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Pembangunan Penapis Aktif Jalur-lebar Laluan-rendah CMOS untuk Penerima 

Radar Bukaan Sintetik (SAR) 

 

ABSTRAK 

 

Tesis ini mempersembahkan rekabentuk dan fabrikasi penapis aktif jalur-lebar laluan-

rendah CMOS untuk penerima integrasi penuh Radar Bukaan Sintetik (SAR). Penapis 

tersebut adalah sebahagian daripada penerima bistatik yang mempunyai litar yang kurang 

kompleks berbanding dengan monostatik SAR. Bistatik SAR memisahkan litar 

penghantar dengan litar penerima. Sel penerima terdiri daripada banyak bukaan, maka 

adalah menguntungkan sekiranya penerima SAR direkabentuk secara bersepadu 

menggunakan teknologi ‘ultra deep submicron’ yang boleh digunakan di tempat yang 

terhad. Dalam penerima SAR ini, isyarat operasi jalur telah ditapis di panel radiator. 

Namun, adalah penting untuk menapis sekali lagi isyarat tersebut di jalur dasar untuk 

memastikan laluan isyarat bersih daripada isyarat gangguan dan menghadkan hingar 

jalur. Penapis laluan-rendah ini perlu direkabentuk di atas cip dan mempunyai frekuensi 

potong di 50 MHz sehingga 160 MHz. Ini adalah mencabar di dalam teknologi “ultra 

deep submicron CMOS” di mana voltan bekalan di dalam lingkungan 1.2 V digunakan. 

Penapis tersebut juga perlu mendapat riak yang rendah ±0.75 dB sehingga ±1 dB di laluan 

lulus dan gandaan dalaman untuk memenuhi spesifikasi jalur asas. Penapis tersebut perlu 

juga mempunyai penurunan sambutan frekuensi yang paling curam kerana ia terletak 

sebelum penukar analog kepada digital (ADC), untuk mengelakkan pertindihan hingar 

dan isyarat luar jalur yang tidak diperlukan di dalam sampel isyarat. Objektif utama tesis 

ini adalah untuk merekabentuk dan mengfabrikasi penapis laluan-rendah bersepadu di 

jalur asas dengan frekuensi potong 50 MHz sehingga 160 MHz sebagai sebahagian 

daripada penerima bersepadu SAR. Penapis tersebut perlu mempunyai riak laluan lulus 

sebanyak ±0.75 dB sehingga ±1 dB sebagai litar tunggal, dan memenuhi kejatuhan -20 

dB di 220 MHz. Penapis tersebut perlu menyediakan gandaan sebanyak 20% hingga 30% 

daripada gandaan jalur asas keseluruhan. Kemudian, keupayaan fungi penapis itu 

dibuktikan melalui eksperimen sebagai satu litar tunggal. Seterusnya, penapis tersebut 

bersama-sama dengan litar lain dibuktikan melalui eksperimen sebagai satu penerima 

SAR berintegrasi penuh. Rekabentuk telah dijalankan dalam dua fasa, dengan 

menggunakan Cadence dan Eldo sebagai alat rekabentuk dan alat simulasi. Penapis jalur-

rendah susunan 5 gm-C telah dibangunkan menggunakan teknologi 130 nm CMOS. 

Penapis tersebut dibangunkan menggunakan prototaip kehilangan. Topologi 

pengkamiran-pseudo telah digunakan bersesuaian dengan voltan punca 1.2 V yang 

rendah. Litar rintangan negatif telah untuk memastikan gandaan pengalir-trans tetap pada 

26 dB. Suis matrik-kapasitor 5 bit telah dibangunkan untuk mengawal lebar jalur penapis. 

Penukar digital-ke-analog kawalan-arus 9-bit (IDAC) jug dibangunkan untuk menyahkan 

pergerakan DC. Keputusan eksperimen penapis selaku litar tunggal dan juga bersama-

sama dengan blok penerima  yang lain telah membuktikan penapis-penapis tersebut yang 

mempunyai frekuensi potong 160 MHz dan 50 MHz, masing-masing mencapai kepadatan 

hingar rujukan masukan sebanyak 4.9 nV/√Hz dan 7.7 nV/√Hz . Kedua-dua penapis 

mempunyai gandaan dalaman sebanyak 8 dB dan riak di jalur lulus sebanyak ±1 dB 

sebagai litar tunggal. Walaupun spesifikasi fasa linear tidak dapat dipenuhi, sambutan 

fasa boleh dilinearkan menggunakan penapis laluan-semua yang telah dicadangkan untuk 

dibangunkan di masa hadapan.  
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Design and Fabrication of a Wideband CMOS Continuous-Time Integrated 

Baseband Active Filter for a Synthetic Aperture Radar Receiver 

 

ABSTRACT 

 

This thesis presents the design and fabrication of CMOS continuous-time low-

pass integrated baseband filters intended for a fully integrated multiband Synthetic 

Aperture Radar (SAR) receiver.  The low-pass filters are part of a bistatic SAR receiver 

which exhibits less complexity of circuit implementation compared to its monostatic type 

of antenna counterpart. The bistatic SAR separates the transmit circuits from the receive 

circuits which is divided into sub-apertures. Since a large number of channels are 

required, it is very desirable to design integrated receivers in modern ultra deep submicron 

technologies which can cope with a limited space. In this SAR receiver, the band of 

operation is bandpass filtered in the radiator panel. However, it is important to have 

filtering again in the baseband to keep the signal path clean from interfering signals and 

to limit the noise bandwidth. This continuous-time baseband filter needs to be on-chip  

and the cutoff frequency must be at 50 MHz up until 160 MHz. This is very challenging 

in ultra deep submicron Complementary Metal Oxide Semiconductor (CMOS) 

technologies in which a low supply voltage around 1.2 V is demanded. In addition, the 

integrated low-pass filter is targeted to have low ±0.75 dB to ±1 dB passband ripple and 

embedded gain to cater the requirement of the baseband. At the same time, the filter needs 

to be the most selective since it is located before the Analog to Digital Converter (ADC), 

to avoid the aliasing noise and unwanted out-of-band signals in the signal sampling. The 

main objective of this work is to design and fabricate a low-pass continuous-time 

integrated baseband filter circuit with cutoff frequency of 50 MHz up to 160 MHz as part 

of a fully integrated SAR receiver. The filter should exhibit passband ripple from ±0.5 

dB to ±1 dB as a standalone circuit and -20 dB attenuation at 220 MHz. The filter is 

targeted to provide gain of 20% to 30% from the whole baseband gain. The filter’s 

functionality is to be proved by means of experimental results, at first as a standalone 

structure. Then, the measurement of the filter together with the other block as a complete 

SAR receiver is to be executed to prove the functionality of the filter in the receiver. The 

design activity has been done in two phases using Cadence and Eldo as the design and 

simulation tools respectively. 5th-order Chebyshev gm-C low-pass filters were 

implemented in 130 nm CMOS technology and were synthesized using a lossy prototype. 

Since a low supply voltage of 1.2 V was targeted, a pseudo-differential topology 

transconductor has been designed. A negative resistance circuit was utilized as a means 

of Q-control circuit, which ensured the DC gain of the transconductor fixed to the targeted 

26 dB. A 5-bit switched capacitor matrices has been developed to tune the filters’ 

bandwidth. In addition, a 9-bit current-steering digital-to-analog converter (IDAC) was 

designed in the baseband to compensate the DC-offset. Measurement results of the filters 

as a standalone structure and also together with the other receiver blocks have proved the 

functionality of the circuits. The performances of the filters meet the specifications, in 

which with cutoff frequencies of 160 MHz and 50 MHz, 4.9 nV/√Hz and 7.7 nV/√Hz 

input referred noise density is achieved by the former and later, respectively. Both the 

filters have embedded gain of 8 dB and have a gain flatness of ±1 dB as a standalone 

circuit. Although the phase linearity specified was not met, the phase response may be 

linearized with an all-pass filter, which is recommended for future work.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

This chapter presents an introduction to the research work in this thesis. The 

background and the problem statement are presented and the objectives of this research 

work are given in the next section. Then, the organization of this thesis is explained. 

 

1.2 Background  

 

 In (Berens, 2006; Cherniakov, 2007; Torre, 2013), a radar or radio detection and 

ranging is defined as an electromagnetic sensor used for the detection and location of 

reflecting objects. In most cases of the radar system in which an antenna is the physical 

object, it is called a real aperture radar (RAR) (Sullivan, 2004).  In the case where the 

antenna moves to cover a synthetic aperture, it produces a technique called a synthetic 

aperture radar (SAR). The principle of SAR was formed in 1951 in the US at the 

Goodyear Company by Carl Wiley (Sullivan, 2004; Richards, 2005, Cumming, Wong, 

2004, Lancomm, 2011).  

SAR is produced based on a desire to achieve finer resolution in an airborne or a 

spaceborn ground-mapping radar. Although the image quality obtained from SAR is not 

as good as the image resolution captured by photographic systems, the attribute of SAR 

that is the insensitive to weather conditions is an advantage (Berens, 2006). SAR can 
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image a scene through clouds and rough (inclement) weather due to the propagation of 

the RF waves. In addition, SAR can also image at any time regardless of day and night 

because it provides its own light via transmitted pulse and does not rely on the sun for 

illumination. 

 Classical SAR systems use an active antenna comprised a lot of active transmit 

and receive cells (Cherniakov, 2008). Each of the cells transmitted signals and received 

signals from individual antenna elements (or a group of elements). In order to create and 

steer the transmitted and received beam, the amplitude and phase of individual signals are 

adjusted under the control of a digital bus, integrated within the antenna structure 

(Sullivan, 2004). This architecture is called a monostatic SAR. This system enables beam 

steering and the selection of parts of the swath (target area) for high resolution 

measurements. It also allows lower resolution measurements of a larger area of the swath.  

However, in circuit implementation point of view, such an active antenna 

implementation is highly complex (Muff, 2015). It requires the integration of microwave 

transmit power circuits, low noise microwave receive circuits, digital control circuits and 

bias supplies. In the case of a spaceborne SAR, its next generation will utilize digital 

beam forming techniques to improve performance and flexibility (Cherniakov, 2008). For 

this application, early downconversion and digitization at subarray (sub-apertures) level 

will be needed. Thus, the current system architecture cannot provide high resolution and 

wide coverage simultaneously, adequate for the expanding of the earth observation as 

well as the user community. It is also complex, poses a critical technology challenges and 

thus places a high financial expense on the market area. 

A novel instrument overcomes the classical SAR limitations by using separated 

transmit and receive apertures. It is called a bistatic SAR (Cherniakov, 2008). The 

transmit aperture is smaller compared to that of conventional SAR. It determines the 
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swath width and the azimuth resolution. The larger receive only aperture which is divided 

into sub-apertures compensates the lower gain and the poor ambiguity performance of the 

transmit aperture. In the receive cell, a time frequency variant digital beam forming is 

applied to focus the receive gain on the transmitted pulse as it runs over the earth’s surface 

(Ludwig et al 2003).  

Each receive panel of a SAR receiver could consist typically around 30 elements 

or even more, depending on the radar configuration. A typical antenna could have more 

than thousand elements (Cherniakov, 2008). The number of receiver and digital channels 

is the same if digital beam forming is fully applied, on the element level.  

Since a large number of channels are required, it is very desirable to design 

integrated receivers in modern ultra deep submicron technologies which can cope with a 

limited space. Accommodation, mass, noise and especially electrical power dissipation 

are all critical parameters. In this case, fully integrated receivers are very attractive to fit 

in the limited space and also to simplify manufacturing processes by reducing part count. 

The constraint is that the large number of channels requires low power implementation 

in order to keep the overall power consumption within the limits while high bandwidth is 

needed.  

 Radar system design has a strict limitation. The legal issues are decided at 

international conference which fix the bandwidth as well as the frequencies authorized 

(Massonet, Souyris, 2008). In the case of Synthetic Aperture Radar, the bandwidth and 

the authorized frequencies are shown in Table 1.1. The targeted band for this SAR 

receiver are C band, L band and X band. Hence, the RF bandwidth in the radar receiver 

has to be between 100 MHz up until 320 MHz.  

 

 

 
 

 
 

 
 

 
 

©This
 ite

m is
 pr

ote
cte

d b
y o

rig
ina

l c
op

yri
gh

t 

 



4 
 

Table 1.1: Authorized bandwidth and frequency for Synthetic Aperture Radar. 

Band Ku band X band C band S band L band 

Center 

frequency 

13.5 GHz 9.65 GHz 5.41 GHz 3.2 GHz 1.26 GHz 

RF 

Bandwidth 

500 MHz 300-320 MHz 320 MHz 200 MHz 85-100 MHz 

 

Generally in a radar receiver, the band of operation is bandpass filtered in the 

radiator panel. The bandpass filter is assumed to suppress any unwanted out-of-band 

interfering signals to an adequate low level before the integrated receiver. However, a 

very selective RF bandpass filtering would be required before the sampling of the signal 

in receiver architectures that performs A/D conversion close to the receiver input. This is 

due to the increased effects of the aliasing of noise and unwanted out-of band interferers 

in the signal sampling operation. Furthermore, it is die area consuming to implement 

selective integrated RF filter. With regards to off-chip implementation, the more selective 

the RF filter, the more discrete components have to be used, thus increasing the price. 

In this SAR receiver, the RF bandpass filter is implemented off-chip before the 

integrated receiver. When employing radar receiver architectures such as 

superheterodyne and direct conversion topology, some filtering is needed in addition to 

the bandpass filter of the radiator panel to have clean signal path.  

 

1.3 Problem Statement 

 

Although the RF bandpass filter has been implemented off-chip in this SAR 

receiver, it is important to have filtering again in the baseband to keep the signal path 

clean from interfering signals and to limit the noise bandwidth. This continuous-time 

baseband filter needs to be on-chip to have an integrated SAR receiver. The specification 

of the cutoff frequency for the integrated baseband low-pass filter in this SAR receiver is 
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