

School of Computer and Communication Engineering UNIVERSITY MALAYSIA PERLIS

2014

UNIVERSITI MALAYSIA PERLIS

DECLARA	TION OF THESIS
Author's full name : Rashid Ali Fayyadh	
Date of birth : <u>1st January 1963</u>	
Title : DEVELOPMENT OF ENHAN RAKE RECEIVERS FOR IND	CED ULTRA WIDEBAND ANTENNA DESIGNS AND DOOR WIRELESS SYSTEMS
Academic Session : 2014/2015	
I hereby declare that the thesis becomes the property at the library of UniMAP. This thesis is classified as:	of Universiti Malaysia Perlis (UniMAP) and to be placed
CONFIDENTIAL (Contains confidentia	I information under the Official Secret Act 1972)
RESTICTED (Contains restricted research was done)	information as specified by the organization where
OPEN ACCESS I agree that my th copy or on-line open	esis is to be made immediately available as hard access (full text)
I, the author, give permission to the UniMAP to repr research or academic exchange only (except during a	oduce this thesis in whole or in part for the purpose of period of _ years, if so requested above).
enist	Certified by:
S	
SIGNATURE	SIGNATURE OF SUPERVISOR
G1343233	Ass. Prof. DR. MOHD FAREQ BIN ABD MALEK
(NEW IC NO. / PASSPORT NO.)	NAME OF SUPERVISOR
Date :	Date :

Acknowledgement

Credence praise and sincere calls to Allah (SWT) who gave me the strength and courage to complete this project. My most special thanks to my supervisor Ass. Prof. Dr. Mohd Fareq Abd Malek, for supporting me through the doctoral process and for his academic advice. His guidance, ideas, encouragement, affable nature, kindness and support were greatly helpful. Even with his busy schedule because he is a Dean of School of Electrical System Engineering, he spent considerable amount of time helping me through the different phases of this project. I would also like to thank my co-supervisor Dr. Hilal Adnan Fadhil for his kind support, and suggestions. A special acknowledgment must be given to my brothers and sisters for their motivation help and support during my academic period at UniMAP. I am indebted to them and words will never express the gratitude I owe to them.

I wish to thank my wife, sons, and daughters Mahdia, Rawad, Sudad, Dhuha, Saja & Murad who inspired me by their, courage, support and patience throughout the period of my study.

Last but not least, sincere thanks and gratitude to my parents, my brothers and sisters for their daily prayers, giving me the motivation and strength, and encouraging me to accomplish and achieve my goals.

Rashid Ali Fayyadh University Malaysia Perlis (UniMAP)

TABLE OF CONTENTS

		PAGE
DEC	LARATION OF THESIS	i
ACK	NOWLEDGEMENTS	ii
TAB	LE OF CONTENTS	iii
LIST	OF TABLES	xi
LIST	OF FIGURES	xiii
LIST	OF ABBREVIATIONS	xxi
LIST	OF SYMBOLS	XXV
ABS	ГРАК	xxix
ABST	FRACT	XXX
CHA	PTER 1 INTRODUCTION	
1.1	Background	1
1.2	UWB Channel Models	4
1.3	Problem Statement	5
1.4	Objectives	6
1.5	Scopes of Study	8
1.6	Thesis Organization	9

CHAPTER 2 REVIEW OF UWB COMMUNICATION SYSTEMS

2.1	Introduction	11
2.2	Transmission Model	12

	2.2.1	UWB Pu	lse Generation	13
	2.2.2	UWB Pu	lse Modulation	14
	2.2.3	UWB Sp	read Spectrum	16
		2.2.3.1	Direct Sequence Spread Spectrum (DSSS)	16
		2.2.3.2	Time Hopping Spread Spectrum (THSS)	18
2.3	UWB I	ndoor Cha	nnel Models	19
2.4	UWB A	Antennas		23
	2.4.1	Introduct	ion vilo	23
	2.4.2	Types of	Antennas	24
	2.4.3	Main Pa	rameters of Antenna	25
		2.4.3.1	Radiation Patterns	25
		2.4.3.2	Gain and Directivity	26
		2.4.3.3	Field Regions	28
		2.4.3.4	Return Loss (S_{11}) and Voltage Standing Wave Ratio (VSWR)	28
		2.4.3.5	Antenna Bandwidth and Beam-width	29
	•.6	2.4.3.6	Antenna Impedance Matching	29
	2.4.4	UWB M	icrostrip Antennas	30
	C	2.4.4.1	Antenna Components	30
		2.4.4.2	Microstrip Patch Shapes	31
		2.4.4.3	Feeding Techniques	33
2.5	UWB V	Vireless Ro	eceivers	34
	2.5.1	Introduct	ion	34
	2.5.2	Received	l UWB Signal	35

2.5.3	Interferen	nce in UWB Reception Systems	36
	2.5.3.1	Inter-symbol Interference (ISI)	36
	2.5.3.2	Inter-frame Interference (IFI)	37
	2.5.3.3	Inter-pulse Interference (IPI)	37
	2.5.3.4	Narrow-band Interference (NBI)	38
	2.5.3.5	Multiple Access Interference (MAI) and Multiple User Interference (MUI)	39
2.5.4	Rake-Re	ceivers	40
	2.5.4.1	All-Rake Receiver (A-rake)	41
	2.5.4.2	Selective-Rake Receiver (S-rake)	41
	2.5.4.3	Partial-Rake Receiver (P-rake)	42
2.5.5	Generatio	on of Template Signal	44
2.5.6	Fingers (Correlators)	45
	2.5.6.1	Template Signal Multiplier	45
	2.5.6.2	Integrator	46
	2.5.6.3	Sampler	47
2.5.7	UWB C	Channel Estimation	48
2.5.8	Combin	ing Techniques	49
	2.5.8.1	Maximal Ratio Combining (MRC)	50
	2.5.8.2	Equal Gain Combining (EGC)	51
	2.5.8.3	Selective Combining (SC)	51
	2.5.8.4	Minimum Mean Square Error (MMSE) Combining	51
2.5.9	Decision	Circuit	52

	2.5.10	Error Bit Probability	53
2.6	Summa	ary	54
СНА	PTER 3	UWB WIRELESS ANTENNA METHODOLOGY	
3.1	Introdu	ction	58
3.2	Simula	ted and Fabricated Design of the UWB Antennas	61
	3.2.1	Antenna with Two Slots and Two Notches (Bird Feet- Shaped Patch Antenna)	65
	3.2.2	Antenna with Three Slots and No Notch (Planar Finger- Shaped Patch Antenna)	66
	3.2.3	Antenna with Three Slots and Three Notches (Rake-Shaped Patch Antenna)	67
	3.2.4	Antenna with Three Slots and Four and Five Notches (Slotted and Notched Rectangular Patch Antenna)	68
	3.2.5	Antenna with No Slot and No Notch (Spade-Shaped Patch Antenna)	69
	3.2 6	Fabricated Structures for All Proposed Antenna Designs	73
3.3	Summa	ury	75
	~ his		
CHA DISC	PTER 4 CUSSION	SIMULATED AND MEASURED RESULTS WITH FOR UWB ANTENA DESIGNS	
4.1	Introdu	ction	77
4.2	Bird Fe	eet-Shaped Patch Antenna	78
	4.2.1	Parametric Study	78
		4.2.1.1 Notch and Slot Cut	78
		4.2.1.2 Microstrip Feed Line	80

		4.2.1.3 Feed Gap	81
	4.2.2	VSWR and Return Loss	81
	4.2.3	Current Distribution	83
	4.2.4	Gain, Directivity, and Radiation Efficiency	84
	4.2.5	Radiation Patterns	85
4.3	The Pla	anar Finger-Shaped Patch Antenna	88
	4.3.1	Return Loss	88
	4.3.2	Current Distribution and Radiation Efficiency	89
	4.3.3	Gain and Directivity	90
	4.3.4	Radiation Patterns	90
4.4	Rake-S	haped Patch Antenna	93
	4.4.1	Parametric Study	93
		4.4.1.1 Cut Notches	94
		4.4.1.2 Feed Gap	95
	4.4.2	Return Loss	97
	4.4.3	Gain and radiation Efficiency	98
	4.4.4	Radiation Patterns	99
4.5	Slotted	and Notched Rectangular Patch Antenna	100
	4.5.1	Return Loss	100
	4.5.2	Current Distribution	103
	4.5.3	Gain and Radiation Efficiency	104
	4.5.4	Radiation Patterns	105
4.6	Spade-	Shaped Patch Antenna	108
	4.6.1	Parametric Study	108

		4.6.1.1	Feed Gap	109
		4.6.1.2	Microstrip Feed Line Dimensions	110
	4.6.2	Return I	LOSS	111
	4.6.3	Current	Distribution, Gain, Directivity, and Radiation	112
	4.6.4	Radiatio	n Patterns	113
4.7	Summa	ıry	×,	115
CHA STRU	PTER 5 I JCTURE	METHO S FOR U	DOLOGY OF RAKE RECIEVER	
5.1	Introdu	ction	A CONTRACTOR	118
5.2	Symbol	l Sign Dis	tribution Rake Receiver (SSD-RR)	120
	5.2.1	Propose	d Structure of the Rake Receiver	122
	5.2.2	MRC Co	ombining Technique	123
	5.2.3	Symbol	Sign Distribution Circuit	125
5.3	Rake R rake)	eceiver U	sed MRC for Signal Sign Separation (SSS/MRC-	126
	5.3.1	Rake R	eceiver Using the Proposed MRC	127
	5.3,2	SSS/MI	RC Rake Receiver Structure	129
5.4	Demod	ulation Ra	ake Receiver	133
	5.4.1	Propose	d Combiner	135
	5.4.2	Simulati	on Process	138
5.5	Rake R RLS Al	eceiver U lgorithm	sing Adaptive Filter of M-max Partial Update	139
	5.5.1	Propose	ed Multi-path Rake Receiver Model	139
	5.5.2	Combini	ing Techniques	141
	5.5.3	Adaptiv	ve Matched Filter	142

	5.5.4	Recursi	ve Least Square (RLS) Algorithm	144
	5.5.5	M-max	RLS Algorithm	146
5.6	MMSE	Equalize	d Rake-Receiver	147
	5.6.1	Equaliz	ed Multi-path Rake Receiver Model	149
	5.6.2	Propose Structur	ed Adaptive Filter Algorithm in the Rake Receiver	152
	5.6.3	Partial-	Update Algorithm	152
		5.6.3.1	Selective-Partial Update (SPU) Algorithm	152
		5.6.3.2	M-max Algorithm	153
		5.6.3.3	Periodic-Partial-Update Algorithm	154
		5.6.3.4	Sequential-Partial Update Algorithm	154
5.7	Summ	nary	ofilos	155
			tas	

CHAPTER 6 SIMULATION RESULTS AND DISCUSSION FOR PROPOSED RAKE RECEIVER STRUCTURES

6.1	Introduction	157
6.2	SSD-RR	158
6.3	SSS/MRC-rake Receiver	165
6.4	Demodulation Rake Receiver	172
6.5	Rake Receiver Using Adaptive Filter of M-max Partial Update RLS Algorithm	177
6.6	MMSE Equalized Rake-Receiver	182
6.7	Summary	186

CHAPTER 7 CONCLUSION AND FUTURE WORKS

Conclusion	188
	Conclusion

	7.1.1	Bird Feet-Shaped Patch Antenna	188
	7.1.2	Planar Finger-Shaped Patch Antenna	189
	7.1.3	Rake-Shaped Patch Antenna	189
	7.1.4	Slotted and Notched Rectangular Patch Antenna	190
	7.1.5	Spade-Shaped Patch Antenna	190
	7.1.6	SSD-RR (structure #1)	190
	7.1.7	SSS/MRC-rake (structure #2)	191
	7.1.8	Demodulation Rake Receiver (structure #3)	191
	7.1.9	Rake Receiver Using Adaptive Filter of M-Max Partial Update RLS Algorithm (structure #4)	192
	7.1.10	MMSE Equalized Rake-Receiver (structure #5)	193
7.2	Future '	Work	193
REFE	ERENCE	s protected t	196
Apper	ndix A		208
Apper	ndix B	X ^O	216
Appe	ndix C		217
Appe	ndix D		219
Apper	ndix E		220
Apper	ndix F		221

LIST OF PUBLICATION

223

List of Tables

No.		PAGE
2.1	Key parameters that define the channel models.	22
2.2	Summary of previous studies on wireless UWB antennas.	55
2.3	Summary of previous studies on wireless rake receivers.	57
3.1	Bird feet-shaped patch antenna dimensions.	71
3.2	Finger-shaped patch antenna dimensions.	71
3.3	Rake-shaped patch of antenna dimensions.	72
3.4	The dimensions in millimeters of five different antenna prototypes.	76
4.1	The simulated values of antenna parameters at specified UWB frequencies.	85
4.2	Surface current and radiation efficiency values at simulated and measured resonance frequencies.	89
4.3	Effects of cut notches on the simulated -10 dB bandwidths of the proposed antenna	95
4.4	Fractional bandwidths below -10 dB of S_{11} for different feed gaps.	96
4.5	Comparison between previous antenna and the proposed antenna.	96
4.6	Effects of the gap on the simulated -10 dB bandwidths of the proposed antenna	109
4.7	Fractional bandwidths below -10 dB of S_{11} for different feed width dimensions.	111
4.8	Improved spade-shaped patch antenna parameters.	113
4.9	Comparison between the proposed and literature antenna structures.	116
5.1	Comparator outputs.	126
5.2	Output characteristics of the comparator.	132

5.3	Comparison of signals.	139
6.1	Values of BER with three different numbers of users.	160
6.2	Values of BER with different numbers of fingers.	160
6.3	BER performances when the number of paths and the number of users were varied.	169
6.4	Error probability performances with varying numbers of paths and users.	174
6.5	The comparison between CCM-RLS 2D rake receiver and M-max partial update-RLS rake receiver.	181

LIST OF FIGURES

NO.		PAGE
1.1	Timeline of UWB developments.	1
1.2	Block diagram of multi-path transmission scenario in wireless link.	4
1.3	Block diagram of research scope.	9
2.1	Pulse generator using EX-OR gate.	13
2.2	Generated monocycle waveforms in different phases by pulse generator presented in fig. 2.1.	14
2.3	Binary pulse shapes. (a) orthogonal PPM, (b) optimal PPM, (c) BPSK, (d) OOK, (e) PAM, (f) PSM, and (g) PIM.	15
2.4	Four users DS-UWB-IR signalling structure.	17
2.5	TH-UWB-IR signalling structure.	18
2.6	Modified Saleh-Valenzuela model.	21
2.7	Space coordinates for antenna radiation.	26
2.8	The behaviour of two operating regions.	28
2.9	Representative shapes of UWB radiator elements.	32
2.10	Geometry of rectangular antenna.	33
2.11	Proprieties of microstrip antennas: (a) Resonant input resistance, and (b) radiation efficiency.	34
2.12	Schematic for ISI.	37
2.13	Schematic for IFI.	37
2.14	Schematic for IPI.	38
2.15	Narrowband interference signal with TH-UWB pulses.	39
2.16	Scheme of UWB MAI.	39
2.17	Principle of multi-path channel profile (a) all-rake receiver (b) selective-rake receiver and (c) partial-rake receiver.	43

2.18	Structure of a basic rake receiver.	44
2.19	Basic receiver's finger architecture.	45
2.20	Integrator schematic.	47
2.21	Channel phase correction and symbol combining.	49
2.22	Combiner in a coherent rake receiver of L fingers and w finger weights.	50
2.23	UWB transmission and reception block diagram.	55
3.1	Schematic diagram of conventional edge-feed microstrip patch antenna.	59
3.2	The proposed antenna design methodology.	60
3.3	Slotted rectangular patch.	62
3.4	Equivalent circuit of the proposed transmission/reception antenna model.	63
3.5	Simulated bird feet-shaped antenna (a) front view (b) back view.	71
3.6	(a) front view and (b) back view of finger-shaped microstrip antenna.	71
3.7	Geometry of the simulated rake-shaped patch antenna (a) front view (b) back view.	72
3.8	Simulated slotted and notched patch antennas: (a) front view of 4 steps, (b) front view of 5 steps, and (c) back view of both.	72
3.9	Simulated geometry spade-shaped microstrip patch antenna (a) front view (b) back view.	73
3.10	Fabricated bird feet-shaped patch antenna (a) front view (b) back view.	74
3.11	Fabricated prototype of finger-shaped antenna (a) front view (b) back view.	74
3.12	Photograph of the rake-shaped patch antenna (a) front view (b) back view.	74
3.13	Fabricated notched antennas: (a) front view of 4 steps, (b) front view of 5 steps, and (c) back view of both.	75
3.14	Fabricated geometry spade-shaped microstrip patch antenna (a) front view (b) back view.	75

4.1	Proposed parametric study for number of slots.	79
4.2	Proposed parametric study for dimension of slots.	79
4.3	Proposed parametric study for number of notches.	80
4.4	Proposed parametric study for feeder width.	80
4.5	Proposed parametric study for feed gap size.	81
4.6	Simulated and measured VSWR in the UWB frequency range.	82
4.7	Simulated and measured S_{11} of the proposed antenna.	83
4.8	Simulated distribution of current on the surface of the proposed antenna at (a) 3.8 GHz and (b) 5 GHz.	84
4.9	Characteristics of antenna gain with increasing bandwidth for the proposed design.	84
4.10	Simulated radiation at 7.5 GHz: (a) three-dimensional radiation pattern, and (b) two-dimensional radiation pattern.	85
4.11	Simulated radiation patterns for E-plane (Phi) and H-plane (Theta) of designed antenna at (a) 4.5 GHz, (b) 7 GHz, and (c) 10 GHz.	86
4.12	Experimental measurement of radiation patterns conducted in a microwave anechoic chamber.	87
4.13	Measured radiation patterns of the fabricated antenna at: (a) 4.5 GHz, (b) 7 GHz, and (c) 10 GHz.	87
4.14	Comparison between simulated and measured reflection coefficient (S_{11}) .	89
4.15	Simulated gain and directivity of the proposed antenna #2: (a) gain versus frequency, and (b) directivity versus frequency.	90
4.16	Simulated radiation patterns for designed antenna at frequency of 4.5 GHz (a) E-plane, and (b) H-plane	91
4.17	Simulated radiation patterns for designed antenna at frequency of 6.5 GHz (a) E-plane, and (b) H-plane.	91

4.18	Simulated radiation patterns for designed antenna at frequency of 10 GHz (a) E-plane, and (b) H-plane.	92
4.19	Measured radiation E-plane and H-plane patterns of the fabricated planar finger-shaped patch antenna at (a) 6.5 GHz, and (b) 10 GHz.	93
4.20	Simulated return loss curves for cutting step notches at the lower edge of the patch radiator.	95
4.21	Simulated return loss curves of different feed gap dimensions.	96
4.22	Simulated and measured return loss for antenna with two-step notches.	97
4.23	VSWR characteristics of simulated and measured antenna with two-step notches.	98
4.24	3-D views of the radiation patterns of the proposed antenna: (a) 10 GHz and (b) 7.5 GHz.	98
4.25	Simulated radiation patterns of the proposed antenna #3 at resonance frequencies: (a) E-plane patterns, and (b) H-plane patterns.	99
4.26	Measured radiation patterns of the proposed rake-shaped patch antenna at the measured resonance frequencies: (a) E-plane pattern, and (b) H-plane pattern.	100
4.27	Comparison between simulated and measured S_{11} with 4-step notched antenna.	101
4.28	Comparison between Simulated and measured S11 with 5-step notched antenna.	102
4.29	Comparison between simulated and measured VSWR with 4-step notched antenna.	102
4.30	Comparison between simulated and measured VSWR with 5-step notched antenna.	103
4.31	Simulated surface current distributions at 5.9 GHz on the patch antenna #5 with: (a) 4-cut notches, and (b) 5-cut notches.	104
4.32	Simulated radiation pattern of (a) 4-step notched antenna, and (b) 5-step notched antenna.	105
4.33	E-plane and H-plane simulation patterns for the four-notch antenna at resonance frequencies of (a) 5.9 GHz, and (b) 8 GHz.	106

4.34	E-plane and H-plane simulation patterns for five-notch antenna at resonance frequencies of (a) 7 GHz, and (b) 9.3 GHz.	107
4.35	Measured (dotted line) and simulated (solid line) E-plane and H-plane radiation patterns at 9.3 GHz.	108
4.36	Return loss due to varying feed-gap heights.	110
4.37	Return loss due to reduced feed width.	111
4.38	Measured and simulated return loss of the proposed antenna.	112
4.39	VSWR characteristics of simulated and measured antenna design.	112
4.40	Normalized measured radiation patterns of spade-shaped patch antenna in E- plane and H-plane at: (a) 4.5 GHz, (b) 7.5 GHz, and (c) 8.75 GHz.	114
5.1	Block diagram of the UWB wireless communication system.	121
5.2	Gaussian pulse and its second derivative pulse in the time domain.	122
5.3	Block diagram of the proposed rake receiver with F fingers.	125
5.4	Block diagram of the proposed symbol sign distribution scheme.	126
5.5	Time domain scenario to improve the SNR.	129
5.6	Block diagram of the proposed SSS/MRC rake receiver.	130
5.7	Received multi-path pulse copies.	134
5.8	Several demodulators to receive the resolved and delayed multi-path components.	134
5.9	Optimum demodulators for UWB binary signals.	135
5.10	Block diagram of wireless receiver with the proposed pulse sign separation combiner.	138
5.11	Proposed adaptive, multi-path rake receiver.	140
5.12	Gaussian pulses.	149
5.13	Block diagram of the Equalized rake-receiver with L correlators.	151
5.14	Adaptive rake-receiver system identification.	152

6.1	Basic flowchart diagram for simulation building blocks.	158
6.2	BER and SNR performance for SSD-PRR receiver at $F_p = 2$ in CM1.	160
6.3	BER and SNR performance for SSD-SRR receiver at $F_s = 2$ in CM1.	161
6.4	BER and SNR performance for SSD-PRR receiver with two users in CM1.	161
6.5	BER and SNR performance for SSD-SRR receiver with two users in CM1.	161
6.6	BER and SNR performance for SSD-PRR receiver at $F_p = 4$ in CM3.	162
6.7	BER and SNR performance for SSD-SRR receiver at $F_s = 4$ in CM3.	162
6.8	BER and SNR performance for the SSD-PRR receiver at two users in CM3.	162
6.9	BER and SNR performance for the SSD-SRR receiver at two users in CM3.	163
6.10	BER and SNR performance for SSD-PRR receiver at $F_p = 10$ in CM1.	164
6.11	BER and SNR performance for SSD-SRR receiver at $F_s = 10$ in CM1.	164
6.12	BER and SNR performance for SSD-PRR receiver at $F_p = 10$ in CM3.	165
6.13	BER and SNR performance for SSD-SRR receiver at $F_s = 10$ in CM3.	165
6.14	BER performance against SNR of the partial rake receiver with two users in CM1.	167
6.15	BER performance against SNR of the selective rake receiver for two users in CM1.	167
6.16	BER performance against SNR of the partial rake receiver at $L_p=10$ in CM1.	168
6.17	BER performance against SNR of the selective rake receiver at $L_s=10$ in CM1.	168
6.18	BER performance against SNR of the partial rake receiver at two users in CM4.	169
6.19	BER performance against SNR of the selective rake receiver at two users in CM4.	170
6.20	BER performance against SNR of the partial rake receiver at $L_p=10$ in CM4.	170

6.21	BER performance against SNR of the selective rake receiver at $L_s=10$ in CM4.	171
6.22	Bit error probability versus SNR with different numbers of combined fingers for (a) the CM1 channel model and (b) the CM4 channel model (Doukeli et al., 2012).	172
6.23	Simulation flow chart of the research project.	173
6.24	Error probability performance versus SNR of partial combiner for $L_p = 10$ paths in CM2.	175
6.25	Error probability performance versus SNR of selective combiner for $L_s = 10$ paths in CM2.	175
6.26	Error probability performance versus SNR of partial combiner with two users in CM2.	175
6.27	Error probability performance versus SNR of selective combiner with two users in CM2.	176
6.28	Error probability of bit rate versus SNR of the suggested combiner within ten paths and five users in CM2.	177
6.29	Error probability of bit rate versus SNR of the suggested combiner within ten paths and six users in CM2.	177
6.30	Performance of UWB combining rake receivers for the CM1 channel model.	180
6.31	Performance of UWB combining rake receivers for the CM2 channel model.	180
6.32	Performance of UWB combining rake receivers for the CM3 channel model.	180
6.33	Performance of UWB combining rake receivers for the CM4 channel model.	181
6.34	Rake receiver performance in 3-path AWGN fading channel and 4- elements antenna array (Shirvani-Moghaddam & Adeghi, 2011).	182
6.35	Comparison of SER among partial-update LMS algorithms at six users through CM1.	184
6.36	Comparison of SER among partial-update NLMS algorithms at six users through CM1.	184

- **6.37** Comparison of SER among partial-update APA algorithms at six users 185 through CM1.
- **6.38** SER comparison using full LMS, NLMS, and APA algorithms in CM1 186 UWB channel with one user.
- **6.39** Comparison of SER among partial-update EDS algorithms (Xie & 186 Bose, 2010).

othis tern is protected by original copyright

LIST OF ABBREVIATIONS

- 2D Two Dimensional Pattern
- 3D Three Dimensional Pattern
- ADC Analogue to Digital Convertor
- APA Affine Projection Algorithm
- A-rake All Rake Receiver
- ARR Adaptive Rake Receiver
- Average Signal to Noise Ratio ASNR
- ed by original copyright AWGN Additive White Gaussian Noise
- BER Bit Error Rate
- BPSK **Bi-** Phase Shift Keying
- BW Bandwidth
- ANOVA Analysis of Variance
- CD **Coefficients Details**
- CDF Cumulative Distribution Function
- CIR Channel Impulse Response
- Channel Model CM
- **Conventional Partial Combiner** C-PC
- C-SC **Conventional Selective Combiner**
- CST **Computer Simulation Test**
- CWT **Continuous Wavelet Transform**
- D Directivity
- DC Direct Current
- DoD Department of Defence

- DSSS Direct Sequence Spread spectrum
- DFT **Discrete Fourier Transform**
- DR **Detection Rate**
- **Elevation Plane** E-plane
- EGC Equal Gain Combiner
- EX-OR Explosive OR
- FCC Jectrum Jectrum Jectrum Jecopyrioth Frield Programmable Gate Array Fractional Bandwidth Jobal Position ^c Federal Communications Commissions
- FIR
- FHSS
- FN
- FP
- **FPGA**
- FB
- GPS
- H-plane **Azimuth Plane**
- IR **Impulse Response**
- **IR-UWB** Impulse Response Ultra Wideband
- Input / Output Ю
- IFI **Inter-Frame Interference**
- IPI Inter-Pulse Interference
- ISI Inter-Symbol Interference
- IWO Invasive Weed Optimization
- LOS Line-Of-Sight
- LNA Low-Noise Amplifier
- MISO Multiple In Single Out

- MIMO Multiple In Multiple Out
- MAI Multiple Access Interference
- MRC Maximal Ratio Combining
- **MMSE** Minimum Mean Square Error
- MPC Multiple Path Component
- MS Microwave Software
- MSE Mean Square Error
- MUD Multiple User Detection
- by original copyright MUI Multiple User Interference
- Multiplexer MUX
- **NLOS** Non Line-Of-Sight
- ON OFF Keying OOK
- PCB Printed Circuit Board
- Probability Density Function PDF
- PIM Pulse Interference Modulation
- **PSM** Pulse Symbol Modulation
- PPM **Pulse** Position Modulation
- Pulse Amplitude Modulation PAM
- P-rake Partial Rake
- PSD Power Spectral Density
- PSK Phase Shift Keying
- **PSS-SC** Pulse Sign Separation Selective Combiner
- **PSS-PC** Pulse Sign Separation Partial Combiner
- PU Partial Update
- Quadruple Phase Shift Keying QPSK