

On-Body Radio Propagation Channel Characterization at 2.45 GHz and its Exposure Effects on Neurophysiological and Behavioral of Adults By

> Hasliza Binti A Rahim @ Samsuddin (1240810788)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Computer and Communication Engineering UNIVERSITI MALAYSIA PERLIS

2015

UNIVERSITI MALAYSIA PERLIS

	DECLARATION OF THESIS
Author's full name :	HASLIZA A RAHIM @ SAMSUDDIN
Date of birth :	24 JUN 1981
Title :	ON-BODY RADIO PROPAGATION CHANNEL CHARACTERIZATION
	AT 2.45 GHz AND ITS EXPOSURE EFFECTS ON NEUROPHYSIOLOGICAL
	AND BEHAVIORAL OF ADULTS
Academic Session :	2012/2013
I hereby declare that the thesis at the library of UniMAP. This th	becomes the property of Universiti Malaysia Perlis (UniMAP) and to be placed nesis is classified as :
	(Contains confidential information under the Official Secret Act 1972)*
	(Contains restricted information as specified by the organization where research was done)*
OPEN ACCESS	I agree that my thesis is to be made immediately available as hard copy or on-line open access (full text)
I, the author, give permission to research or academic exchange	to the UniMAP to reproduce this thesis in whole or in part for the purpose of e only (except during a period of years, if so requested above).
isi	Certified by:
SIGNATURE	SIGNATURE OF SUPERVISOR
810624-11-5338 (NEW IC NO. / PASSP	ORT NO.) ASSOC. PROF. DR. MOHD FAREQ ABD MALEK NAME OF SUPERVISOR
Date : 28/7/2015	Date :

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentially or restriction.

ACKNOWLEDGEMENT

Alhamdulillah, first and foremost, I would like to thank Allah Almighty for granting His blessing upon me to complete the most challenging task in my life.

I would like to express my greatest gratitude to the Malaysian Ministry of Higher Education (MoHE) and University Malaysia Perlis (UniMAP) for the precious opportunity and financial support provided to me in pursuing the highest level of education and shaping me to make the forthcoming contribution to our nation especially in higher education as well as in research.

My most sincere and deepest gratitude goes to my supervisor Associate Professor Dr. Mohd Fareq Abd Malek, his utmost guidance, advice, inspiration and patience has given me the strength and confidence in the completion of my PhD. His endless support and motivation in boosting my confidence to perform to the best of my abilities and giving me opportunities to explore new ideas in research work will always be memorable and exciting experiences.

I would like to thank to my co-supervisors Associate Professor Ir. Dr. Mohd Faizal Jamlos and Dr. Soh Ping Jack for their continuous motivation, advices, and help in the development of this work. A special mention goes to Dr. Soh Ping Jack, his tremendous support, knowledge, and willingness to help regardless the time have greatly assisted my PhD journey towards the end. I would also like to truly thank Professor Guy A Vandenbosch from Katholieke Universiteit Leuven, Belgium, for the great collaboration and his positive as well as motivated comments on my research work. Very special thanks to Politeknik Tuanku Syed Sirajuddin (PTSS), Arau, Perlis for their great collaboration in allowing me to conduct experiments at their place.

My deepest thanks go to my respectful Dean, Professor Dr. R Badlishah Ahmad for his continuous encouragement. My deepest thanks also go to all my department colleagues especially Ismahayati Adam, Sahadah Ahmad, Nurbaya Hashim, Khatijahhusna Abd Rani, Mohd. Hafizi Omar, Dr. Muzammil Jusoh, Asmi Romli, Fairul Afzal Ahmad Fuad, and Che Muhammad Nor Che Isa for their countless support and help in accomplishing my research work. Without their help, none of my work would have progressed. Not to forget, I am very grateful to my cherish laboratory colleagues, Dr. Mohd Hafizuddin Mat, Nazri Karim, Muhammad Solihin Shukor, Liyana Zahid, Nurbaizatul Badrul Hisham, Dr. Wee Fwen Hoon, Suzana Harun Ronald, Lee Yeng Seng, Muhammad Syafiq, and Muhammad Nadeem Iqbal for their continued support, in all aspects especially in technical part.

Very special thanks to my beloved husband and son who have stood by me through the difficult time upon completing this thesis. Besides that, I wish to truly thank my beloved parents and my family members for their constant moral support. I wish to thank them for their prayers and their encouragement throughout my PhD.

TABLE OF CONTENTS

TH	ESIS DECLARATION	i	
AC	KNOWLEDGEMENT	ii	
TA	BLE OF CONTENTS	iv	
LIS	ST OF FIGURES	viii	
LIS	ST OF TABLES	xiii	
LIS	ST OF ABBREVIATIONS	xvi	
LIS	ST OF SYMBOLS	xxi	
ABSTRAK			
ABSTRACT			
CH	IAPTER 1 INTRODUCTION	1	
1.1	Background	1	
1.2	Problem Statement and Motivation	3	
1.3	Objectives of the Research	6	
1.4	Scope of the Research	6	
1.5	Organization of the Thesis	8	
СН	IAPTER 2 LITERATURE REVIEW	10	
2.1	Introduction	10	
2.2	Body-centric Wireless Communications	10	

2.3	Frequence	cy Allocation for BCWC	13
2.4	Electron	nagnetic Waves Interactions	14
	2.4.1	Electromagnetic Waves Incidence on Biological Tissues	14
	2.4.2	Reflection by a Metal Surface	16
2.5	Overview Commun	w of Antenna and Propagation for Body-Centric Wireless nications	18
	2.5.1	Antennas for Body-Centric Wireless Communications/WBAN	18
	2.5.2	Characterization of On-body Radio Propagation Channel	21
	2.5.3	Small-Scale (Fast) Fading	23
2.6	Overview	w of Radio Frequency Electromagnetic Field Exposure to Human	26
	2.6.1	Dosimetry and Specific Absorption Rate (SAR)	27
	2.6.2	RF-EMF Reference Levels	28
2.7	Neuroph	ysiological, Behavioral and Physiological Outcomes	29
	2.7.1	Neurophysiology (EEG)	29
	2.7.2	Neurobehavioral (Cognitive) Performance	34
	2.7.3	Subjective Symptoms and Physiological Parameters	37
	2.7.4	Statistical Analysis	40
2.8	Radio Cl Commur	hannel Characterization for Body-Centric Wireless neations	42
2.9	The Effe	ct of WBAN Exposure on EEG, Cognitive Performance, Well- ody Temperature, Blood Pressure, and Heart Rate	52
2.10	Summar	у	60
CHAP	FER 3 RF	ESEARCH METHODOLOGY	62
3.1	Introduc	tion	62
3.2	Planar W Measure	Vearable Antennas for Body-centric Radio Propagation ments	62
	3.2.1	Planar Textile Monopole Antenna	62

	3.2.2	Textile Patch Antenna	67
	3.2.3	Dielectric Properties of the Textile Substrate	71
3.3	Measuren	nent Setup for Subject-Specific Effect of Metallic Accessories	72
	3.3.1	Investigated Scenarios	77
	3.3.2	Reference Measurement	78
	3.3.3	On-Body Measurement	78
3.4	Experime	ental Setup for RF Exposure	82
3.5	Shielding	Effectiveness Measurement	84
3.6	RF Expos	sure and Dosimetry	87
3.7	EEG Rec	ording	89
3.8	Cognitive	Performance	91
3.9	Body Ter Subjectiv	nperature, Blood Pressure, Heart Rate, and Well-being e Symptoms	93
3.10	Summary		94
CHAPT	TER 4 SU	BJECT-SPECIFIC ON-BODY RADIO CHANNEL	0.6
CONSL	DERING	METALLIC ACCESSORIES ON THE BODY	96
4.1	Introducti	ion s	96
4.2	Effect of	Metallic Spectacles	96
4.3	Effect of	a Loop-Like Metallic Accessory	101
4.4	On-Body Consideri	Radio Channel Characterization for Dynamic Motion ing Metallic Watch	107
4.5	Statistical	Modelling of Dynamic On-body Channel	114
4.6	Summary	,	120
CHAPI RADIA BODY '	TER 5 TH TION ON TEMPER	E EFFECTS OF WBAN TEXTILE ANTENNA NEEG, COGNITIVE PERFORMANCE, WELL-BEING, ATURE, BLOOD PRESSURE AND HEART RATE	122

5.1	Introduction	122

5.2	Neuroph	nysiological (EEG)	123
	5.2.1	WBAN Exposure by Wearable Textile Monopole on Left and Right Brain Hemispheres	123
	5.2.2	Effects of Different Types of Wearable Textile Antennas on the Left and Right Brain Hemispheres	129
	5.2.3	Effect of Various Types of Wearable Textile Antenna on EEG Rhythms in the Left and Right Hemispheres	133
5.3	Cognitiv	ve Performance	138
5.4	Well-be	ing Subjective Symptoms	139
5.5	Body Te	emperature, Blood Pressure, and Heart Rate	141
5.6	Summar	ry	144
СНАР	TER 6 CO	ONCLUSIONS	147
6.1	Conclus	ions	147
6.2	Major C	Contributions of the Research	149
6.3	Recomm	nendations for Future Work	150
REFERENCES		152	
APPE	NDIX A	.15	164
APPE	APPENDIX B		165
APPE	NDIX C		168
APPE	NDIX D		168
PUBL	PUBLICATIONS		178
RESE	ARCH AV	WARD	181

LIST OF FIGURES

NO.		PAGE
2.1	Wearable body-centric wireless communications (Hall et al., 2012).	11
2.2	Analogy of electromagnetic wave incidence on biological tissues (Pozar, 2005).	15
2.3	Reflection of an electromagnetic wave by a metal surface.	17
2.4	The two proposed textile antennas: (a) slotted planar inverted-F antenna (Soh et al., 2012) (PIFA) and (b) slotted patch antenna (Soh et al., 2013).	21
2.5	The human brain structure ("Human Brain Structure," 2015).	30
2.6	Main regions of the human brain (Mullinger, 2008).	31
2.7	EEG example captured using Emotive EPOC EEG headset.	33
2.8	Frequency bands of EEG rhythms.	33
2.9	Four main features of cognitive function.	35
2.10	Bell-shaped curve.	41
2.11	Measured and modelled path loss versus antenna separation along the torso (Reusens et al., 2009).	44
2.12	Simulated and measured path loss for subjects Female01 and Male01 in NLOS (Zhao et al., 2011).	49

2.13	Simulated and measured path loss for subjects Female01 and Male01 for UWB on-body radio channel in LOS (Abbasi et al., 2012).	51
3.1	Structure and dimensions of (a) planar TM in millimeters and its (b) fabrication prototype in front and back views.	64
3.2	Simulated and measured S_{11} of TM for (a) free space (b) on body (right upper arm and left chest) and (c) on right upper arm when placed at various distances from the body (3, 5, and 10 mm).	66
3.3	Simulated and measured radiation pattern of TM antenna in free space and simulated radiation patterns on the body. (a) $\varphi=90^{\circ}$ (left) and (b) $\theta=90^{\circ}$ (right).	67
3.4	Structure and dimension of (a) planar TP in millimeters and (b) its prototype in front view; Simulated and measured S_{11} of TP (c) in free space (FS) and (d) on body.	69
3.5	Simulated and measured radiation pattern of TP antenna in free space and simulated radiation patterns on the body (c) $\varphi=90^{\circ}$ (left) and (d) $\theta=90^{\circ}$ (right).	70
3.6	Dielectric properties measurement setup with Agilent 85070B High Temperature Dielectric Probe Kit.	71
3.7	Measurement setup for narrowband on-body characterization investigations (a) Tx and Rx locations on-body; (b) measurement in an RF-shielded room.	73
3.8	Arm with metallic watch moves (a) to the side of body (b) side view: to front of body and back to initial position and (c) side view from front to left side and return to initial position.	77
3.9	Reference measurements: (a) without the presence of a human body; (b) measured S_{21} for without body and with body cases.	79
3.10	(a) AG antenna-body separation of S_{21} ; (b) Simulated and measured S_{11} for all subjects at upper right arm location (F ₁ = 2.1 GHz, F _{1µ} = 2.3 GHz, F ₂ = 2.9 GHz, and F _{2µ} = 2.8 GHz).	81

3.11	On-body resting EEG measurement setup in RF-shielded room, subject in sitting position.	83
3.12	Experimental procedures for measuring EEG, cognitive performance, well being, and physiological parameters. The red shaded areas are periods during well-being assessment and the purple shaded areas are periods when physiological parameters are measured.	84
3.13	Measurement of the shielding effectiveness using two horn antennas: (a) in free space; (b) in an RF-shielded room.	86
3.14	Screenshots of Rx output power measured at 2.45 (a) in free space and (b) between outside (Tx position) and inside RF-shielded room (Rx position).	87
3.15	SAR evaluation on the Hugo body model at 10 g on upper right arm (a) TM; (b) TP antennas facing outward.	88
3.16	Emotive EPOC electrode placement according to 10/20 system.	89
3.17	Cognitive tests (a) Paired Associated Learning (b) Spatial Span (c) Rapid Visual Processing and (d) Reaction Time.	92
4.1	Dimensions (mm) of full-rimmed and semi-rimmed spectacles.	97
4.2	Measured data and path loss model in the scenarios without spectacles and with full-rimmed spectacles for normal subjects.	99
4.3	CDF of measured path loss fitted to a normal distribution in the case of without spectacles and wearing (a) full-rimmed spectacles (b) semi- rimmed spectacles for subject specific.	100
4.4	Dimensions (mm) of stainless steel watch in top and perspective views.	101
4.5	Measured data and path loss model in the scenarios with and without tungsten watch: (a) UW1; (b) N1. (N1 showed a significant decrease of path loss at RC, RW, LW, LT and LA locations.)	104

4.6	Measured data and path loss model in the scenarios with and without the gold-plated 18K watch for underweight and normal subjects: (Reference distances for underweight and normal subjects were the average distance of on-body links in eight Rx positions (as shown in Table 3.4).	105
4.7	CDF of measured path loss fitted to the normal distribution in the scenario with metallic watches (a) stainless steel watch (b) tungsten watch (c) gold-plated 18K watch (Normal subjects had a wider spread of data, as indicated by the larger value of σ , i.e., $\sigma = 1.7$.)	107
4.8	Measured path loss of on-body radio links in body motion for underweight subjects.	108
4.9	Mean path loss of Rx locations on on-body radio channel in body motion (left) and arm motion (right) when the subjects were wearing a metallic watch: (a) underweight subjects; (b) normal subjects; (c) overweight subjects.	109
4.10	Mean path loss of dynamic on-body radio channel in the presence of metallic watches (a) body motion on left chest and right ankle positions arm motion on left waist and left ankle positions.	; (b) 112
4.11	Cumulative distribution of the path loss fitted to lognormal distribution for (a) overweight subjects on on-body links without watch and (b) normal subjects with metallic watches.	116
4.12	Cumulative distribution of the path loss fitted to lognormal distribution for all subjects (a) without watch and (b) with watch at left waist.	119
5.1 0	Log-transformed spectral power between Sham (black line) and WBAN- (red line) exposures for left and right hemispheres The left column is the hemisphere and the right column is the right hemisphere.(a), (b) anterior frontal; (c), (d) frontal; (e), (f) frontal central; (g), (h) temporal; (i), (j) parietal; (k), (l) occipital. The changes can be seen between Sham and WBAN RF in the left hemisphere of the frontal, frontal central and both hemispheres of the temporal, parietal, and occipital regions.	-RF e left 124
5.2	Alteration of EEG rhythms in exposed and sham-control conditions for left and right hemispheres: (a) frontal region; (b) temporal region. Beta showed significant effect (P <0.001) between left and right	

xi

hemispheres in frontal and temporal derivations, while theta and alpha demonstrated significant differences in the temporal derivation when the exposed subject was radiated by the TM antenna. Interaction hemisphere x condition was not significant for any of the EEG rhythms.

- 5.3 Estimated marginal means EEG power of Sham (1-blue line), TM (2green line) and TP (3-yellow line) exposures for 1-left and 2-right hemispheres in frontal (left column) and temporal (right column) cortexes. Significant difference among mean EEG power for antenna (P<0.001) except temporal (right hemisphere) (P=0.56). Main effect of within-subject hemisphere and interaction antenna x hemisphere were significant (P<0.001) in these regions.
- 5.4 EEG power of TM (1-blue line) and TP (2-green line) exposures for frontal region (top) (a) left and (b) right hemispheres and temporal region (bottom) (c) left and (d) right hemispheres.

137

132

128

LIST OF TABLES

NO.		PAGE
2.1	Available unlicensed frequency bands in BCWC (Hall et al., 2012).	14
2.2	Exposure SAR limit values (ICNIRP, 1998)	29
2.3	Classification of normal blood pressure and hypertension.	39
2.4	Comparison of the path loss exponent for the LOS and NLOS scenarios (F-Female, M-Male) (Zhao et al., 2011).	49
2.5	Modeled path loss exponent and standard deviation for LOS UWB on-body radio channel (F-Female, M-Male) (Abbasi et al., 2012).	50
2.6	Studies on the effects of EMF exposure on resting EEG recorded with the eyes open or closed.	55
2.7	Studies on the effects of EMF exposure on cognitive performance.	57
3.1	Parameters of the textile monopole placed in free space and on the body.	64
3.2	Textile patch performance when placed in free space and on the body.	70
3.3	Characteristics of the six subjects.	74
3.4	Distance (cm) between Tx and Rx of the on-body link.	75
3.5	Demographic data of subjects.	82
3.6	Sample of well-being questionnaires completed by the subjects	94

4.1	Characterization of mean path loss for types of metallic spectacles and watches utilizing TM antennas.	98
4.2	Dimensions and conductivities of the watches	101
4.3	Statistical test results for body movements.	113
4.4	Statistical test results for arm movements	114
4.5	AIC_c favored model for each scenario.	117
4.6	Cumulative distribution of the measured path loss fitted to a lognormal distribution.	118
5.1	Summary of statistical findings	125
5.2	Summary of statistical finding in different frequency bands for a wearable textile monopole antenna	127
5.3	Summary of statistical findings for different types of antennas.	130
5.4	Summary of statistical findings in different frequency bands for a wearable TP antenna.	133
5.5	Summary of statistical findings for EEG rhythms for exposures to different types of antennas.	135
5.6	The results for cognitive performance.	138
5.7	Results for well-being subjective symptoms.	140
5.8	Z-scores and <i>p</i> -values for well-being symptoms experienced during Sham and WBAN exposures.	141
5.9	Results of the statistical tests for physiological parameters.	142
5.10	The descriptive statistics for physiological parameters.	143

5.11 The statistical test results for physiological parameters utilizing different antenna topologies.

orthis item is protected by original copyright

LIST OF ABBREVIATIONS

	.EDF	European Data File
	A-Fr	Anterior-Frontal
	AIC	Akaike Information Criterion
	ANOVA	Analysis of Variance
	ANSI	American National Standards Institute
	BCWC	Body-centric wireless communication
	Be-Cu	Beryllium copper
	BMI	Body mass index
	BodyLAN	Body Local area network
	BPD	Diastolic blood pressure
	BPS	Systolic blood pressure
	BSI	Brain Symmetry Index
	ВТ	Body temperature
	CANTAB	Computer-administered Cambridge Neurophysiological Test Automated Battery
	CDF	Cumulative distribution function
(ØST	Computer Simulation Technology
	ECG	Electrocardiography
	ECG	Electrocardiography
	EEG	Electroencephalogram
	EHS	Electromagnetic HyperSensitivity
	EM	Electromagnetic

	EMF	Electromagnetic fields
	FCC	Federal Communications Commission
	F-Cn	Fronto-central
	FDTD	Finite-difference time-domain
	FFT	Fast Fourier transform
	FIT	Finite integral technique
	fMRI	functional Magnetic Resonance Imaging
	fNIRS	functional near-infrared spectroscopy
	Fr	Frontal
	GND	Ground
	GSM	Global System for Mobile Communication
	HFP	High frequency power
	HR	Hear rate
	HSCA	Horn shaped self complementary antenna
	ICNIRP	International Commission Non-Ionizing Radiation Protection
	IEEE-USA	Institute of Electrical and Electronics Engineers - United States
	ISM	Industrial, Scientific, and Medical
	ITU-R	International Telecommunication Radio
(JNC7	Joint National Committee on Prevention, Detection, EvaluationTreatment of High Blood Pressure
	LA	Left ankle
	LC	Left chest
	LCR	Level crossing rate
	LFP	Low-frequency power
	LOS	Line-of-Sight

LS	Least squares
LT	Left thigh
LTE-TDD	Long Term Evolution-Time Division Multiplexing
LW	Left waist
MAP	Mean arterial pressure
MEM	Microelectromechanical
MICS	Medical Implanted Communication System
ML	Maximum Likelihood
MRI	Magnetic Resonance Imaging
MRI	Magnetic Resonance Imaging
Ν	Normal
NLOS	Non-line-of-sight
Oc	Occipital
OW	Overweight
PAL	Paired associated learning
PDP	Power delay profile
PEC	Perfect Electrical Conductor
PICA	Planar inverted cone antenna
PIFA	Planar inverted-F antenna
PNA	Performance Network Analyzer
PP	Pulse pressure
Pr	Parietal
PSD	Power spectral density
PVC	Polyvinyl chloride

RA Right ankle RC Right chest RF Radio frequency Radio frequency electromagnetic fields **RF-EMF** RFID Radio Frequency Identification RT Right thigh original copyright Reaction time RTI Upper right arm RUA Rapid virtual processing RVP RW Right waist Receiving antenna Rx SA Spectrum Analyzer Specific Absorption Rate SAR SD Standard deviation Standard error SE Signal generator SG Subminiature version A **SMA** Signal-to-Noise Ratio SNI SSM Scientific Council of Swedish Radiation Safety Authority SSP Spatial span TM Textile monopole TMS Transcranial magnetic simulation TP Textile patch Temporal Тр

- TSA Tapered slot antennas
- Тx Transmitting antenna
- UMTS Universal Mobile Telecommunications System
- UW Underweight
- UWB Ultra Wideband
- VTAM Clothes for Teleassistance in Medicine Project
- **WBAN** Wireless body area network
- WCDMA
- European Wearable Healthcare System World Health Organizations Wireless Fidelity WEALTHY
- WHO
- WiFi
- Worldwide Interoperability for microwave access WiMAX
- Wireless Local Area Network **WLAN**
- Wireless, Medical Telemetry Services WMTS
- Wireless personal area networks **WPAN** othisitemis

LIST OF SYMBOLS

С	Speed of light (m/s)
$\bar{E_r}$	Reflected electric field
E_{ℓ}	Arbitrary amplitude
$\bar{E_t}$	Transmitted electric field
Ε	Electric field
E	Root means square (rms) value of induced electrical field (V/m)/ absolute EEG spectral power
E_i	Incident Electric field
Η	Magnetic field
H	Reflected magnetic field
\bar{H}	Reflected magnetic field
V_r	Reflected voltage wave
V_{in}	Incident voltage wave
k	Wavenumber of a plane wave
η	Wave impedance
(G	Distance
d_0	Reference distance
γ	Path loss exponent
ρ	Density of tissue (kg/m ³)
α	Alpha wave/p-value
β	Beta wave

	θ	Angle/Pattern in the azimuth plane /theta wave
	δ	Delta wave
	tanð	Tangent loss
	A	Power
	k	Rician k-factor
	K	Number approximation parameters in the selected model
	т	Nakagami m-factor
	М	Mean length
	n	Sample size
	$\Gamma(m)$	Gamma function
	Ω	Ohm/mean square value of amplitude
	PL_{dB}	Modeled path loss
	$PL(d_0)$	Average path loss at reference distance
	P_t	Transmitted power
	P_r	Received power
	G_t	Transmit antenna gain
	Gr C	Receive antenna gain
	f	Resonant frequency
(^(N)	Total number of sampled points
	L	System loss factor/maximized log likelihood
	L_m	Length of transmission line for textile monopole
	L_M	Monopole patch length
	t	Thickness of Shieldit Super E-textile
	<i>S</i> ₁₁	Reflection Loss (VSWR)

	<i>S</i> ₂₁	Transmission coefficient
	$Z_{\lambda/4}$	Quarter-wave impedance
	Z_0	Characteristic impedance
	Z_L	Antenna impedance
	X_{σ}	Shadowing (large-scale) fading
	η_0	Wave impedance of free space
	ω_0	Resonant frequency at free space
	λ_{O}	Free space wavelength of the resonant frequency
	$\lambda_{e\!f\!f}$	Effective wavelength of the resonant frequency
	δ_s	Skin depth
	ν	Velocity
	π	Pi
	с	Speed of light
	$ heta_i$	Incident angle
	$ heta_r$	Reflected angle
	θ_t	Transmitted angle
	SAR	Specific absorption rate (W/Kg)
	r, is	Reflection coefficient
(T	Transmission coefficient
	T_c	Coherence time
	λ	Wavelength (m)
	σ	Conductivity (S/m)/standard deviation
	$\sigma_{e\!f\!f}$	Effective conductivity (S/m)
	E _r	Electric permittivity