to their advantageous (Balanis, 2005). Reconfigurable beam pattern antenna can control its beamforming so that the main lobe capable pointing to a particular direction. However, it is nearly impossible to realize the reconfigurable capability especially reconfigurable beam pattern on the waveguide and reflector antenna due their structure itself. In addition, these antennas will have a huge overall dimension with such operating frequencies. A microstrip patch antenna is another type of antenna which is talented to be used for this applications.

A significant number of microstrip antennas have the capability to steer its radiation pattern to more than one direction while maintaining the operating frequency (Aboufoul, Parini, & Chen, 2013; Ahn, Kim, Yoon, & Hwang, 2012). Recently, reconfigurable beam pattern antenna has attracted much attention in numerous applications such as cellular radio system, detection system, and point-to-point propagation. The reconfigurable beam pattern can be realized electronically by using RF switching. However, the RF switch has own limitation on operating frequency, insertion loss, isolation and fabrication complexity (Debogović, Bartolić, & Perruisseau-Carrier, 2014; Pringle et al., 2004; "Radant MEMS," n.d.).

In addition, the microstrip antenna also facing the size drawback since its dimension has a close relation with the operating frequency. Nevertheless, there are several techniques have been presented by previous work that can be applied to miniaturize the size of microstrip antenna (Joozdani, Amirhosseini, & Abdolali, 2016; Li & Feresidis, 2014; Malekpoor & Jam, 2013; So, Wong, Luk, & Chan, 2015; M. Yang, Chen, Lau, Qing, & Yin, 2015). Recently, the implementation of engineered material onto the microstrip patch antenna is one of the popular technique to miniaturize the antenna's size (Foroozesh & Shafai, 2006; Rahmadani & Munir, 2011; Yousefi &

Ramahi, 2010). As a result, this will reduce the cost of the antenna for ranging and detection applications. An artificial magnetic conductor is one of the popular engineered material nowadays. The microstrip antenna dimension is determined through the wavelength in the substrate. However, a high permittivity or permeability substrate can be used to reduce the wavelength in the substrate but, there will be a high impedance mismatch which will lead to low efficiency for the miniaturized antenna (Yousefi & Ramahi, 2010). Nonetheless, the Artificial Magnetic Conductor (AMC) is capable of having moderate permittivity or permeability which will achieve a high miniaturization factor while resulting in less impedance mismatch. The aim of this work is to design a reconfigurable beamforming antenna which integrated with engineered material and .e ie iected by orioin switching mechanism.

1.2 **Problem Statements**

The development of the antenna for detection and ranging application is aggressive due to the demand nowadays. To have the bearing, range and position of the object, most of the conventional antenna is mechanically moving (scanning) in a specific direction. However, it is required a large amount of electric power to enable the functionality of the mechanical parts. Besides that, the potential of the antenna to break down due to the mechanical problem such as cracked gear and the jammed motor is very high which resulting frequently maintenance. In addition, most of the conventional waveguide antenna used for detection and ranging applications which determined by its operating frequency can reach up too few feet (\geq 4 ft) long ("Radar Basics," n.d.). Consequently, it is require a large area to integrate and operate the antenna. Moreover, the conventional antenna used for Radar system is quite heavy ($\simeq 25$ kg) since it is attached to the mechanical parts.

Referred to all of these constrains, an antenna with the capability to reconfigurable it's beamforming on the azimuth plane is introduced to replace the mechanical parts to cover wider scanning sector with less weight and size. The beam pattern can be electronically controlled by using switching mechanism. The PIN diode and FET are the most habitually to be deployed as the switches to enable the reconfigurability (Ding & Wang, 2013; Pringle et al., 2004). However, both are requiring a complex biasing circuit which will lead to an additional loss especially electronic losses. Moreover, these switches are limited to a lower operating frequency (≤ 6 GHz), low power handling capability and less isolation (Cheng et al., 2009; Debogović et al., 2014). MEMS is a reliable switch which has better performance compared to the PIN diode and FET. Nonetheless, the switching complexity in fabrication is the biggest challenge.

An antenna with a high gain has the capability to work for a longer distance application due to it's propagation behavior. Therefore, a high gain antenna is required for the Radar system since it's one of the most important parameter that will determine the system capability and effectiveness. Therefore, the reconfigurable beamforming antenna with a high gain is needed by the Radar system due to the system requirement to work for a longer distances. However, an antenna which is deploying the RF switch mechanism to achieve the reconfigurability is facing a huge constrain on the gain performance (Petit, Dussopt, & Laheurte, 2006; X. S. Yang, Wang, Wu, & Xiao, 2007). This constrain is occur since each used electronic component have own losses which called electronic losses and must include into the antenna losses. As a result, the antenna losses will increase and then degrading the antenna's performance especially the gain.

One of the conventional technique to improve the antenna's gain performance is through the integration of the full ground plane on the antenna. However, this technique will resulting a narrow tilting angle for the reconfigurable beamforming antenna. Therefore, it is hard to realize a wide tilting angle of beam direction on the reconfigurable beamforming antenna while improving or maintaining the antenna performance. In addition, a narrow tilting angle of the reconfigurable beamforming antenna has limited coverable area compare to the reconfigurable beamforming antenna ted by original with a wider beam tilting angle.

1.3 **Objectives**

The main objective of the study are as follows:

To design and analyze an electronically reconfigurable beamforming i. antenna at the centered frequency of 9.41 GHz.

To realize a high gain of the reconfigurable beam pattern antenna.

To achieve a wide tilting angle of the reconfigurable beamforming iii. antenna.

1.4 Scope of Work

Reconfigurable beam pattern antennas integrated on metamaterials represent the innovation in antenna design that changed from the classical form of antennas to fit for numerous applications. The scope of this thesis is demonstrated and labelled in blue box as in Figure 1.1.

Figure 1.1: Scope of work block diagram.