

ENHANCED MULTI-CELL COORDINATION IN WIRELESS COMMUNICATION SYSTEM USING BEAMFORMING METHODS

OMAR KHALDOON ABDULRAHMAN (1340811034)

by

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

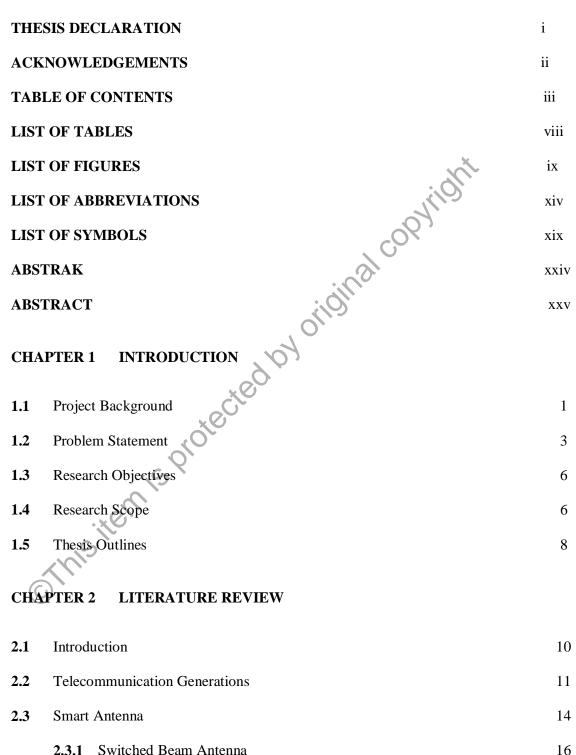
School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

DECLARATIO	N OF THESIS
Author's full name: OMAR KHALDOON	ABDULRAHMAN
Date of birth : 09 - 04 - 1973	
Title: Enhanced Multi-Cell Coordination in Beamformin	
Academic Session: 2015 / 2016	
I hereby declare that the thesis becomes t	he property of Universiti Malaysia Perlis
(UniMAP) and to be placed at the library o	of UniMAP. This thesis is classified as:
CONFIDENTIAL (Contains confi Secret Act	idential information under the Official 1972)*
	ted information as specified by the n where research was done)*
	thesis is to be made immediately s hard copy or on-line open access (full)
I, the author, give permission to the UniMA	AP to reproduce this thesis in whole or in
part for the purpose of research or acader	nic exchange only (except during a
period of years, if so requested above).	
othis	Certified by:
SIGNATURE	SIGNATURE OF SUPERVISOR
<u>A1898369</u>	Dr. MD. MIJANUR RAHMAN
(PASSPORT NO.)	NAME OF SUPERVISOR
Date:	Date:

ACKNOWLEDGEMENTS

First and foremost, I thank Allah (SWT) the Almighty for giving me the strength to be able to finish this thesis. I would like to express my gratitude to my supervisor Dr. Md. Mijanur Rahman for his insight and the precious scientific guidance which greatly helps me in the progress of the research and accomplishment of this thesis.

I would also like to thank my co-supervisors Prof. R Badlishah Ahmad, the dean of the school of computer and communication engineering, for his professional guidance with critical comments, and Dr. Nasim Ahmed for his kind support and advices.


I'm forever indebted to my parents, sincere thanks and gratitude to them. And many thanks for my dear wife and my children and all my family members for their patience throughout my study, and for their continuous prayer, support and love throughout the years.

Three years at University Malaysia Perlis allowed me to acquire and gain tremendous knowledge both academically and as a researcher. Therefore, I wish to thank all university members and I'm grateful for all those who assisted me to complete this research.

Omar Khaldoon Abdulrahman

TABLE OF CONTENTS

PAGE

2.3.2 Adaptive Antenna Array 17

	2.3.3	Smart Antenna Advantage	19
2.4	Directio	on of Arrival (DOA) Estimation Using MUSIC Algorithm	20
2.5		m Variance Distortionless Response (MVDR) beamforming hm Literature Review	23
	2.5.1	Diagonal Loading Methods	25
	2.5.2	Covariance Matrix Reconstruction and Eigen-value Decomposition method	28
	2.5.3	Multi-Constrained Methods	30
	2.5.4	Multi-Constrained Methods Intelligent Algorithms	32
2.6	Inter-Ce	ell Interference (ICI) in Modern Cellular System	34
2.7	The Inte	er-Cell Interference Model in Traditional Cells	35
2.8	Inter-Ce	ell Interference Handling Techniques	38
	2.8.1	Inter-Cell interference Mitigation	38
	2.8.2	Inter-Cell Interference Coordination (ICIC)	40
	2.8.3	Coordinated Transmission in 3G and 4G	44
2.9	Coordin Review	ate Multi-Point Transmission / Reception (CoMP) Literature	48
	2.9.1	CoMP Downlink Transmission	49
	. 6	2.9.1.1 Joint Processing (CoMP-JP)	50
	(MIS	2.9.1.2 Coordinated Scheduling / Beamforming (CBF)	54
(C)	2.9.2	Clustering	58
	2.9.3	Overhead Signaling Reduction	59
2.10	Summa	ry	62

CHAPTER 3 METHODOLOGY

63

3.2	CoMP	P Base Stations Transmission	64
3.3	Conver	ntional MVDR Model	67
3.4	MVDR	R Beamforming Algorithm Enhancements	73
	3.4.1	Modified MVDR (MMVDR) Algorithm	73
	3.4.2	Smart Antenna Self-Calibration Algorithm	76
	3.4.3	Sub-spaces Interference Cancelation MVDR (SSIC-MVDR) Algorithm	80
		3.4.3.1 ULA Model 3.4.3.2 Signal Estimation	81
		3.4.3.2 Signal Estimation	84
		3.4.3.3 Beamforming Weight Calculation	87
3.5	CoMP	Enhancements	92
	3.5.1	Smart CBF Beamforming Transmission for ICI Mitigation (SCBF)	93
		3.5.1.1 SCBF System Setup	94
		3.5.1.2 The Proposed SCBF Signal Model	95
		3.5.1.3 UE selection and ICI Mitigation Process of SCBF algorithm	97
	3.5.2	Adaptive Joint Network Optimization Method (AJN)	101
	3.5.3	Hybrid Cell Downlink Optimization (HCDO)	107
	·S	3.5.3.1 Regions Capacity of HCDO Technique	111
C		3.5.3.2 UE Selection Algorithm in HCDO Cell Splitting Technique	113
		3.5.3.3 Cell Capacity enhancement Using HCDO Technique	119
3.6	Summa	ary	120

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction	123
------------------	-----

4.2	Evalu	ation of MMVDR Algorithm	124
	4.2.1	Effect of the Number of ULA's Antennas	125
	4.2.2	Effect of the Distance (d) between ULA Elements	127
	4.2.3	Number and Location of Impinging Signals	129
	4.2.4	The Effect of SNR Value	131
4.3	Comp	parison of MMVDR with MVDR	132
	4.3.1	Evaluation of MMVDR under Ideal Conditions	133
	4.3.2	Evaluation of MMVDR under Distortion Conditions	134
	4.3.3	Evaluation Conditions	135
		4.3.3.1 Comparative Evaluation of MMVDR under Ideal Operation Conditions	135
		4.3.3.2 Comparative Evaluation Results of MMVDR under distortion Operation Conditions	142
	4.3.4	Output SINR of MMVDR	146
	4.3.5	Comparison of MMVDR with other Algorithms	147
4.4	Smart	t Antenna Self-Calibration Algorthim	149
	4.4.1	Modling of Self-Calibration Algorithm under ULA Alignment Error	150
	4.4.2	Evaluation Results for Self-Calibration Algorithm	152
	XN	4.4.2.1 Evaluation Results for SOI Location	153
C		4.4.2.2 location of Interference Close to the SOI Location	156
		4.4.2.3 Increases the Number of Incedent Signals	157
4.5	Sub-s	space Interference Cancelation MVDR (SSIC-MVDR) Analyses	158
	4.5.1	The Accuracy of Estimation Process	159
	4.5.2	The Effect of ULA's Antenna Elements Number	163
	4.5.3	The Effect of Snapshots' Number	169
	4.5.4	The Performance of Beamformer with Respect to Received Signals Location	171

	4.5.5	Output SINR	177
4.6	CoMP	System Optimization	179
4.7	CoMP	PEvaluations Parameters	180
4.8	Smart	CBF (SCBF) System Evaluation Analysis	181
	4.8.1	Best Choice for SCBF-COMP Coordinated Distance	183
4.9	AJN E	Evaluation Analysis	186
	4.9.1	Best AJN Coordinating Distance Choice	187
	4.9.2	Cell-edge Throughput Comparison	188
	4.9.3	Performance evaluation of AJN Algorithm (G=2)	190
4.10	HCDC	O Cell Downlink Technique Evaluation Analysis	191
4.11	Summ	ary ary	193
CHAPTER 5 CONCLUSION AND FUTURE WORK			
5.1	Conclu	usions	196
5.2	Resear	rch Contributions	198
5.3	Future	Work	199
REFI	ERENC	CES	201
APPI	ENDIX		215
LIST	OF PU	BLICATIONS	216

LIST OF TABLES

NO.		PAGE
4.1	Modeling of MMVDR under ideal operation parameters	133
4.2	Distortion environments evaluation parameters	135
4.3	Comparison between MVDR improvement algorithms	149
4.4	The self-calibration algorithm operation parameters	152
4.5	The comparison between the MMVDR algorithm Beamforming weight and the weights of Self-Calibration algorithm with calibration or manufacturing errors	154
4.6	SSIC-MVDR algorithm operation parameters	159
4.7	Evaluation parameters for CoMP (3GPP, 2007).	180
4.8	Cell-edge throughput improvement by using SCBF	186
4.9	Cell-edge throughput improvement by using AJN	189
4.10	Percentage cell throughput improvements using HCDO technique	193
4.11	Percentage improvement of MMVDR and SSIC-MVDR over MVDR	194
Ć	This item is P	

LIST OF FIGURES

NO.		PAGE
1.1	Connection of BSs with central unit (CU) in LTE network	5
2.1	Fixed radiation beams for switched beam antenna	17
2.2	Array of antennas with multiple signals arrival from different directions	21
2.3	The ICI between two adjacent cells	36
2.4	The LTE-X2 interface	41
2.5	Overhead indicator (OI) and high interference indicator (HII) signals over X2-Interferace	42
2.6	RNTP signal over X2-interface in downlink scheme	43
2.7	The received signal from the UE perspective	49
2.8	Downlink scheme for CoMP-JP	52
2.9	Downlink scheme for CoMP-CBF	55
3.1	Summary of chapter organization	64
3.2	Array configuration of conventional MVDR	68
3.3	ULA with reference element in the middle	74
3.4	Effect of calibration or manufacturing error at the antenna element (-2)	77
3.5	The flowchart of proposed self-calibration algorithm	80
3.6	ULA model of SSIC-MVDR proposed algorithm	81
3.7	Signals estimation process of SSIC-MVDR algorithm	87
3.8	LTE-CoMP virtual cell	93
3.9	Flow chart for UE selection and ICI mitigation process of SBCF algorithm	101
3.10	Flowchart of UEs selection process for AJP Algorithm	106
3.11	Flowchart of beamforming process for AJP algorithm	107

3.12	Dividing the cell into two regions according to proposed technique in (KB. Song et al., 2006)	108
3.13	The proposed cell splitting regions by HCDO technique	112
3.14	Flowchart of UEs selection and beamforming for HCDO technique	117
4.1	The effects of increasing number of array elements $M=5, 7, 11$ and 21 on angular spectrum	126
4.2	Effects of increasing number of array elements M=5, 7, 11, and 21 on beam pattern	127
4.3	The response of MMVDR beamformer to the inter-distance, (a) $d=0.25\lambda$ and (b) $d=\lambda$	128
4.4	The performance of MMVDR beamformer with respect to the number and location of impinging signals (a) estimation Process (b) output beamforming pattern	130
4.5	The output beam pattern response of MMVDR beamformerfor for two SOI and two interference Sources	131
4.6	The performance of MMVDR beamformer since SNR=30 dB	131
4.7	The output beam pattern of MMVDR beamformer since SNR=60 dB	132
4.8	The test scenario for distortion condition evaluation	134
4.9	Spectral power versus the signals DOA, when (a) M=5, (b) when M=7 and (c) when M=13.	137
4.10	Beamforming radiation pattern versus signals DOA, when, (a) M=5, (b) M=7 and (c) M=13	139
4.11	Beamforming pattern performance versus direction of arrival angles when the number of elements equal to the number of signals $(M=q)$	140
4.12	Output performance comparison between MMVDR and MVDR by changing the number of snapshots, $d=0.5\lambda$ and $M=7$. (a) $k=10$, (b) $k=30$, (c) $k=100$ and (d) $k=1000$	142
4.13	MMVDR performance at distance error appear between first element (leftmost element) and second element	143
4.14	MVDR performance at distance error appear between second element and third element	144
4.15	MMVDR Performance at Distance Error Appear between Third Element and Fourth Element	144

4.16	MMVDR performance at distance error appear between fourth element and fifth element	145
4.17	MMVDR performance at distance error appear between fifth element and sixth element	146
4.18	Output SINR comparison between MMVDR and other Beamforming algorithms based on MVDR with less percentage value with respect to optimal MVDR at SNR= 50 dB	147
4.19	The error in the phase for; (a) first element, (b)second element, (c) third element, and (d) the reference element; due to the distance calibration/manufacturing error.	150
4.20	Beamforming response due to Table 4.5 Weights	155
4.21	Self-Calibration response to SOI locates at 30°, (a) beamforming pattern, (b) polar	155
4.22	Self-Calibration response to SOI locates at 30°, (a) beamforming Pattern, (b) polar	156
4.23	Self-calibration Response when interference source close to SOI within 15° , (a) beamforming pattern, (b) polar	157
4.24	The performance of Self-Calibration due to increase number of incident signals. (a) beamforming pattern, (b) polar	158
4.25	The Relative Power verses DOA for MVDR Estimation Process	161
2.26	The power spectrum of SSIC-MVDR estimation process	161
4.27	Comparison between the Spectrum Power of MVDR and SSIC-MVDR Estimation Process	162
4.28	Comparison between the output beamforming pattern of MVDR and SSIC-MVDR when $M = q$	163
4.29	Power spectrum verses DOA of, (a) MVDR, (b) SSIC-MVDR, and (c) comparison between estimation process, when $M=6$ and $q=5$.	164
4.30	Comparison between output beamforming pattern of MVDR and SSIC-MVDR, when M=6 and q=5 $$	165
4.31	Comparison between MVDR and SSIC-MVDR estimation process when $M=10$ and $q=5$	165
4.32	Comparison between the output beamforming pattern of MVDR and SSIC-MVDR when $M=10$ and $q=5$.	166

4.33	Comparison between MVDR and SSIC-MVDR estimation process when $M=15$ and $q=5$	167
4.34	Comparison between the output beamforming pattern of MVDR and SSIC-MVDR when M=15 and q=5.	167
4.35	Increases the resolution of SSIC-MVDR algorithm when Number of antenna increases, (a) estimation process, (b) output beamforming pattern	169
4.36	The effects of snapshots number (k) on the output radiation pattern of MVDR and SSIC-MVDR when (a) $k=10$, (b) $k=500$, (c) $k=1000$	171
4.37	Power spectrum of MVDR algorithm when interference sources close to each other	172
4.38	Power spectrum of SSIC-MVDR algorithm when interference sources close to each other	173
4.39	Comparison between the estimation process of MVDR and SSIC-MVDR when the interference sources are close togather within 2°	173
4.40	Comparison between the output radiation pattren of MVDR and SSIC- MVDR algorithms when the interference sources are close togather within 2° .	174
4.41	Power spectrum of MVDR algorithm when interference sources are close to SOI within 2°.	175
4.42	Power spectrum of SSIC-MVDR algorithm when interference sources are close to SOI within 2°	176
4.43	Comparison between the estimation process of MVDR and SSIC-MVDR algorithms when the interference sources are close SOI within 2°	176
4.44	The output radiation rattren comparison when the interference close to SOI within 2°	177
4.45	Output SINR comparison between SSIC-MVDR and other beamforming algorithms based on MVDR	178
4.46	Output SINR comparison between MMVDR and other beamforming algorithms based on MVDR where a small mismatch between the Actual and estimation DOA of SIO occurs	179
4.47	The output beamforming radiation of three SCBF coordinated BSs	182
4.48	Comparison between SCBF and recent beamforming algorithm using spatial degrees of freedom of ULA	183

4.49	Scenario of three coordinated BSs using SCBF algorithm	184
4.50	Best coordinated distance choice for SCBF	185
4.51	Comparison between SCBF coordinated BSs and single cell performance	185
4.52	Scenario of three coordinated BSs using AJN algorithm	187
4.53	The best coordinated distance choice for AJN	188
4.54	Comparison between AJN coordinated BSs and single cell performance	189
4.55	Comparison between AJN and SCBF algorithms performance with respect to ULA's antenna elements number	191
4.56	Cell sector throughput due to using HCDO technique, when second region between 380 m to 1500 m (0.6R)	192
4.57	Cell sector throughput due to using HCDO technique, when second region between 380 m to 1400 m	193

LIST OF ABBREVIATIONS

orioinal copyright

- APF Adaptive Beamforming Algorithm
- AJN Adaptive Joint Network Optimization Method
- AWGN Additive white Gaussian noise
- AoA Angle of Arrival
- BS Base Station
- BER Bit Error Rate
- BD Block Diagonalizing
- CA Carrier Aggregation
- C-RAN Centralized RAN
- CU Central Unit
- CQI Channel Quality Indicator
- CSI Channel State Information
- CDMA Code Division Multiple Accesses
- CCM Constrained Constant Modulus
- CMV Constrained Minimum Variance
- CoMP. Coordinated Multi-Point
- CoMP-JP Coordinated Multi-Point- Joint Process
- CBF Coordinated Scheduling / Beamforming
- Cs Coordinated Multi-Point UEs Set / CoMP UEs set
- CZF Coordinated Zero Forcing
- DSP Digital Signal Processing
- DOA Direction of Arrival
- DMI Direct Matrix inversion

- DAS Distributed Antenna System
- DL Down-Link transmission schemes
- EVD Eigen-value decomposition
- eCoMP Enhancement of Coordinated Multipoint transmission / reception
- ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques

Jinal copyrigh

- EVDO Evolve Data Only
- EVDV Evolution Data and Voice
- eNBs Evolve Node BS
- FPGA Field Programmable Gate Array
- FIR Finite Impulse Response Filter
- 1G First Generation
- FlexCoBF Flexible Coordinated Beamforming Method
- 4G Forth Generation
- AF Forward Relay
- FDD Frequency Division Duplex
- FDMA Frequency Division Multiple Accesses

General Packet Radio Service

- GA Genetic Algorithm

GPRS

- GPS Global Position System
- GSM Global System for Mobile communication
- DM-AIS Dynamic Mutated Artificial Immune System
- HII High Interference Indicator
- HRPD High Rate Packet Data
- IRC Interference Rejection Combination
- INR Interference –to-Noise Ratio

IMT-2000	International Mobile Telecommunications 2000
HCDO	Hybrid Cell Downlink Optimization
ICI	Inter-Cell Interference
ICIC	Inter-Cell Interferences Coordination / Inter-Cell Interferences
	Coordination Cancelation
IMT-2000	International Mobile Telecommunications 2000
ITU	International Telecommunication Union
IUI	Inter-User Interference
LMS	International Telecommunication Union Inter-User Interference Lest Mean Square Linear Constraint Minimum Variance
LCMV	Linear Constraint Minimum Variance
LTE	Long Term Evolution
LTE-A	LTE-Advanced
LTE-X2	LTE-interface
MRC	Maximum Ratio Combination
MSE	Mean- Square Error
MMSE	Minimum Mean Square Error
MV	Minimum Variance
MVDR	Minimum Variance Distortionless Response
MSs	Mobile Stations
MMVDR	Modified MVDR
MCS	Modulation and Coding Scheme
MIMO	Multiple-Input Multiple-Output
MUSIC	Multiple Signal Classification
MUI	multi-User Interference
MU-MIMO	Multi-User Multiple-Input Multiple-Output

- NCs Non-CoMP UEs set
- N-CBF Non-iterative Coordinated Beamforming
- NS Null Steering
- NP-h Non-Polynomial Hard
- OFDM Orthogonal Frequency Division Multiplexing
- OI Overload Indicator
- joinal copyright RNTP **Relative Narrowband Transmit Power**
- RB **Resource Blocks**
- PRB Physical Resource Block
- PMI Precode Matrix Index
- QoS Quality of Service
- **Quantization-Based** Combination QBC
- Radio Resource Management RRM
- RI Rank Indicator
- Received Signal Strength Indicator RSSI
- RLS **Recursive Least Square**
- RS Reference Signal
- Regularized Block Diagonalization RBD
- Sample-Matrix Inversion SM
- 2GSecond Generation
- SOI Signal of Interest
- SNR Signal-to-Noise Ratio
- SINR Signal-to-Interference Noise Ratio
- Signal-Leakage Noise Ratio SLNR
- SVD Singular Value decomposition

- SA Smart Antenna
- SAS Smart Antenna System
- SCBF Smart CBF Beamforming Transmission
- SRS Sounding Reference Signal
- SG Stochastic Gradient
- SSIC-MVDR Sub-Space Interference Cancellation MVDR
- oy original copyright TDMA **Time Division Multiple Accesses**
- 3G Third Generation
- Third Generation Project Partner 3GPP
- Three Diminutions 3D
- 2D Two Dimensional
- UA Uniform Array
- Uniform Circular array UCA
- ULA Uniform Linear Array
- URA Uniform rectangular Array
- UL Uplink Transmission
- User Equipment UE
- Virtual Cell VC

ZF

- wideband CDMA WCDM
 - Zero Forcing

LIST OF SYMBOLS

A_d	Desired Signal Steering Vectors Matrix
A_i	Interferences Steering Matrix
А	Steering Vectors Matrix $(q \times M)$
$a(\theta_m)$	Steering (singular) Vector or Array response vector
$a(\theta_0)$	Steering Vectors of SOI
$\alpha(\theta_i)$	Interference Steering Vector
$\alpha_c(\theta)$	Steering Vectors of SOI Interference Steering Vector Modified Actual MVDR Steering Vector
BW _{eff}	Adjustment for Bandwidth Efficiency
BW	Bandwidth of System
В	Number of Coordinated BSs
C _i	Estimated Spectral Efficiency
CBF _G	Set of UEs Belong to Region from X_s to X_b
C_S	Set of UEs Belong to Coordinated Region
c	Speed of Light
C _{max}	Upper Bound Based on the Hard Spectral Efficiency of BS
d is	Distance between Antenna Elements of the ULA
$d_{j,k}$	Distance between Adjacent BS _j and k-th UE in Kilometer
$D_{i,k}$	Distance between Serving BS_i and k-th UE in Kilometer
е	Eigen-Value of R_D
f	Frequency of the Impinging Signal
G	Residual ULA's Degree of Freedom
Н	Channel Matrix ($N_r \times N_T$)

h	Channel Vector $(1 \times N_T)$
h _{i,k}	Channel Vector from Serving BS to k-th UE
$h_{j,k}$	Channel Vector from Neighboring BS to k-th UE
$h_{j,l}$	Channel Vector from Neighboring BS to <i>l</i> -th UE
$H_{j,k}$	Fading Channel Gain from Neighboring BS to k-th UE
$H_{i,k}$	Fading Channel Gain from Serving BS to k-th UE
I _M	Identity Matrix $(M \times M)$ Set of UEs Belong to Region from X_b to R
JP _G	Set of UEs Belong to Region from X_b to R
k	Number of Snapshots
L	Number of UEs Belong to other BSs (Neighboring BSs)
М	Number of Interference BSs
М	Number of Antenna Elements in the ULA
N_0	Additive White Gaussian Noise (AWGN) Power
N _{cell}	Neighboring Cell in Single Cell Transmission Environment
n_k	Noise Corrupted the k-th UE's Signal on the Antenna Elements of ULA
$n_{ci}(t)$	Noise on the i-th Element of Actual Array
$n_{vi}(t)$	Noise on the i-th Element of Virtual Array
N	Noise Matrix $(M \times k)$
Nr	Number of Receive Antenna
N_{T}	Number of Transmit Antenna
NC _S	Set of UEs Belong to Non-Coordinated Region
NT	Total ULA's Degrees of Freedom
Ρ(θ)	Output Power Spectrum of MVDR
P_j	Transmitted Power of Neighboring BS _j

P_i	Transmitted Power of Serving BS _i
q	Number of Impinging Signals on the ULA / Number of Signal Sources
R_D	Actual DOA Matrix
R_{xc}	Auto-Covariance Matrix for Actual Array Output Data
R	Cell Radius
R _y	Covariance Matrix
R _d	Covariance Matrix of the Desired Signal
R _C	Covariance Matrix of the Actual Data
R_{i+n}	Covariance Matrix of the Interference Plus Noise
$R_{\nu c}$	Cross-Covariance Matrix between Actual and Virtual Arrays Output Data
R_{pv}	Pseudo- Inverse Matrix
R	UE Throughput
S _D	Desired UEs
S _I	Interferences UEs Set
S_{NT-G}	Set of Desired UEs Serve with NT-G Freedom Degrees of ULA
S _G	Set of Undesired UEs Served by G Residual Degrees of Freedom of ULA
Sq Sq	Signal Impinging the Actual Array
s	Signals Matrix
SINR _{SSIC-MVD}	Output SINR of the SSIC-MVDR Beamformer
$\mathcal{S}_{n,k}$	Long-Norm Shadow Fading Random Variable
$ au_m$	Time Delay Due to Travel the Signal from Reference to Another Element
$UE_{h_{max}}$	UE with Maximum Channel Response
u	Eigenvector of R_D

ν	Eigenvector
W	Beamforming Complex Weighting Vector
W _{NS}	Beamforming Wight of Null Steering Algorithm
W _{i,k}	Beamforming Weight Vector from Serving BS to k-th UE
W _{j,k}	Beamforming Weight Vector from Neighboring BS to k-th UE
W _{j,l}	Beamforming Weight Vector from Neighboring BS to <i>l</i> -th UE
W _{opt}	MVDR Optimum Weight
W _{mmvdr}	MVDR Optimum Weight MMVDR Optimum Weight
W _{SSIC} -MVDR	SSIC-MVDR Optimal Beamforming Weight
x(t)	Observation Complex Signal Vector
$x_{ci}(t)$	Observation Complex Signal Vector of i-th Element in the Actual Array
$x_{vi}(t)$	Observation Complex Signal Vector of i-th Element in the Vertual Array
X _b	Distance of 0.6R and/or Equal to 1500 in the Proposed HCDO Technique
X _s	Saturation Distance (0-380) m
X	Transmitted Signal which Consists of the Modulated Data s and the Transmit Antenna weight w
X _{j,k}	Transmitted Signal to k-th UE from Neighboring BS _j
X	Transmitted Signal to k-th UE from Serving BS _i
$Y_{i,k}$	Received Signal of k-th UE at Serving Cell (i)
y(t)	MVDR Beamforming Output
$Z_{n,k}$	Rayleigh Fading and is a Zero-Mean Unit Variance Complex Gaussian
	Random Variable
Γ_{eff}	Adjustment for SINR Efficiency

$\Gamma_{\rm MVDR}$	Output SINR of the MVDR Beamformer
Γ_{k_CBF}	SINR for k-th UE at CBF Region
Γ_{k_AJN}	SINR for k-th UE at AJN Region
Γ_i	SINR for UE
$\Gamma_{i.k}$	Ratio of the Signal Power that UE Received from Serving BS to the Interference Signals Received from Adjacent BSs (SINR)
θ	Angle of the Received Signal
С	Angle of the Received Signal Channel Capacity Change Amount in the Distance (<i>d</i>) Eigen-Value
Δd	Change Amount in the Distance (<i>d</i>)
μ	Eigen-Value
φ	Electric Phase Between the Array Elements
Ø	Empty Set
) ^H	Empty Set Hermitian Operators
σ_{i}	Interference Power
λ	Lagrange multiplier
σ	Noise Power
a	Path Loss Exponents
σο	SOI Power
)T	Transpose operators