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Pencirian dan Aktiviti In-Vitro Komposit Magnesium-Zink/Bioglas Secara Metalurgi 
Serbuk Untuk Aplikasi Bioperubatan 

 

ABSTRAK 

 

Dalam kajian ini, serbuk 45S5 bio-kaca telah ditambah ke dalam campuran serbuk Mg-Zn 
untuk menghasilkan biokomposit menggunakan kaedah metalurgi serbuk untuk aplikasi 
bioperubatan. Komposisi bio-kaca diubah daripada 0, 5, 10, 15, 20, 25, 30 wt. %. Objektif 
kajian ini adalah untuk mengkaji kesan penambahan bio-kaca ke dalam bio-bahan 
berasaskan Mg-Zn dari segi sifat fizikal, mekanikal, rintangan kakisan dan bioaktiviti. 
Mikroskop optik, Mikroskop Imbasan Elektron-Tenaga serakan Spektroskopi (SEM-EDS) 
dan pembelauan sinar-X (XRD) telah digunakan untuk mencirikan mikrostruktur dan fasa 
yang terdapat di dalam komposit. Keputusan mikrostruktur menunjukkan bahawa bio-kaca 
telah diedarkan dalam matriks Mg-Zn itu. Keputusan EDS menunjukkan bahawa Zn tidak 
meresap sepenuhnya ke dalam matriks Mg yang disebabkan oleh kesan parameter 
pemprosesan. Tidak ada bukti bio-kaca resapan ke dalam matriks. Corak pembelauan sinar-
X sampel tersinter menunjukkan puncak Mg jangkaan dalam semua sampel. Sifat-sifat 
seperti ketumpatan dan kekuatan mampatan masing-masing telah ditentukan dengan 
menggunakan piknometer dan mesin Instron. Ketumpatan komposit telah dibandingkan 
dengan nilai teori dan trend terhasil menunjukkan bahawa ketumpatan meningkat seiring 
dengan peningkatan jumlah bio-kaca. Trend adalah sah untuk ketumpatan sebenar, teori, 
dan pukal. Kenaikan nilai ketumpatan boleh dikaitkan dengan pengisian bio-kaca pada 
ruang interpartikel. Walau bagaimanapun, jumlah keliangan juga meningkat kerana 
peningkatan jumlah bio-kaca. Ia boleh dikaitkan dengan pengasingan zarah bio-kaca. Oleh 
kerana jumlah bio-kaca meningkat, lebih bio-kaca terasing dan membawa kepada saiz 
masukan bio-kaca yang lebih besar di dalam komposit. Oleh kerana tiada tindak balas 
antara magnesium dan bio-kaca, semakin besar saiz masukan bio-kaca, lebih besar lompang 
yang terbentuk di antara muka magnesium dan bio-kaca, yang akhirnya akan memberikan 
meningkatkan kepada jumlah hasil keliangan. Kekuatan mampatan menunjukkan bahawa 
jumlah bio-kaca meningkat, kekuatan mampatan bagi komposit menurun. Ini juga boleh 
dikaitkan dengan lompang yang ditinggalkan di antara muka bio-kaca dan matriks yang 
bertindak sebagai pemula retak. Ujian in-vitro telah dijalankan, di mana sampel direndam 
dalam Bendalir simulasi Badan (SBF) untuk menentukan kadar hakisan dan bioaktiviti bagi 
komposit. Hasil kajian menunjukkan bahawa kadar kakisan sampel berkurangan dengan 
pertambahan kandungan bio-kaca. Pengumpulan produk kakisan, bersama-sama dengan 
pembentukan lapisan apatit membantut proses kakisan. Lapisan apatit yang digunakan 
untuk menunjukkan bioaktiviti itu juga dikesan di permukaan komposit. Lapisan apatit 
terbentuk mempunyai nilai yang lebih rendah daripada nisbah Ca / P berbanding 
hydroxyapatite kristal yang ideal, namun ia masih mematuhi keperluan bahan bio. 
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Characterization and In–Vitro Activity of Powder Metallurgy Magnesium-
Zinc/Bioglass Composite for Biomedical Applications 

 

ABSTRACT 

 

In this study, bio-glass 45S5 powder was added into the mixture of Mg-Zn powders to 
produce biocomposite using powder metallurgy method for biomedical applications. The 
bio-glass composition was varied from 0, 5, 10, 15, 20, 25, to 30 wt. %. The objective of 
this works is to study the effect of bio-glass addition into Mg-Zn based biomaterials in 
terms of physical, mechanical, corrosion resistance and bioactivity properties. Optical 
microscope, Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS) 
and X-Ray Diffraction (XRD) were used to characterize the microstructure and phases 
present in the composites. Microstructure result shows that bio-glass was distributed in the 
matrix Mg-Zn. EDS results show that Zn has not completely diffuse into the Mg matrix due 
to the effect of processing parameter. There is no evidence of bio-glass diffusion into the 
matrix. XRD diffraction patterns of as sintered samples show expected peak of Mg in all 
samples. Properties such as density and compressive strength were determined using the 
pycnometer and Instron machine respectively. Density of the composite was compared with 
the theoretical value and the result trends indicated that the density has increased as the 
amount of bio-glass increased. The trends are valid for the true, theoretical, and bulk 
densities. Increment of densities value could be subjected to the filling of interparticles 
spacing by bio-glass. However, the total porosity also increased as the bio-glass amount 
increased. It could be attributed to the segregation of bio-glass particles. As the amount of 
bio-glass increase, more bio-glass segregate and leads to bigger size of bio-glass inclusion 
size inside the composite. Since no reaction between magnesium and bio-glass, the bigger 
the size of bio-glass inclusions, the larger the voids form at the interface, which will 
eventually give raise to total porosity results. The compressive strength shows that as the 
amount of bio-glass increased, the compressive strength of the composites decreased. This 
also could be attributed to the voids left at the interface of bio-glass and matrix which acts 
as crack initiators. In vitro test was conducted, in which samples were immersed in 
Simulated Body Fluid (SBF) to determine the corrosion rate and bioactivity of the 
composites. The results showed that corrosion rate of the samples decreases with increasing 
content of bio-glass. The accumulation of corrosion products, alongside with the formation 
of apatite layer retarded the corrosion process. The apatite layer that used to indicate the 
bioactivity was also traced on the surface of composites. The apatite layer formed has a 
lower value of Ca/P ratio compared to the ideal crystalline hydroxyapatite, however it is 
still compliant with biomaterials requirement. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

Biomaterials are defined as materials intended or any substance (other than drug), 

whether synthetic or natural, used to interface with biological systems and can be used as a 

system or part of a system that treat, augments, or replaces any tissue, organ, or the function 

of the body (William, 1999; Pirhonen, 2006). 

 

Biomaterials are the results obtained as the population ages. It is intended to help 

human to have more quality life. The research and development progress of biomaterials 

have had a significant effect on the production of medical implant and devices over the last 

40 years (Holzapfel et. al., 2013). However, the use of biomaterials has started from since 

ancient times. According to historical records, there is a finding that the dental implants 

were used by the Mayan people in 600 A.D. Besides, there are also finding that proving the 

metal dental implants were used back in 200 A.D by discoveries of corpses in Europe 

(Ratner et. al., 2004).  

 

The rapid development of biomaterials field, however came after the World War II. 

During World War II, many soldiers injured and this has put the attention of researchers to 
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develop implants that can be implanted in the human body and must be able to adapt to its 

new environment which is biological environment (William, 1999). Materials that 

originally applied as machinery or vehicles were implemented as materials for medical 

devices. Since then, the research and studies, innovation and development, and industrial 

productivity of biomaterials have developed sustainably.  Nowadays, biomaterials 

representing market size about over $9 billion per year in the United States (US) only 

(Temenoff & Mikos, 2008). 

 

Biomaterials could be classified into three types of materials, which are metals, 

ceramics, and polymers. Metals and ceramics are inorganic materials which have different 

types of bonding. Metals have metallic bonding with the high mobility of electrons while 

ceramics possessed ionic bonding. Metals are generally strong and offers a high degree of 

design complexity and suitable for orthopedic applications. Ceramics, however are 

generally hard and brittle materials, but are more corrosive resistant than metals. Polymers 

are organic materials that made up from long chains of covalent bonding elements. Due to 

its properties such as elasticity and high water content, polymers are suitable to be 

implemented in cardiovascular and soft tissue applications. Composite is another class of 

materials which combines any of the three materials to fulfill the requirement of the 

biomaterials (Temenoff & Mikos, 2008).    

 

In present times, researchers are attracted towards studies on magnesium alloys as a 

potential biodegradable bone implant materials. Magnesium and its alloys is a lightweight 

metals (1.74 – 2.0 g/cm3 in density) and biocompatible because of its biodegradable 

properties (Gu & Zheng, 2010). Biodegradable materials are defined as resorbable, 
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degrades materials at the same rate at which the host tissue regenerates. The developed 

interest of magnesium is due to their properties such as biodegradability in 

bioenvironments, mechanical properties such as elastic modulus which may decrease the 

shielding effect problems. Shielding effect is defined as bone remodeling by starving the 

new tissue of the fluctuating loads that are necessary to stimulate strong and healthy tissue 

formation (Parsons et. al., 2010).  

 

Magnesium alloys have shown its excellent degradation properties inside in- vitro 

experiment conducted in earlier research. This degradation properties rate is fast and caused 

by electrochemical reaction or corrosion. The products of this reaction are Mg(OH)2 and H2 

(Liu et. al., 2007; Witte et. al, 2008; Kirkland et. al, 2012). So, there is a need to study the 

new process to slow down the corrosion rate and perhaps, new alloying elements to be 

added with magnesium. This is important since the corrosion or degradation rate may affect 

the structure integrity of the implants and the alloying elements added may have a negative 

effect in human body (Kirkland et. al., 2012).  

 

Although magnesium is known to be one candidate of biodegradable and 

biocompatible materials, it also has its own weakness, which is, its bioactivity. The key 

element for a biomaterial to perform well its functions, especially for bone regeneration or 

orthopedics applications is the formation of apatite layers. Since the discoveries of bio-

glass, the apatite layer formation has been used as an indicator of bioactivity of a 

biomaterial. Apatite is one of a subgroup originates from phosphate minerals. It is one 

component of bone minerals.  Apatite exhibits a miscellaneous structure with assorted 

lattice and morphologies. This mineral stoichiometry may be written as Ca5(PO4)3X, where 
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