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Kesan Perbezaan Parameter Proses Terhadap Pemindahan Haba Sistem 

Pendinginan Cecair dalam Sistem Elektronik 

 

 

ABSTRAK 

 

 

Sistem pemindahan haba yang berkesan adalah sangat penting untuk meningkatkan 

prestasi pemindahan haba dalam pengaplikasian teknologi terkini, terutamanya, tren 

pengecilan saiz sistem elektronik yang menyebabkan peningkatan jumlah haba yang 

dihasilkan. Dalam keadaan di mana sistem pendinginan udara tidak lagi mampu untuk 

memindahkan sejumlah haba yang banyak, sistem pendinginan cecair dilihat mampu 

memberikan kelebihan penyejukan berbanding sistem pendinginan udara disebabkan 

oleh sifat pemindahan haba yang lebih baik. Tetapi pemilihan bahan pendiginan cecair 

yang tidak sesuai akan menyebabkan prestasi yang rendah atau memberikan masalah 

terhadap sistem pendinginan. Kajian ini bertujuan untuk mengkaji kesan perbezaan 

parameter proses terhadap pemindahan haba bagi sistem pendinginan cecair. Kajian 

telah dijalankan bagi menentukan prestasi pendinginan oleh air suling, minyak sayuran 

dan larutan alumina dalam sistem pendiginan unit pemprosesan pusat (CPU) terhadap 

parameter kuasa masukan dan kadar aliran jisim yang berbeza. Pengoptimuman nilai pH 

adalah sangat penting kerana ia akan menentukan kestabilan larutan alumina, nilai pH 

yang optimum iaitu pH 4 diperolehi untuk larutan alumina. Penambahan kepekatan 

zarah alumina yang rendah ke dalam bendalir asas tidak memberikan kesan ketara 

terhadap kelikatan larutan alumina. Kuasa masukan merupakan pengaruh langsung 

kepada suhu akhir blok CPU dan bendalir. Pekali pemindahan haba bendalir bertambah 

baik serta penurunan yang jelas suhu persimpangan antara komponen yang dipanaskan 

dan blok pendingin air dapat diperolehi kerana kadar aliran jisim yang lebih tinggi. 

Larutan alumina menunjukan keupayaan penyingkiran haba yang lebih baik serta 

menmpunyai nilai pekali pemindahan haba yang lebih tinggi berbanding air suling dan 

minyak sayuran disebabkan oleh penambahan zarah alumina dalam bendalir tersebut. 

Keputusan ujikaji menekankan komalaran larutan alumina yang lebih tinggi akan 

menyumbangkan kepada nilai pekali pemindahan haba yang lebih tinggi. Keupayaan 

penyingkiran haba oleh 0.1 M, 0.5 M dan 1.0 M larutan alumina adalah lebih tinggi 

iaitu sebanyak 15.4 %, 32.3 % dan 40.8 % berbanding air suling. Kajian ini 

mengesyorkan 1.0 M larutan alumina yang stabil boleh digunakan sebagai bahan 

pendinginan cecair terhadap sistem pendinginan CPU dan juga pengendali ujian 

komponen dalam industri semikonduktor. 
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Effect of Different Process Parameters on The Heat Transfer of Liquid Coolant in 

Electronic System 

 

 

ABSTRACT 

 

 

An effective heat transfer system is important for new technologies today to enhance the 

performance of heat transfer, especially, since the miniaturization of electronic system 

that resulted in dramatic increase in the amount of heat generated. In the case, where air 

cooling could not meet requirements, liquid cooling does offer significant cooling 

advantages over conventional air cooling because of its better thermal transfer property. 

But unsuitable selection of liquid coolants may result to low performance or problems 

to the cooling systems. This study investigates the effect of different process parameters 

on the heat transfer of the liquid cooling. Experimental investigations have been carried 

out for determining the cooling performance of distilled water, vegetable oil and 

alumina sols in cooling system of central processing units (CPU) at different parameters 

of input power and mass flow rate. Optimising the pH values is very crucial because it 

will determine the stability of alumina sols, an optimal pH value of pH 4 is obtained for 

the alumina sols. There is no significant effect to the viscosity of the alumina sols 

because of low concentrations of alumina particles are dispersed in base fluids. Input 

power is direct influence to the final temperatures of CPU block and fluids. The heat 

transfer coefficient of the fluids is improved and a clear decrease of the junction 

temperature between the heated component and the water cooling block due to the 

higher mass flow rate. Alumina sols show better heat removal capability and higher heat 

transfer coefficient than distilled water and vegetable oil due to the presence of alumina 

particles in the fluids.  Experimental results emphasize the higher molarity of alumina 

sols contributes higher heat transfer coefficient. The heat removal capability of 0.1 M, 

0.5 M and 1.0 M alumina sols have been found as much as 15.4 %, 32.3 % and 40.8 % 

higher than distilled water. This study recommend that a stable 1.0M alumina sol may be 

use as liquid coolant for CPU cooling system as well as in component test handlers in 

semiconductor industry. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

 Recent development of microprocessor is getting complex with more 

sophisticated architecture design, stringent design rules and multi-core package to 

promise a tremendous performance. But all of these needs to be designed in smaller 

form factor (yet not to sacrifice the higher IO density) to meet current trend, hence lead 

to inefficient thermal management due to dramatically increase in power density and 

heat flux. This research will introduce the use of liquid cooling method to replace the 

conventional air cooling and heat pipe cooling methods that believed will no longer 

capable to meet the futuristic thermal needs of the next generation computers or 

supercomputers. 

 

 The development of earlier generation computer has started back in year 1940s, 

since then, the evolution of the Central Processing Unit (CPU) is heading towards better 

design in terms of higher clock speed, multi-core design and complex architecture 

mainly for speedy performance and multitasking operations. But all these criteria’s need 

to be designed in smaller form factor to meet current trend (Viswanath et al., 2000). 

Over the past few years, with the increase of performance requirements for smaller, 

more capable and more efficient electronic system, management of generated heat is 
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becoming an even-more important issue (Grujicic et al., 2005; Tong, 2011). Improper 

heat management on the microprocessor due to ineffective of the thermal energy will 

lead to poor performance as well as shorten the life cycle and reliability of the electronic 

devices. A distinct fact can be observed from the evolution of module level heat flux in 

computers, which shows that the heat flux is dramatically increasing since 1990’s. The 

average module heat flux for IBM RY6 that released in year 1998 is 3 W/cm
2
, and in 

year 2002, Intel released Itanium 2 processor, its average module heat flux is 9 W/cm
2
. 

Comparing to Pentium 4 processor which released in year 2004, its average heat flux is 

11 W/cm
2
 (Ellsworth & Simons, 2005). This trend leads to higher heat flux that produce 

from CPU, improper management of the heat generated will lead to the life shortening 

and weaken the product’s reliability.  

 

The current air cooling and heat pipe cooling technology present diminishing 

returns (Sauciuc et al., 2005), and this is important for the industry to establish the 

research and development to focus on the future non-air cooling technology which is 

hoped can be the solution to the futuristic thermal needs of the next generation 

computers. One of the potential solutions to manage the becoming higher heat flux and 

heat dissipation is by using liquid cooling method. This liquid cooling method can be 

applied indirectly (indirect liquid cooling) and directly (direct liquid cooling) to the 

microelectronic chips.  

 

1.2  Problem Statement 

 

Cooling of electronic devices is one of the main challenges of latest generation 

technology (Colangelo et al., 2017) such as to maintain the heats in component test 
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handler for semiconductor industry as well as higher thermal design point of latest 

chipset technology.  Hence, liquid cooling system could be a better method for thermal 

management in electronic system due to its better heat transfer capability (Mochizuki et 

al., 2011). Liquid cooling systems are not widely used even though it may promise 

better performance compared to conventional cooling systems. The liquid used for 

cooling materials in this study are water, vegetable oil and alumina sols. Water is 

commonly used as liquid cooling because of its good thermal properties (Lin et al., 

2014), vegetable oil is selected to understand the effect of high viscosity towards the 

efficiency of heat transfer and selection of alumina sols because of its thermal 

performance, better stability and cheaper compare to other additive powders (Colangelo 

et al., 2017; Lee et al., 2008; Yoo et al., 2007).  

 

Unsuitable selection of liquid coolants may result to low performance or 

problems to the cooling systems. Unsuitable selection of liquid coolants may result to 

low performance or problems to the cooling system. A proper selection of the solution 

will result to better performance and longer the life span of the processor. The 

instability of the solution may lead to poor heat transfer performance, failure in 

determine the correct pH and concentration of coolant may resulted to instable solution 

that lead to low efficiency of thermal management and clog the system. Different 

solutions may have different optimised parameter, hence process parameters optimising 

is important to ensure the solution can perform best cooling performance.  
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1.3  Research Objectives 

 

Experiments are conducted to determine the effect of mass flow rate and 

different input power to the cooling performance of different liquid cooling inclusive of 

alumina sol, vegetable oil and water on indirect liquid cooling system of a computer. 

 

1- To study the effect of different liquid cooling materials on the performance of a 

liquid cooling system. 

2- To determine the effects of different pH and concentration on the stability of 

alumina sol. 

3- To optimise the process parameters of a liquid cooling materials. 

 

1.4 Scope of Study 

 

 Increasing microprocessor performance has always been accompanied by 

increasing power and increasing on-chip power density. In addition, local power 

densities are more difficult to be managed, thus making thermal management become 

more challenging. Liquid cooling is being research due to the limitation in conventional 

air cooling in thermal heat transfer and increasing needs of high efficiency cooling 

system for microprocessor. However, the selection of cooling fluids is very critical to 

ensure good heat transfer can be achieved in microprocessor. This project will focus on 

the performance of the heat removal capability of different cooling fluids which are 

distilled water, vegetable oil and alumina sol. The right selection of cooling fluid will 

enhance thermal transfer performance.  
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 The project also study on the influence of process parameter such as mass flow 

rate and input power on liquid cooling for computer. The process parameter needs to be 

optimized to ensure the best performance in the cooling design. This project focused on 

the effect of mass flow rate and input power on the heat removal capability of water, 

vegetable oil and alumina sol. Mass flow rate of each liquid cooling will be measured at 

different pump speed ranging from 1800 rpm to 3300 rpm. The study will focus on two 

different input powers which are 29.12 watt and 47.66 watt. The viscosity characteristic 

of the fluid is also being study to understand the flow behaviour of the transfer fluid. 

 

 In the experiment, a model of closed loop liquid cooling system was constructed 

using commercial liquid cooling parts to run the simulation test. The system consists of 

liquid tank, tygon tube, radiator, pump, heat sink, copper block and thermocouples. 

Distilled water, vegetable oil and alumina sol are the types of liquid cooling that being 

study throughout the simulation test. The different properties of the cooling fluids, flow 

rate and input power are the process parameters that be observed during the test to 

understand the cooling performance based on the maximum CPU temperature, heat 

transfer coefficient of liquid and thermal resistance of the water block. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

This section details the available information and theories related to the current 

trend of heat flux for microprocessor, the current available cooling methods, the future 

development of cooling methods and relevant fluid behaviour. 

 

2.2 Overview on Electronic Cooling Methods  

 

 The reliability of the electronics of a system is a major factor in the overall 

reliability of the system. Recently, high efficiency cooling systems have been received 

great attention due to importance of thermal management that able to safely dissipate 

enormous amounts of heat from a very small area in high performance electronic 

devices. Meanwhile, miniaturization of electronic system has resulted in dramatic 

increase in the amount of heat generated per unit volume. The thermal management 

become a great challenge due to continuously rising of the heat flux from 

microprocessor according to International Technology Roadmap (Ebadian & Lin, 

2011). Electronic packaging devices are continuously demands of high performance 

with miniaturized packaged designed and low cost (Tong, 2011), this evolution of the 

microprocessor is one of the most visible and representative facets of the computing 
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revolution (Mahajan et al., 2006). Currently, the development of microprocessor is 

rapidly developed with smaller form factor and higher input density will lead to higher 

heat density and enormous power density. Improper managed in heat dissipation of the 

electronic package can result in microprocessor failure. Figure 2.1 is indicative of the 

CPU heat flux level predicted into the future. Based on the present trend, heat released 

by the CPU of a desktop and server computer is 80 – 130 W and of notebook is 25 to 50 

W (Duangthongsuk & Wongwises, 2010).  

 

 

Figure 2.1 : The growth of CPU power density (Davis et al., 2006). 

 

An effective heat transfer system is important for new technologies today to 

enhance to performance of heat transfer. Technological developments such as 

microelectronic devices with smaller (sub-100 nm) features and faster (multi-GHz) 

operating speeds requiring advances in cooling. Especially, for personal computers 

today have shown a competitive released in more speedy and powerful product and shift 
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to be more compact and smaller in size. Therefore, thermal management becomes a 

main challenge as the heat flow demands have increased over time.     

The flow of heat in a process is shown in Equation 2.1  

  

Q = hA ∆T                                                      (2.1) 

 

Where, Q is the heat flow, h is the heat transfer coefficient, A is the heat transfer area, 

and ∆T is the temperature difference that results in heat flow. 

 

The effective heat transfer is direct proportional to the heat transfer coefficient 

(h), heat transfer area (A) and temperature difference (∆T). Other than the factor of 

temperature difference ∆T that can lead to increase heat flow, maximizing the heat 

transfer area A is a common method to enhance heat transfer performance. In order to 

optimize the heat transfer, advanced exchangers such as radiators are designed to 

maximize the heat transfer area, but this method cannot be applied in microprocessor 

and micro-electromechanical system (MEMs) due to the shrinkage of electronic 

packaging. Heat transfer improvement can also be achieved by increasing the heat 

transfer coefficient h with enhancing the properties of the coolant (Ijam & Saidur, 

2012). Additives are often added to liquid coolant to improve the heat transfer 

coefficient. 

 

The primary purpose of electronics thermal control is to prevent the catastrophic 

failure, which is closely associated with a large temperature rise that may cause a drastic 

deterioration in semiconductor behaviour, delaminating, fracture and melting of 

packaging materials (Feroz & Uddin, 2009). This will lead to an immediate and total 
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loss of electronic function and package integrity. The prime failure of electric 

equipment is always temperature related. Figure 2.2 is shown to reflect a near 

exponential dependence of the thermal acceleration factor on component temperature. 

Thus, a rise in temperature from 75 ˚C to 125 ˚C can be expected to result in a five-fold 

increase in failure rate. Under some conditions, a 10 ˚C to 20 ˚C increase in chip 

temperature can double the component failure rate (Bar-Cohen et al., 2001). 

 

 

Figure 2.2 : Effect of temperature on failure rate (Bar-Cohen et al., 2001). 

 

The reliability of an electronic system comprising a group of components is 

most simply stated as the probability, expressed in percent, of operating continuously 

over a specified period of time with no failures. The failure rate model of CPU may be 

competitively described by the Arrhenius-type model: 

                                                                          (2.2) 

                                                                                                                                                    

 where the coefficients Ai, Bi, and Ei are independent of temperature.        
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 Figure 2.3 shows typical junction temperatures for equipment presently 

operating in a large number of field applications. The 40 °C to 60 °C is the acceptable 

operating temperatures of range for semiconductor junctions. The reliability below 0°C 

is uncertain and some semiconductors stop operating, only to return to operation at 

higher temperatures with no apparent permanent damage. 85 °C is set as the upper limit 

operating temperature for commercial applications and for military equipment the 

acceptable upper limit operating temperature is 100 °C to 110 °C semiconductors in 

power supplies and processors. 

 

 

Figure 2.3 : Temperature spectrum of operating junctions (Kaseb, 2011).  

 

The most common cooling method for CPU today is air cooling method because 

air cooling system is low cost, ready available and transparency to the end user. All 

IBM computers were cooled solely by forced air due to the introduction of the 

System/360 Model 91 Processor in 1964 (Ebadian & Lin, 2011). The cooling system 

which is equipped with heat generating component with heat sinks and fans is named as 

Air-Cooled Heat Sink. In heat generation module, the heat sink is constructed of a base 

region that is in contact with the module. The fins push forward from the base serve to 
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